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Objective: This study aimed to develop a risk prediction model for post-

treatment oligometastasis in nasopharyngeal carcinoma (NPC) by integrating

pathomics features and an improved Support vector machine (SVM) algorithm,

offering precise early decision support.

Methods: This study retrospectively included 462 NPC patients, without or with

oligometastasis defined by ESTRO/EORTC criteria. Whole-slide images were

scanned, and three representative H&E-stained regions were selected for

pathomics feature extraction via CellProfiler software. Features screened by

intraclass correlation coefficient, Mann-Whitney U test, Spearman correlation,

minimum redundancy maximum relevance, and Least absolute shrinkage and

selection operator regression. Based on these screened features, three models

were built: Dynamic Multi-Swarm Particle Swarm Optimization SVM (DMS-PSO-

SVM), Particle Swarm Optimization SVM (PSO-SVM), and a standard SVM. Model

training and hyperparameter tuning were conducted on the training set (n=369),

followed by evaluation on a validation set (n=93).

Results: 6 pathomics features were screened as important features. DMS-PSO-

SVM yielded superior performance, with training-set AUC=0.880 and validation-

set AUC=0.866, consistently outperforming both PSO-SVM (AUC=0.721) and

standard SVM (AUC=0.718). Calibration curves showed good agreement for

DMS-PSO-SVM (P>0.05) but indicated miscalibration in the standard SVM

(P<0.05). Decision curve analysis further demonstrated that DMS-PSO-SVM

offered higher net benefit across a wide range of risk thresholds.
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Conclusion: Incorporating pathomics and DMS-PSO optimization significantly

improved NPC oligometastasis prediction. This model showed high

discriminative ability, calibration, and clinical utility, suggesting that pathomics

and machine learning-based strategies could aid early recognition of high-risk

patients and inform individualized treatment approaches. A demo of the DMS-

PSO-SVM modeling algorithm code used in this study can be found on Github

(https://github.com/Edward-E-S-Wang/DMS-PSO-SVM).
KEYWORDS

machine learning, prediction model, metastases, nasopharyngeal carcinoma,
pathomics, support vector machine
1 Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor

originating from the nasopharyngeal mucosal epithelium and

exhibits distinct geographic and ethnic differences. It is primarily

found in southern China and Southeast Asian countries, with 47.7%

of new cases worldwide occurring in China (1, 2). Clinically, NPC

often presents with cervical lymph node enlargement, tinnitus, and

epistaxis, and it progresses rapidly, commonly leading to distant

metastasis that significantly impacts patients’ quality of life and

prognosis (3). Although radiotherapy combined with chemotherapy

has become the standard treatment for NPC and has effectively

increased overall survival rates, distant metastasis remains a major

factor affecting long-term survival and cure rates (4). The five-year

overall survival rate for patients with oligometastasis is much lower

than for those without distant metastasis; moreover, when multiple

organ metastases occur, both overall survival and quality of life

markedly decline (5). In clinical practice, accurately identifying and

assessing the risk of oligometastasis at an early stage is challenging.

Once metastasis occurs, treatment strategies and prognosis become

considerably more complex, and existing conventional staging

systems show limitations in accurately predicting the possibility of

oligometastasis before treatment. Some studies have indicated that

patients initially diagnosed with oligometastatic NPC may achieve

long-term survival and a favorable prognosis through adequate

systemic treatment and high-dose radiotherapy. Therefore, early

detection and prediction of oligometastasis in NPC has become a

crucial issue in clinical settings (6).

In recent years, radiomics analysis based on medical imaging

modalities such as MRI, CT, and PET/CT has commonly been used

in research for NPC predictive models (7). However, radiomics has

limited capacity to capture tumor biological phenotypes, tumor

microenvironment characteristics, and intratumoral heterogeneity,

thereby restricting the accuracy of predicting treatment response

and the risk of subsequent recurrence or metastasis (8). The

pathomics concept, which leverages quantitative features

extracted from digital pathology slides, has garnered increasing

attention. By performing high-throughput feature extraction and
02
quantitative analysis on scanned histopathological slides, pathomics

can capture subtle changes in the tumor and its microenvironment

from multiple dimensions such as morphology, texture, and spatial

distribution (9). Compared with conventional imaging, pathology

constitutes the most direct histological evidence in diagnosing

cancer and evaluating its malignancy. Pathomics-related studies

in various solid tumors have demonstrated initial success in risk

stratification, recurrence prediction, and efficacy assessment (10,

11). This further supports the rationale and potential for

incorporating pathomics into oligometastatic prediction for NPC.

Moreover, no existing studies have constructed a predictive model

for distant metastasis in NPC using pathomics features.

