

OPEN ACCESS

EDITED BY
Julie Tabiasco,
INSERM UMR1291 Institut Toulousain des
Maladies Infectieuses et Inflammatoires,
France

REVIEWED BY
Chen Ling,
Fudan University, China
Ling Yang,
Xinyu People's Hospital, China
Xia Hu,
Jiangxi Provincial People's Hospital, China

*CORRESPONDENCE
Tonggang Zhou

Zhoutongganga@163.com

RECEIVED 08 March 2025 ACCEPTED 28 August 2025 PUBLISHED 11 September 2025

CITATION

Xu Y, Zhong B, Yu C, Hou Q, Chen W, Zheng W, Zhang W and Zhou T (2025) The benefits and risks of adding PD-1/PD-L1 inhibitors to chemotherapy for stage IIIb-IV non-small-cell lung cancer: an updated meta-analysis based on phase 3 randomized controlled trials.

Front. Oncol. 15:1590017.

doi: 10.3389/fonc.2025.1590017

COPYRIGHT

© 2025 Xu, Zhong, Yu, Hou, Chen, Zheng, Zhang and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The benefits and risks of adding PD-1/PD-L1 inhibitors to chemotherapy for stage IIIb-IV non-small-cell lung cancer: an updated meta-analysis based on phase 3 randomized controlled trials

Yun Xu¹, Baoliang Zhong², Chunlin Yu², Qingjian Hou¹, Wenying Chen¹, Wen Zheng¹, Wenxiong Zhang³ and Tonggang Zhou^{2*}

¹Department of Oncology, Shangrao People's Hospital, Shangrao, China, ²Department of Interventional Therapy, Ganzhou People's Hospital, Ganzhou, China, ³Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China

Background: Previous research has confirmed that integrating PD-1/PD-L1 inhibitors with chemotherapy (PC) represents a more effective strategy for treating advanced non-small-cell lung cancer (NSCLC). However, with the increasing number of phase 3 randomized controlled trials (RCTs) published in recent years, it is essential to re-evaluate the validity of this conclusion and to comprehensively assess the efficacy and safety across diverse patient subgroups. **Methods:** We systematically reviewed phase 3 RCTs comparing PC with chemotherapy alone for stage IIIb-IV NSCLC. Data were extracted and analyzed for overall survival (OS), progression-free survival (PFS), response rates, and adverse events (AEs). Subgroup analyses were performed based on factors such as disease stage, pathological type, etc.

Results: After screening, 19 phase 3 RCTs involving 9335 patients were included. Our updated analysis confirmed at PC therapy significantly improves OS (hazard ratio [HR]: 0.73 [0.69, 0.77], P < 0.00001), PFS (HR: 0.56 [0.52, 0.60], P < 0.00001), duration of response (DOR, HR: 0.50 [0.45, 0.54], P < 0.00001) and objective response rate (ORR, risk ratio [RR]: 1.59 [1.51, 1.67], P < 0.00001) compared to chemotherapy alone. The survival benefits were consistent across all subgroups and increases with longer follow-up. Brain metastases and PD-L1 combined positive score (CPS) > 50% were the favorable factors for PC group. However, the combined treatment was associated with an increased incidence of total/grade 3-5 treatment emergent AEs (TEAEs), and immune-related AEs (irAEs), although the overall safety profile remained manageable. The most common AEs in the PC group were blood toxicity related AEs (anemia, neutrophil count decreased, etc).

Conclusion: The PC therapy continues to provide a substantial survival benefit for patients with stage IIIb-IV NSCLC. However, its higher incidence of AEs, especially irAEs, needs to be taken seriously.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251005925, identifier CRD420251005925.