Machine learning algorithms have been extensively applied to

radiomics, genomics, and pathomics in studies involving different

“-omics” domains (12–14). Their ability to perform large-scale data

mining and multidimensional data integration has shown promising

predictive performance in NPC-related clinical events (15). In early

identification of NPC oligometastasis and the development of

individualized treatment strategies, combining pathomics features

with machine learning techniques can not only enable efficient

selection of pathomics information from tissue slides but also allow

for comprehensive integration and screening of multidimensional

data, thus further improving the model’s predictive accuracy and

reliability. Therefore, this study aims to extract pathomics features

from pre-treatment histopathological slides of NPC patients and use

machine learning methods to build a pathomics-based model for

predicting post-treatment oligometastasis in NPC. The goal is to

provide clinical decision support for physicians in order to improve

patients’ quality of life.
2 Methods

2.1 Patients

This study included 462 nasopharyngeal carcinoma (NPC)

patients treated at the Affiliated Hospital of Southwest Medical

University between January 2017 and January 2024. Inclusion
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criteria were: (1) NPC confirmed by pathological biopsy; (2) Clear

pathological slide images; (3) Complete baseline data; (4) NPC

patients who received treatment according to NCCN guidelines at

this hospital before oligometastasis occurred; (5) Patients who

developed oligometastases more than six months after tumor

treatment; (6) Patients who did not develop oligometastasis or

multiple metastases for more than six months after treatment; (7)

Patients aged 18 years or above. Exclusion criteria were: (1) Missing

or damaged pathological images; (2) Patients lacking complete

baseline clinical data; (3) Patients with other primary malignant

tumors or multiple metastases; (4) Patients who developed

oligometastasis during or before receiving treatment.

In this study, according to the consensus published by ESTRO

and EORTC, the diagnostic criteria for oligometastasis are: (1) ≤5

metastatic sites and ≤2 metastatic organs; (2) Metastatic lesions

confirmed by pathological or imaging examinations (6, 16).

All patients (n=462) were randomly split into a training set

(n=369) and a validation set (n=93) at an 8:2 ratio. The training set

was used for subsequent pathomics feature selection and model

construction, and the validation set was used to evaluate model

performance. This study was approved by the Ethics Committee of

the Affiliated Hospital of Southwest Medical University

(KY2021023). Due to the retrospective nature of the study,

informed consent from patients was waived. The study was

conducted in accordance with the Declaration of Helsinki (2013

Revision). A flowchart of this study is shown in Figure 1.
Frontiers in Oncology 03
2.2 Pathology slides acquisition and
pathomics feature extraction

All biopsy specimens obtained via needle aspiration were

immersed in 10% formalin solution for 4 hours. They were then

embedded in paraffin blocks and sectioned at 4 mm intervals,

followed by hematoxylin-eosin (H&E) staining for pathological

evaluation. Whole slide images (WSIs) of these pathological

sections were acquired through a digital slide scanner (KFBio KF-

PRO-020, Jiangfeng Bio Co. Ltd., China). Two pathologists, each

with ≥5 years of experience in diagnosing pathological slides,

enlarged the WSIs to 40x to select regions of diagnostic value.

The selection criteria were as follows: (1) stromal infiltration—

tumor invasion into adjacent connective tissue; (2) neurovascular

invasion—tumor cells invading nearby nerve fibers or blood vessels;

and (3) cellular heterogeneity—areas showing high cellular diversity

in shape, size, and nuclear atypia with unclear cell boundaries (17).

Each pathologist independently collected three typical non-

overlapping regions of 1280×960 pixels. In case of disagreement,

a senior pathologist with ≥10 years of diagnostic experience made

the final determination. Finally, all images were non-overlapping

and cropped to 512×512 patches for subsequent in-depth analysis.

Quantitative pathomics features were extracted from the

selected patches using CellProfiler software (version 4.0.7). The

“Unmix Colors” module was used to separate H&E-stained images

into grayscale hematoxylin and eosin channels. In addition, the
FIGURE 1

Flowchart of this study.
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“ColorToGray” module was employed to convert H&E-stained

images into grayscale. Feature extraction comprised three steps.

First, primary pathomics features were extracted from the original

grayscale image, including blur features, intensity features, and

threshold features. Second, separated H&E images were processed

via “IdentifyPrimaryObjects” and “IdentifySecondaryObjects” to

identify and extract higher-order quantitative image features such

as shape, size, texture, and pixel intensity distribution (18, 19).

Third, for each whole slide image (WSI), the mean feature values

from its three patches were calculated for subsequent analysis.
2.3 Feature screening

All extracted pathomics features were normalized to a range of 0

to 1 via min-max normalization, addressing batch-to-batch staining

differences in H&E slides. Feature screening involved five steps.