KEYWORDS

PD-1/PD-L1 inhibitors, chemotherapy, non-small-cell lung cancer, meta-analysis, phase 3 randomized controlled trials

Introduction

Non-small cell lung cancer (NSCLC) is a leading cause of cancerrelated mortality globally, with advanced-stage disease often presenting limited treatment options and poor survival outcomes (1). One of the major challenges in current NSCLC treatment is the development of primary and acquired resistance to both chemotherapy and targeted therapies, which often leads to treatment failure. Moreover, conventional chemotherapy alone is limited by modest survival benefits and cumulative toxicity, while targeted therapies are only applicable to subsets of patients with specific driver mutations (2). The emergence of immune checkpoint inhibitors (ICIs), particularly those targeting the PD-1/PD-L1 pathway, has transformed the therapeutic landscape for advanced NSCLC. The rationale behind the PC regimen lies in its potential to overcome these limitations: chemotherapy not only reduces tumor burden but may also induce immunogenic cell death, thereby enhancing tumor antigen presentation, while PD-1/PD-L1 inhibitors restore T cell activity and help to counteract immune evasion and resistance mechanisms. By enhancing the immune system's antitumor activity, these agents have demonstrated significant improvements in overall survival (OS) and progression-

Abbreviations: AE, Adverse event; ALK, Anaplastic lymphoma kinase; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; CI, Confidence interval; CPS, Combined positive score; CR, Complete response; DCR, Disease control rate; DOR, Duration of response; DORR, Duration of response rate; ECOG PS, Eastern Cooperative Oncology Group Performance Status; EGFR, Epidermal growth factor receptor; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; HR, Hazard ratio; ICI, Immune checkpoint inhibitor; irAE, Immune-related adverse event; M/F, Male/Female; Non-sq, Non-squamous non-small-cell lung cancer; NSCLC, Non-small-cell lung cancer; ORR, Objective response rate; OS, Overall survival; OSR, Overall survival rate; PC, PD-1/PD-L1 inhibitors combined with chemotherapy; PD, Progressive disease; PD-1, Programmed cell death protein 1; PD-L1, Programmed deathligand 1; PFS, Progression-free survival; PFSR, Progression-free survival rate; PR, Partial response; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROSPERO, International prospective register of systematic reviews; Sq, Squamous cell carcinoma; RCT, Randomized controlled trial; RET, Rearranged during transfection; ROS1, ROS Proto-Oncogene 1, receptor tyrosine kinase; RR, Risk ratio; SD, Stable disease; TEAE, Treatment-emergent adverse event; TRAE, Treatment-related adverse event.

free survival (PFS) when administered in combination with chemotherapy (3).

However, the field is rapidly evolving, with numerous new phase 3 randomized controlled trials (RCTs) continually refining our understanding of these combinations (4-7). Recent studies have examined their efficacy across diverse patient subgroups, including those with varying PD-L1 expression levels, different histologic subtypes, and specific genetic mutations (4-7). While some trials reaffirm the superiority of PD-1/PD-L1 inhibitors combined with chemotherapy (PC), others report more nuanced outcomes, particularly in patients with low or negative PD-L1 expression, raising questions about universal applicability (8, 9). Meanwhile, safety remains a critical consideration. Immune-related adverse events (irAEs), such as pneumonitis and colitis, are welldocumented risks of ICIs and may be exacerbated when combined with chemotherapy (10). Elderly patients and those with pre-existing autoimmune conditions are particularly susceptible, necessitating a careful evaluation of the risk-benefit profile in these populations (11).

Given the growing body of evidence, an updated meta-analysis is warranted to synthesize findings from recent phase 3 RCTs and provide a comprehensive evaluation of the benefits and risks of PC. This analysis aims to address key questions: (1) Does this combination continue to outperform chemotherapy alone in advanced NSCLC? (2) How do efficacy and safety profiles vary across patient subgroups? (3) What are the most frequent and severe adverse events (AEs) associated with these regimens? By integrating data from recent phase 3 RCTs, this meta-analysis seeks to offer evidence-based insights into optimizing treatment strategies for advanced NSCLC, ensuring that the benefits of these novel therapies are maximized while minimizing risks.

Materials and methods

Search strategy

Keywords including "PD-1/PD-L1 inhibitors", "Lung cancer", and "Randomized" were used in the search process. Six major databases-PubMed, ScienceDirect, Cochrane Library, Scopus, EMBASE, and Web of Science-were systematically searched. The

investigation covered all available records from the inception of these databases up to February 13, 2025 (Supplementary Table S1).

Selection criteria

The inclusion criteria: (1) Participants: patients diagnosed with stage IIIb-IV NSCLC; (2) Intervention and control: PC compared to chemotherapy; (3) Outcomes: survival, response rates, and AEs; (4) Study design: phase 3 RCTs.

We excluded studies if they were retrospective studies, letters, review articles, editorials, and conference abstracts.

Data extraction

Two investigators independently collected data on study details (registration No., study name, etc), patient characteristics (age, pathological type, etc), survival outcomes (OS, PFS, etc), response rates (duration of response [DOR], objective response rate [ORR], etc), and AEs (treatment emergent AEs [TEAEs], irAEs, etc). In cases of missing data, corresponding authors were contacted for clarification, and discrepancies were resolved through re-evaluation by the investigators.

Outcome assessments

OS and PFS were subgroup analyzed based on age, sex, race, ECOG PS, smoking status, pathological type, stage, brain metastases, liver metastases, PD-L1 combined positive score (CPS), PD-1/PD-L1 inhibitors type, and platinum chemotherapy type. If specific subgroup data were missing in individual studies, those studies were excluded from the relevant subgroup analysis but remained in the overall analyses. The survival rates of OS (OSR) and PFS (PFSR) were evaluated at 6 to 60 months, and the duration of response rate (DORR) were assessed at 6 to 48 months.

Quality assessment

Two instruments, the Cochrane Risk Assessment Tool and the Jadad scale, were used to assess the methodological quality of RCTs. The Jadad scale employs a 7-point scoring method, with scores ranging from 4 to 7 indicating high-quality studies (12, 13). Additionally, the outcomes were analyzed using the GRADE framework, which classifies evidence into four distinct levels: high, moderate, low, and very low (14).

Statistical analysis

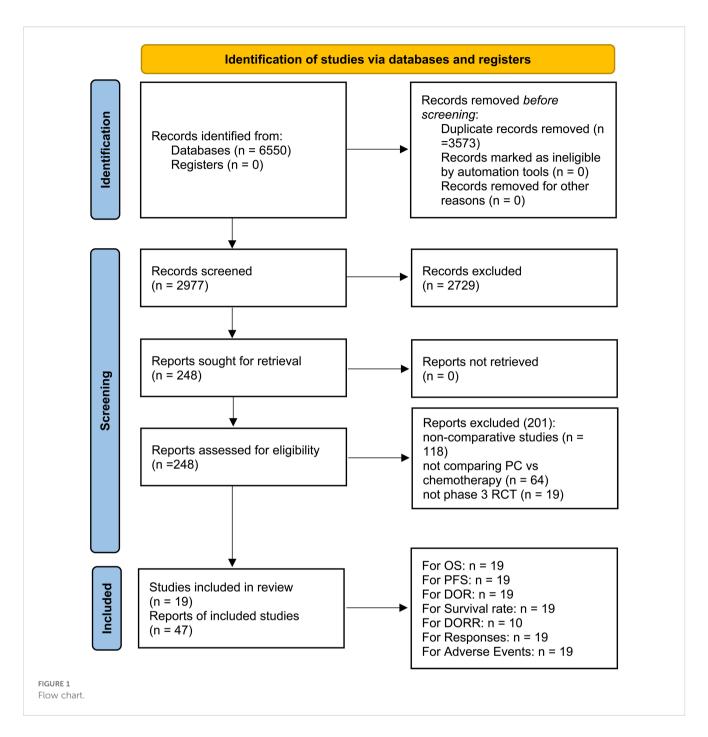
STATA 12.0 and Review Manager 5.3 were used to perform data analysis. For survival outcomes, hazard ratios (HR) were used,