First, the intraclass correlation coefficient (ICC) was used to assess

feature reproducibility, and features with high reproducibility (ICC

> 0.75) were retained (20). Second, the Mann-Whitney U test was

performed to identify pathomics features significantly associated

with the dependent variable (P < 0.05) for further analysis (21).

Third, Spearman correlation was used to evaluate inter-feature

correlations; if the correlation coefficient between two features

exceeded 0.9, only one was kept (22). After these steps, the

minimum redundancy maximum relevance (mRMR) method was

employed to maximize the correlation between features and the

classification variable while minimizing inter-feature correlations,

thereby refining the feature set (23). Lastly, the Least absolute

shrinkage and selection operator (LASSO) regression algorithm

was used to identify key pathomics features. LASSO regression

determines an optimal penalty parameter l to select the best feature

combination, assigning a regression coefficient to each important

feature (24). This study used lambda.min and five-fold cross-

validation, where the chosen l produced the lowest cross-

validation error. The pathomics features selected via LASSO were

considered significant and were used for subsequent predictive

model construction.
2.4 Model construction

After the final retained pathomics features were determined

through the screening process, these features were incorporated into

a support vector machine (SVM) model for binary classification to

predict oligometastatic risk. In the SVM model, both the penalty

factor C and the width parameter g of the RBF kernel significantly

influence the shape of the decision boundary and the model’s

generalization capability. However, relying solely on manual or

grid search in a high-dimensional parameter space can cause the

search to become trapped in local optima or require excessive

computational costs. To address this issue, Dynamic multi-swarm

particle swarm optimization (DMS-PSO) was introduced to

optimize SVM parameters globally, while k-fold cross-validation
Frontiers in Oncology 04
was employed within the training set to assess the classification

performance of each candidate parameter set (25).

In the training set, the pathomics features retained by LASSO

were first constructed into a matrix X, and the corresponding label

vector Y recorded whether each patient had developed

oligometastases. The tunable hyperparameters of SVM were

mapped to the two-dimensional position of particles in the swarm:

xi = (Ci, gi)

Where Ci corresponds to the penalty factor, and gi corresponds
to the RBF kernel width. Particle initial positions and velocities were

randomly generated within the given interval:

½Cmin,  Cmax� � ½gmin,   gmax�
Subsequently, all particles were divided into several smaller sub-

swarms. Each sub-swarm adopted a local version of the PSO update

formula. At iteration step t + 1, the initial velocity of a particle could

be obtained by:

vi,d(t + 1) = w  vi,d(t) + c1r1½pbesti,d − xi,d(t)� + c2r2½lbestj,d − xi,d(t)�
Where w is the inertia weight, c1, c2 are learning factors, r1, r2

are random numbers, and pbesti,d and lbestj,d denote the particle’s

historical best and the sub-swarm’s best solution, respectively, in

dimension d. Position updates were performed using:

xi,d(t + 1) = xi,d(t) + vi,d(t + 1)

If any particle exceeded the specified boundaries after updating,

it was clamped to ensure it remained within the legitimate

parameter range. After updating within each sub-swarm, all

particles were randomly shuffled and reassigned to sub-swarms

every fixed iteration cycle R, allowing different sub-swarms to

rapidly share high-quality solutions at the swarm level and thus

avoid local optima.

To evaluate how each particle’s (Ci, gi) contributed to model

prediction, pathomics features and their corresponding labels in the

training set were fed into DMS-PSO-SVM. A 5-fold cross-

validation procedure was used, taking AUC as the assessment

metric. In order to maximize AUC, the fitness function was

defined as   1 − AUC, and the algori thm performed a

minimization search. If a particle’s fitness was better than its

historical best or the sub-swarm’s best,   pbest or lbest was

updated accordingly. After multiple iterations, DMS-PSO yielded

the current global optimum (Ĉ  , ĝ  ), corresponding to the particle

with the lowest fitness among all. Once this global best parameter

set was determined, a final model was retrained on the training set

and evaluated on the validation set to measure its generalization

performance. The receiver operating characteristic (ROC) curve’s

area under the curve (AUC), accuracy, sensitivity, and specificity

were used to assess predictive performance, thereby determining

whether the model demonstrated favorable discrimination and

robustness in predicting oligometastatic risk in NPC. A

calibration curve was employed to compare predicted event

probabilities with actual event frequencies for assessing

calibration, while decision curve analysis was used to evaluate the
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clinical net benefit of all models. Additionally, this study compares

the prediction performance of the proposed model with four other

mainstream CNNs architecture (Supplementary File 5).
2.5 Model interpretation based on SHAP