whereas risk ratios (RR) were utilized for dichotomous data. Different articles from the same trial were considered only if they reported distinct outcomes, while for the same outcome we used the most recent or most complete dataset. A fixed-effects model was used for low heterogeneity ($I^2 < 50\%$ or P > 0.1), whereas a random-effects model was applied when heterogeneity was higher. Meanwhile, for outcomes exhibiting substantial heterogeneity, sensitivity analyses were also conducted by sequentially excluding individual studies to evaluate the robustness of the pooled estimates. A P-value below 0.05 was considered statistically significant. Publication bias was examined using funnel diagrams, along with Egger's and Begg's statistical tests (15, 16).

Results

Search results

Among the 2977 screened studies, 47 reports from 19 phase 3 RCTs (AK105-302, ASTRUM-004, CameL, CameL-Sq, CheckMate 227 Part 1b, CheckMate 227 Part 2, CHOICE-01, EMPOWER-Lung 3, GEMSTONE-302, IMpower130, IMpower131, IMpower132, KEYNOTE-189, KEYNOTE-407, ORIENT-11, ORIENT-12, POSEIDON, RATIONALE-304, and RATIONALE-307), encompassing a total of 9335 patients, were selected (Figure 1) (4–9, 17–57). Table 1 summarizes the baseline characteristics of these studies. Of these, ten RCTs (5, 6, 8, 9, 21, 32–34, 37, 43) were international multicenter trials, while the remaining nine (4, 7, 17, 20, 30, 49, 52, 54, 56) were multicenter studies conducted in China. All included studies were considered high quality (Supplementary Figure S1, Supplementary Table S2). According to the GRADE framework, the evidence quality ranged from moderate to high (Supplementary Table S3).


Survival

The PC group demonstrated superior OS (HR: 0.73 [0.69, 0.77], P < 0.00001) (Figure 2). OSR showed a significant advantage for the PC group over a period of 6 to 60 months. The OS benefit became more pronounced as survival time extended (Figure 3; Supplementary Figure S2).

The PC group demonstrated enhanced PFS (HR: 0.56 [0.52, 0.60], P < 0.00001) (Figure 4). PFSR displayed a significant advantage for the PC group over a duration of 6 to 60 months. The PFS also benefit became more evident as survival time extended (Figure 5; Supplementary Figure S3).

Subgroup analysis of survival

OS and PFS consistently favored PC in all subgroups (as described in the outcome assessments). Brain metastases and PD-L1 CPS > 50% were the favorable factors for PC group in both OS and PFS (Table 2).

Responses

The PC group exhibited superior DOR (HR: 0.50 [0.45, 0.54], P < 0.00001) (Figure 6). DORR consistently favored the PC group over a period of 6 to 48 months (Figure 7; Supplementary Figure S4).

The PC group achieved superior ORR (RR: 1.59 [1.51, 1.67], P < 0.00001), disease control rate (DCR) (RR: 1.12 [1.07, 1.18], P < 0.00001), complete response (CR) (RR: 2.30 [1.64, 3.23], P < 0.00001), and partial response (PR) (RR: 1.55 [1.47, 1.64], P < 0.00001). In contrast, the chemotherapy group had higher rates of

stable disease (SD) (RR: 1.59 [1.51, 1.67], P < 0.00001) and progressive disease (PD) (RR: 1.55 [1.47, 1.64], P < 0.00001) (Table 3; Supplementary Figure S5).

Safety

Overall, the PC group experienced higher incidences of total TEAEs/TRAEs/irAEs, grade 3–5 TEAEs/TRAEs/irAEs, serious TEAEs/TRAEs/irAEs, TEAEs/TRAEs/irAEs leading to discontinuation, and TRAEs/irAEs leading to death (Table 4).

frontiersin.org

Xu et al.

TABLE 1 Baseline characteristics of the included studies.

Study	Registration no.	Period	Country	Groups F	Patients	Sex(M/F)	Age (mean,	Pathological type		Stage		Mutation status	PD-1/PD-L1	Follow up
					radents	Jex(I·I/I /	year)	Sq	Non-sq				type	(months)
AK105-302 (4) NCT0386	NCT02944002	2018.12-2020.10	China	PC	175	162/13	60.9	175	0	23	152	EGFR -/ALK -	Penpulimab	24.7
	NC103600333	2016.12-2020.10	Cillia	Chemotherapy	175	162/13	61.9	175	0	26	149	EGFR -/ALR -		
ASTRUM-004 (5) NCT04033354	NCT04022254	2019.08-2021.02	Global multicenter	PC	358	321/37	63	358	0	103	255	ECED (ALV /DOC)	Sugamalimah	31.1
	2019.08-2021.02	Global illufficenter	Chemotherapy	179	167/12	63	179	0	49	130	EGFR -/ALK -/ROS1-	Sugemalimab	31.1	
2 1 ()	NCT02124972	2017.05.2018.06	China	PC	205	146/59	59	0	205	30	175	ECED ALL	Camrelizumab	65.2
CameL (17–19)	NCT03134872	2017.05-2018.06	China	Chemotherapy	207	149/58	61	0	207	41	166	EGFR -/ALK -		65.2
CI S- (20)	NCT03668496	2018.11-2019.12	China	PC	193	179/14	64	193	0	54	139	DONE 1111	Camrelizumab	13.5
CameL-Sq (20)	NC103008490	2018.11-2019.12	China	Chemotherapy	196	180/16	62	197	0	55	141	EGFR -/ALK -		11.6
CheckMate 227 Part	neckMate 227 Part	2015 00 2016 11	Cl. L. L It's an a	PC	177	130/47	64	43	134	0	177		Nr. 1 1	
1b (21–26) NCT02477826	2015.08-2016.11	Global multicenter	Chemotherapy	186	125/61	64	46	140	0	186	EGFR -/ALK -	Nivolumab	61.3	
CheckMate 227 Part 2 (6) NCT02477826		2017.01-2017.10		PC	377	264/113	63	107	270	0	377	EGFR -/ALK -	Nivolumab	19.5
	NC102477826		Global multicenter	Chemotherapy	378	266/112	64	105	273	0	378			
CHOICE-01 (7, 27) NCT03856411		03856411 2019.04-2020.08	China	PC	309	247/62	63	147	162	49	260	EGFR -/ALK -	Toripalimab	21.2
	NC103856411			Chemotherapy	156	130/26	61	73	83	23	133			
EMPOWER-Lung 3		CT03409614 2019.06-2020.09	5-2020.09 Global multicenter	PC	312	268/44	63	133	179	45	267	EGFR -/ALK -/ROS1-	Cemiplimab	28.4
(8, 28, 29) NCT03409614	NCT03409614			Chemotherapy	154	123/31	63	67	87	24	130			
GEMSTONE-302			-2020.03 China	PC	320	254/66	62	129	191	0	320	EGFR -/ALK -/ROS1-/ RET-	Sugemalimab	25.6
(30, 31)	NCT03789604 2018 12-2020 0	2018.12-2020.03		Chemotherapy	159	129/30	64	63	96	0	159			
			5.04-2017.02 Global multicenter	PC	451	266/185	64	0	451	0	451		Atezolizumab –	18.5
IMpower130 (32)	NCT02367781	2015.04-2017.02		Chemotherapy	228	134/94	65	0	228	0	228	EGFR -/ALK -		19.2
		2015.06-2017.03		PC	343	280/63	65	343	0	0	343		Atezolizumab -	18.1
IMpower131 (33)	NCT02367794		G-2017.03 Global multicenter	Chemotherapy	340	277/63	65	340	0	0	340	EGFR -/ALK -		16.1
				PC	292	192/100	64	0	292	0	292	- EGFR -/ALK -	Atezolizumab	14.8
IMpower132 (34, 35)	NCT02657434	02657434 2016.04-2017.03	.03 Global multicenter	Chemotherapy	286	192/94	63	0	286	0	286			
KEYNOTE-189 (36– 42) NCT02578686				PC	410	254/156	65	0	410	0	410		Pembrolizumab	64.6
	NCT02578680	80 2016.02-2017.03	Global multicenter	Chemotherapy	206	109/97	64	0	206	0	206	EGFR -/ALK -		
KEYNOTE-407 (43-			-2017.12 Global multicenter	PC	278	220/58	65	278	0	0	278		Pembrolizumab	56.9
48)	NCT02775435	2016.08-2017.12		Chemotherapy	281	235/46	65	281	0	0	281	EGFR -/ALK -		
ORIENT-11 (49-51)	NCT03607539	2018.08-2019.07	China	PC	266	204/62	61	0	266	21	245	EGFR -/ALK -	Sintilimab	30.8