To interpret how individual pathomics measurements drive the

DMS-PSO-SVM predictions, we applied the SHAP algorithm using

the entire training cohort as the reference distribution. The 6 features

from all training patients were supplied to the SHAP KernelExplainer

together with the final model’s decision function. SHAP values were

then computed for each feature in the validation cases and

summarized by calculating the mean absolute SHAP value for

every feature to establish a global importance ranking. A summary

dot plot was also generated to depict each feature’s overall impact on

the model output, illustrating both effect size and direction. To

demonstrate the model’s behavior at the patient level, we randomly

selected four subjects—two who developed oligometastasis and two

who remained metastasis-free—and produced force plots showing

how each feature shifted their individual risk scores up or down.
2.6 Statistical analysis

All statistical analyses in this study were performed using

Python (Version 3.10) and R (Version 4.4.1). In the baseline data

analysis, categorical variables were compared using the chi-square

test or Yates’ continuity-corrected chi-square test. As the numerical

variables did not meet normal distribution criteria, the Wilcoxon

test was used for two-group comparisons. All tests were two-sided,

and a two-tailed P < 0.05 was considered statistically significant.

Additionally, the Hosmer-Lemeshow goodness-of-fit test was used

to evaluate calibration curves of the models.
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3 Results

3.1 Baseline information

A total of 462 NPC patients were included in this study, and

baseline data were collected (Supplementary File 1). Among them,

95 patients (20.6%) were diagnosed with oligometastasis, while 367

patients (79.4%) did not experience oligometastasis. The median

age for the oligometastatic group was 49 years (IQR: 45–56),

whereas the median age for the non-oligometastatic group was 51

years (IQR: 46–57). Moreover, significant differences in N Stage and

AJCC Stage were observed between the two groups (P < 0.001). All

patients (n=462) were randomly split into a training set (n=369)

and a validation set (n=93) in an 8:2 ratio. The training set was used

for subsequent pathomics feature screening and model

development, while the validation set was employed to assess the

performance of the model.
3.2 Pathomics feature screening

A total of 351 pathomics features were obtained from the

pathological images in this study. The intraclass correlation

coefficients (ICC) for these features ranged from 0.771 to 0.890,

indicating good reproducibility of feature extraction. After

conducting the U test, 141 pathomics features that were

significantly associated with the dependent variable (P < 0.05)

were selected. Following Spearman correlation analysis, 108

pathomics features were retained. Subsequently, 76 pathomics

features were further filtered using the mRMR algorithm and

then entered into LASSO regression for final selection. Employing

lambda.min and five-fold cross-validation to determine the optimal

penalty parameter, 6 key pathomics features were ultimately

identified for model construction (Figure 2) (Supplementary File 2).
FIGURE 2

Feature screening based on LASSO regression. (A) LASSO regression feature screening trajectory plot; (B) LASSO regression feature coefficient
screening plot.
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3.3 Evaluation of prediction model

Following feature selection, the six final retained pathomics

features were separately used to construct three predictive models

—DMS-PSO-SVM, PSO-SVM, and a standard SVM. Based on the

principle of maximizing the Youden index in the training set, we

determined that the optimal cutoff for the model’s predicted

probability is 0.47 (26). Therefore, patients with a predicted risk

probability ≥ 0.47 are defined as high-risk (label = 1), and those with a

predicted risk probability < 0.47 are defined as low-risk (label = 0). In

Figure 3, the ROC curves illustrate the classification outcomes and

corresponding AUC values on both the training set (Figures 3A–C)

and validation set (Figures 3D–F). After five-fold cross-validation and

138 iterations, the DMS-PSO-SVM model, which employs the

dynamic multi-swarm particle swarm optimization for parameter

tuning, achieved the best discriminative performance. Its

hyperparameter search space and optimal parameter set can be

found in Supplementary File 3. DMS-PSO-SVM attained an AUC

of 0.880 (95% CI: 0.783–0.977) in the training set and 0.866 (95% CI:

0.805–0.928) in the validation set, demonstrating high sensitivity and

specificity. In contrast, the AUC values for PSO-SVM in the training

and validation sets were 0.749 (95% CI: 0.634–0.865) and 0.721 (95%

CI: 0.579–0.862), respectively, while those for the standard SVMwere

0.733 (95% CI: 0.560–0.907) and 0.718 (95% CI: 0.590–0.847). The
Frontiers in Oncology 06
standard SVM in this study used grid search for hyperparameter

optimization, and the optimal parameters and search range are

provided in Supplementary File 4. Furthermore, in the training set,

DMS-PSO-SVM achieved an AUC of 0.880, an accuracy of 0.875, a

sensitivity of 0.879, and a specificity of 0.769—overall better than

PSO-SVM and the standard SVM. Although SVM’s accuracy (0.851)

and sensitivity (0.862) were slightly higher than those of PSO-SVM,

its specificity was only 0.615, with a relatively low AUC (0.733),

indicating a certain degree of overfitting or bias. In the validation set,

DMS-PSO-SVM maintained the best discrimination (AUC = 0.866)

alongside optimal accuracy (0.820), sensitivity (0.819), and specificity

(0.846), whereas PSO-SVM and SVM saw declines in all metrics.

Notably, the standard SVM exhibited the lowest AUC, accuracy,

sensitivity, and specificity among the three models. These findings

further demonstrate that applying a dynamic multi-swarm particle

swarm optimization strategy to SVM hyperparameter tuning can

enhance the model’s ability to differentiate oligometastatic risk in

NPC and yield more stable predictive performance in both the

training and validation sets (Table 1).

This study proceeded to evaluate the calibration of the three

models in the validation set via calibration curves (Figure 4) and the

Hosmer-Lemeshow goodness-of-fit test. Results indicated that the

DMS-PSO-SVM (Figure 4A) and PSO-SVM (Figure 4B) calibration

curves closely aligned with the ideal line, with the red bias-corrected
FIGURE 3

Receiver operating characteristic curve of nasopharyngeal carcinoma oligometastatic prediction model. (A) Dynamic multi-swarm particle swarm
optimization support vector machine in training set. (B) Particle swarm optimization support vector machine in training set. (C) Support vector
machine in training set. (D) Dynamic multi-swarm particle swarm optimization support vector machine in validation set. (E) Particle swarm
optimization support vector machine in validation set. (F) Support vector machine in validation set.
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curve and the original prediction blue curve both approximating a

diagonal, accompanied by a Hosmer-Lemeshow P > 0.05. This

suggests good consistency between the models’ predicted

probability distributions and actual outcomes. In contrast, the

standard SVM (Figure 4C) demonstrated a certain level of

calibration bias, with the bias-corrected curve deviating

considerably from the ideal line and a Hosmer-Lemeshow test

result of P < 0.05, implying a significant discrepancy between

predicted and observed outcomes.

Additionally, to assess clinical applicability under different risk

thresholds, decision curve analysis (Figure 5) was performed for the

threemodels using the validation set. On the decision curve, the vertical

axis denotes net benefit, and the horizontal axis represents the risk
Frontiers in Oncology 07
threshold at which patients are considered “high-risk,” referencing

“treat-all” (assuming all patients develop oligometastasis) and “treat-

none” (assuming no patients develop oligometastasis) as comparisons.

The decision curve analysis (Figure 5) shows that the DMS-PSO-SVM

model provides net benefit compared with “treat-all” and “treat-none”

strategies across nearly the entire clinically plausible risk threshold

range (approximately 0.10–1.00). By contrast, the PSO-SVM model

yields positive net benefit only between thresholds of about 0.10–0.30,

and the standard SVMmodel between roughly 0.07–0.14. In Figure 5A,

when thresholds range from low to moderate, the DMS-PSO-SVM

model consistently lies above the “Treat All” and “Treat None”

baselines, offering a higher net benefit than other approaches,

thereby highlighting its clear clinical decision-making advantage. By

comparison, PSO-SVM (Figure 5B) remains above “Treat All” and

“Treat None” across most threshold ranges but falls slightly below

DMS-PSO-SVM in net benefit, while the standard SVM (Figure 5C)

overlaps or nears the “Treat None” line at certain thresholds, thus

conferring only limited net benefit. This result suggests that employing

the model’s output probabilities to differentiate high-risk from low-risk

patients and make corresponding treatment decisions would offer the

greatest net benefit over a broad threshold interval when using DMS-

PSO-SVM.

In this study, Based on the principle of maximizing the Youden

index in the training set, we determined that the optimal cutoff for the

model’s predicted probability is 0.47 (26). Therefore, we adopted a

risk-threshold of 0.47 to distinguish high-risk from low-risk patients.

Decision curve analysis indicates that at this threshold the DMS-

PSO-SVM model maintains a positive net benefit relative to “treat-

all” and “treat-none” approaches. Specifically, a net benefit of

approximately 0.16 at a 0.47 threshold implies that for every 100

patients evaluated, 16 additional true-positive cases would be

identified without increasing false positives. This corresponds to a

number needed to treat (NNT) of about 6, meaning that intensified

monitoring would correctly capture one extra oligometastasis case for

every six patients subjected to enhanced follow-up.
FIGURE 4

Calibration curve of nasopharyngeal carcinoma oligometastatic prediction Model. (A) Dynamic multi-swarm particle swarm optimization support
vector machine. (B) Particle swarm optimization support vector machine. (C) Support vector machine.
TABLE 1 Evaluation metrics of nasopharyngeal carcinoma
oligometastatic prediction model.