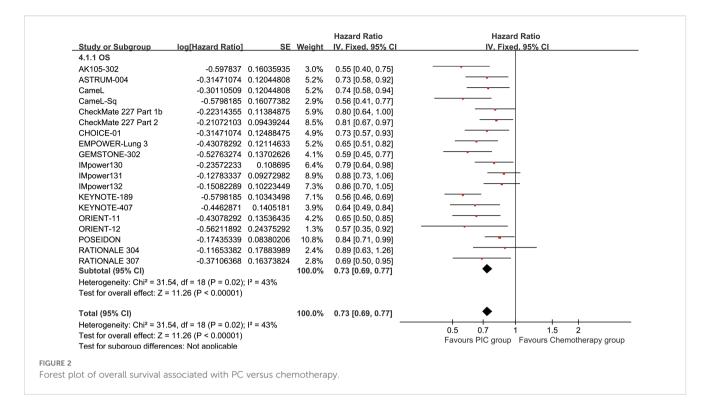
8.0 53.4 16.1 20.5 **Fislelizumab** -/ALK --/ALK --/ALK -EGFR -/ALK -EGFR -, EGFR -EGFR -140 134 338 337 183 87 82 44 15 39 44 40 24 38 0 0 131 210 215 223 Ξ 0 0 0 179 178 128 122 120 0 0 121 0 61 64 62 9 64 09 61 09 62 163/16 164/14 253/85 248/89 107/13 111/10 168/55 79/32 Ξ 121 131 179 178 338 337 223 120 Chemotherapy Chemotherapy Chemotherapy PC $^{\rm PC}$ $^{\rm PC}$ PC multicenter China China Ching Global 2017.06-2018.09 2018.07-2019.06 2018.08-2019.07 2018.07-2019.07 Registration no. NCT03629925 ACT03663205 NCT03594747 POSEIDON (9, 53) 304 RATIONALE 307 ORIENT-12 (52) RATIONALE 3((54, 55) Study

death-1; PD-L1, PD-1, Programmed Non-sq, Non-squamous non-small-cell lung cancer; Squamous cell carcinoma ROS1, ROS Proto-Oncogene 1, receptor tyrosine kinase; Sq, Male/Female; factor receptor; M/F, Epidermal Programmed death-ligand 1; PC, PD-1/PD-L1 inhibitors combined with chemotherapy; RET, Rearranged during transfection; EGFR, 1 status; Eastern Cooperative Oncology Group performance PS, kinase; ECOG ALK, Anaplastic lymphoma

In TEAE analysis, the PC group showed higher occurrence of any grade nausea, alopecia, platelet count decreased, fatigue, alanine ALT increased, AST increased, decreased appetite, constipation, diarrhea, vomiting, pyrexia, hypoalbuminaemia, rash, arthralgia, edema peripheral, peripheral sensory neuropathy, pruritus, hyperglycemia, hypothyroidism, pneumonia, blood creatinine increased, hyperthyroidism, hypercholesteraemia, and interstitial lung disease (Supplementary Table S4). Meanwhile, the PC group also experienced higher rates of grade 3–5 platelet count decreased, fatigue, decreased appetite, diarrhea, arthralgia, and rash (Supplementary Table S5).