Dataset AUC Accuracy Sensitivity Specificity

Training Dataset

DMS-
PSO-SVM

0.880bc 0.875 0.879 0.769

PSO-SVM 0.749a 0.781 0.785 0.692

SVM 0.733 0.851 0.862 0.615

Validation Dataset

DMS-
PSO-SVM

0.866bc 0.820 0.819 0.846

PSO-SVM 0.721a 0.733 0.728 0.769

SVM 0.718 0.724 0.726 0.693
AUC, Area under the curve; DMS-PSO-SVM, Dynamic multi-swarm particle swarm
optimization support vector machine; PSO-SVM, Particle swarm optimization support
vector machine; SVM, Support vector machine.
Superscripts denote pairwise comparisons of AUC by DeLong’s test;
ap> 0.05 versus standard SVM;
bp < 0.05 versus standard SVM;
cp < 0.05 versus PSO-SVM.
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3.4 Model interpretation

To understand how individual pathomics measurements drive the

DMS-PSO-SVM predictions, we applied the SHAP framework using all

369 training cases as the background distribution. The mean absolute

SHAP values across the 93 validation patients (Figure 6A)
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rank Mean_IdentifyPrimaryObjects_Granularity_6_Hematoxylin

as the most influential feature, followed by Mean_Identify

PrimaryObjects_AreaShape_CentralMoment_1_4 and Mean_

IdentifySecondaryObjects_AreaShape_Zernike_5_1; least impact is

observed for Granularity_7_Eosin. The summary dot plot (Figure 6B)

further reveals that higher Hematoxylin granularity and larger central
FIGURE 6

Global and summary SHAP analysis of the DMS-PSO-SVM model. (A) Bar plot of the mean absolute SHAP values for each of the six pathomics
features, indicating the average magnitude of their contributions to the model output across all validation cases. (B) SHAP summary dot plot
showing the distribution of individual SHAP values for each feature (horizontal axis) colored by feature value (from low-blue to high-red). Features
are ordered by their global importance (mean absolute SHAP value), and the plot illustrates both the direction and strength of each feature’s effect
on the predicted risk of oligometastasis.
FIGURE 5

Decision curve analysis of nasopharyngeal carcinoma oligometastatic prediction model. (A) Dynamic multi-swarm particle swarm optimization
support vector machine. (B) Particle swarm optimization support vector machine. (C) Support vector machine.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1589919
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2025.1589919
moments generally push the predicted risk upward, whereas higher

values of Zernike_2_6 and eosin granularity tend to suppress the

risk score.

Force plot visualizations for two representative high‐risk

patients (both with true labels = 1) show that elevated

Granularity_6_Hematoxylin and CentralMoment_1_4 values

produce strong positive SHAP contributions that cumulatively

raise each individual’s risk prediction well above the base value

(Figures 7A, B). In contrast, for two low‐risk patients (labels = 0),

negative contributions from features such as Zernike_3_4 and

Granularity_7_Eosin dominate, driving the model output below

the base value and yielding low predicted probabilities (Figures 7C,

D, bottom panels).
4 Discussion

This study primary aim was to evaluate the independent predictive

value of quantitative pathomics features. By demonstrating that robust

discrimination can be achieved using pathology derived metrics alone,

we can more clearly attribute predictive improvements to the

pathological biomarkers of oligometastatic potential. Improving an
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objective method to predict potential oligometastasis before NPC

treatment has significant clinical value. This study aimed to enhance

the prediction performance for oligometastatic NPC using pathomics

and an improved SVM algorithm. By extracting crucial pathomics

features and applying dynamic multi-swarm particle swarm

optimization to optimize the SVM, the model proposed in this

research demonstrated promising performance in the validation set

(AUC = 0.866, 95% CI: 0.805–0.928). It outperformed both the SVM

optimized by standard particle swarm optimization (PSO-SVM, AUC

= 0.721, 95% CI: 0.579–0.862) and the standard SVM (AUC = 0.718,

95% CI: 0.590–0.847). Based on the 47% risk threshold determined in

this study, patients with a predicted probability ≥ 0.47 are classified as

high-risk by our model. Clinically, these high-risk patients may

undergo intensified monitoring and follow-up, such as quarterly

MRI or PET/CT examinations during the first two postoperative

years to enable early detection of occult metastases. If oligometastasis

is identified, corresponding treatment can be administered to delay

disease progression and the development of widespread metastases,

thereby improving patient survival.

This study revealed a significant difference (P < 0.001) in N

Stage prior to treatment between patients who developed

oligometastases and those who did not, suggesting that lymph
FIGURE 7

SHAP force plots of four randomly selected patients. (A, B) Two patients with the true label of having oligometastases (Label=1) and also classified as
having oligometastases in the prediction model. (C, D) Two patients with a true label of no oligometastasis (Label=0) and who were classified as
having no oligometastasis in the prediction model.
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node involvement before treatment may indicate a high-risk profile

for oligometastasis and a poorer prognosis. This is consistent with

previous reports (27, 28). Earlier studies used radiomic features and

clinical variables to construct predictive models for metastasis in

NPC. A single-center study by Huang et al. (29), based on

multisequence MRI radiomics features, showed promising results

in predicting asynchronous single-organ metastasis in NPC (AUC =

0.733). Another study by Peng et al. (30), using PET/CT radiomics

features before treatment in 85 NPC patients, employed an SVM to

predict distant metastasis, again confirming the capability of image-

based features (AUC = 0.829). Compared with prior work, the

current study’s model improved AUC by 13% and 4%, respectively,

indicating that combining pathomics features with an enhanced

predictive algorithm indeed bolsters prediction performance.

In this study, the six pathomics features finally included for model

construction are: “Mean_IdentifyPrimaryObjects_AreaShape_

CentralMoment_1_4,” “Mean_IdentifySecondaryObjects_AreaShape_

Zernike_3_4,” “Mean_IdentifyPrimaryObjects_Granularity_

6_Hematoxylin,” “Granularity_7_Eosin,” “Mean_Identify

PrimaryObjects_AreaShape_Zernike_2_6,” and “Mean_Identify

SecondaryObjects_AreaShape_Zernike_5_1.” Functionally, most of

these features involve shape-based quantitative indices (Central

Moment, Zernike moments) and texture-based descriptors

(Granularity), capturing key information on cellular morphology,

structural complexity, and staining properties within the tumor and

its microenvironment. Central Moment and Zernike moments, two

commonly used shape descriptors, quantify the geometric structure

and distribution of cells or tissue regions from different perspectives.

Central Moments highlight skewness and dispersion around a central

axis, whereas Zernike moments serve as higher-order global shape

descriptors relying on orthogonal polynomials to characterize

asymmetry, edge complexity, and rotational invariance (31, 32). For

tumor sections, such shape metrics help capture nuclear atypia,

nuclear-to-cytoplasmic ratio variations, and tissue disarray—all often

linked to tumor invasiveness, proliferation, and metastatic propensity.

Meanwhile, Granularity features describe the textural grain size and

distribution patterns. In H&E-stained sections, the eosin channel in

particular correlates with cytoplasmic and stromal staining, indicating

factors such as collagen fiber deposition, extracellular matrix

alterations, or hyperproliferative tumor cell clusters, which can also

affect invasion or metastatic potential (33, 34). The distinction between

“IdentifyPrimaryObjects” (e.g., single cells or nuclei) and

“IdentifySecondaryObjects” (e.g., cytoplasm, glandular structures, or

stromal regions) in CellProfiler reflects different requirements for shape

and spatial distribution. Identical shape features like Zernike or Central

Moment, if separately calculated for Primary vs. Secondary Objects,

might reveal unique changes in each microenvironmental component

(35, 36).

At the level of feature screening. To maximize robustness and

interpretability while mitigating overfitting in our high-dimensional,

moderate-sample-size study, we employed a sequential five-stage

feature-selection pipeline. We first retained only those features

demonstrating high reproducibility (ICC > 0.75), thereby ensuring

consistency across repeated image processing (20). A subsequent

Mann-Whitney U test (P < 0.05) excluded features lacking significant
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association with oligometastatic status (21). To address

multicollinearity, we removed one member of any feature pair with

Spearman |r| > 0.90, preserving original feature identities rather than

transforming them into abstract axes (22). The minimum

redundancy maximum relevance (mRMR) algorithm then

prioritized variables that combined maximal relevance to the

outcome with minimal inter-feature redundancy (23). Finally,

LASSO regression with an L1 penalty and five-fold cross-validation

refined this set further by shrinking weak coefficients to zero, thus

yielding a parsimonious, well-generalizing predictive model (24).

Unlike principal component analysis, which projects all

measurements into orthogonal components (PC1, PC2, etc.) that

lack direct histopathological interpretation, our approach maintains a

clear link between each selected metric and known tissue phenomena

(37). Recursive feature elimination (RFE) was also considered, but its

instability in small to moderate cohorts and the absence of intrinsic

effect-size estimates limited its appeal. By contrast, the combined

mRMR-LASSO strategy offers a transparent, two-tiered filter-

wrapper framework: mRMR efficiently narrows the candidate pool

to the most informative features, and LASSO assigns each retained

feature a non-zero coefficient that directly reflects its predictive

contribution. This balance of interpretability and performance

makes our pipeline particularly well suited to pathomics-driven

risk modeling.

Compared with earlier investigations, this study introduced

dynamic multi-swarm particle swarm optimization at the

algorithm level, which affords global search capabilities and

multi-swarm collaboration to counteract the pitfalls of high-

dimensional parameter spaces in pursuit of local optima. This

provides a more robust parameter-optimization method for SVM.

The multi-swarm parallel search and periodic regrouping

mechanism allow the model to maintain high sensitivity while

simultaneously preserving specificity, thereby still achieving

favorable generalizability in the context of complex pathomics

features. Unlike previous work—primarily focused on radiomics

features and clinical variables—this study zeroes in on the micro-

level heterogeneity in pathology slides, leveraging the high-

throughput data on fine-grained textures, cell morphology, and

spatial distribution from digital pathology. The results validate

pathomics’ potential in prognostic prediction. This research offers

clinical value and innovation in several aspects. First, extracting

pathomics features from digital pathology slides provides a more

direct reflection of tumor microenvironment and cellular changes,

circumventing resolution and subjective interpretation issues

potentially present in imaging alone (9). Second, for pathomics’

high-dimensionality and possibly multimodal distribution,

adopting DMS-PSO for SVM parameter tuning, together with

cross-validation to forestall overfitting, ultimately yields a model

featuring high prediction accuracy and robustness. Moreover, the

model has shown stability across different datasets (training and

validation sets), lending more concrete external feasibility for future

clinical application.

Deploying a predictive model based on pathomics in everyday

clinical settings requires addressing multiple challenges. It is

essential to implement a comprehensive digital pathology
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workflow that includes calibrating whole slide scanners and

standardizing staining protocols so that pathomics features can be

extracted with consistency. Effective tissue segmentation and

quantitative feature computation demand specialized image

analysis software, for example CellProfiler or similar platforms

(38). To make the model accessible within routine practice, it

could be provided as an independent graphical application or

incorporated as a plugin into existing digital pathology viewers

(39). Interpreting model outputs and applying risk thresholds will

rely on close collaboration among clinicians, pathologists and data

engineers, supported by targeted training sessions. Seamless

integration with clinical information systems depends on robust

interfaces between the laboratory information system and the

electronic health record, allowing pathology images, feature data

and prediction results to populate patient records automatically for

multidisciplinary review. Once deployed, a quality assurance and

performance monitoring regime must be established. This would

involve regular re-validation using contemporary local specimens,

tracking any drift in discrimination and calibration metrics, and

updating model parameters or decision cutoffs as needed to

maintain optimal performance (40).

Although this study achieved promising efficacy in the

validation set with the current sample size. However, this study

has certain limitations. First, no additional variables from

laboratory analyses (e.g., EBV DNA levels, immunological

indicators) or multi-omics data (genomics, proteomics,

radiomics) were incorporated into the analysis. Future work could

explore the integration of these modalities with pathomics to

further improve predictive accuracy. Second, although this single-

center retrospective study collected a substantial sample size at one

center, its data collection and patient characteristics remain

relatively constrained. Given that different institutions exhibit

significant variability in tissue staining protocols (e.g., H&E

reagent manufacturers, staining durations), digital slide scanning

hardware, and image-preprocessing workflows (such as color

deconvolution and image enhancement), these factors can affect

the stability of pathomics feature extraction and the predictive

performance of the model. Moreover, baseline pathological

characteristics and the tumor microenvironment differ across

regions and patient populations, which may further impact the

model’s generalizability. To address these limitations, future work

will involve collaboration with multiple independent medical

centers to collect WSI data generated using diverse staining and

scanning platforms and to perform rigorous multicenter

external validation.
5 Conclusion

Using pathomics features extracted from digital pathology

images, coupled with an improved SVM algorithm, this study

constructed a predictive model for post-treatment oligometastatic

risk in nasopharyngeal carcinoma. The model demonstrated

notable advantages in discrimination, calibration, and clinical

utility. With continuous advances in pathological data acquisition
Frontiers in Oncology 11
and algorithmic refinement, pathomics-based predictive models are

expected to play an increasingly important role in precision

medicine for NPC, providing valuable assistance in early

intervent ion and personal ized therapy for high-r isk

oligometastatic patients.
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