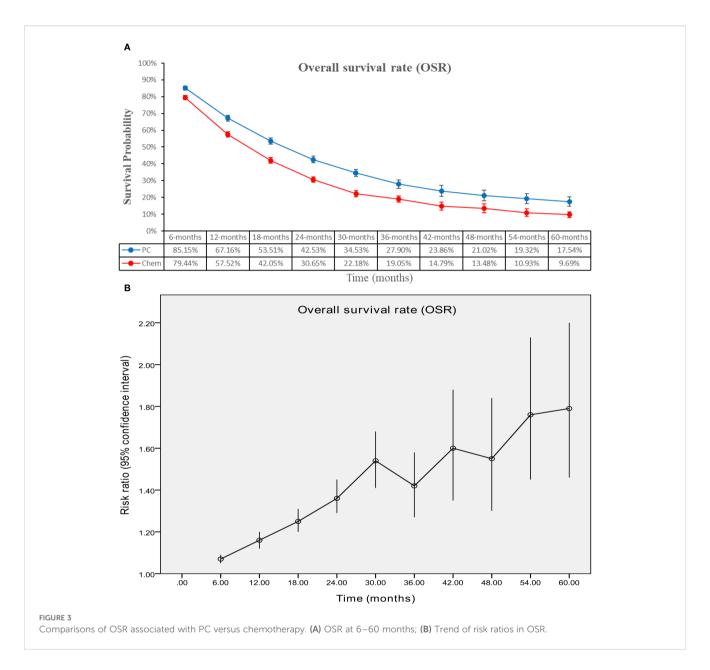
In irAEs analysis, the PC group showed higher occurrence of any grade hypothyroidism, pneumonitis, pneumonia, hepatitis, hyperthyroidism, severe skin reactions, infusion reactions, colitis, nephritis, adrenal insufficiency, and pancreatitis (Supplementary Table S6). Meanwhile, the PC group also experienced higher rates of grade 3–5 hepatitis, pneumonitis, severe skin reactions, colitis, hypothyroidism, and nephritis (Supplementary Table S7).

Sensitivity analysis


The findings for PFS, DCR, and total TEAEs remained robust after excluding individual studies in the sensitivity analysis (Supplementary Figure S6).

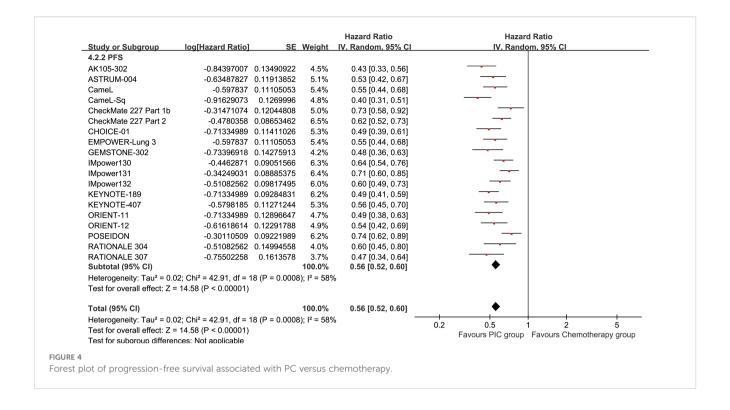
Publication bias

Funnel plots for OS, PFS, ORR, and grade 3–5 TEAEs appeared symmetrical, suggesting an acceptable level of publication bias (Supplementary Figure S7). Furthermore, no significant publication bias was found by Egger's and Begg's tests for these outcomes (all p > 0.05) (Supplementary Figure S8).


Discussion

The PC therapy has revolutionized the treatment landscape for advanced NSCLC, particularly for stage IIIb-IV disease. However, the rapid evolution of immunotherapy and the publication of numerous phase 3 RCTs in recent years have introduced new complexities and controversies (4-7). Given the persistent challenges of drug resistance and the limitations of current therapies, the PC regimen offers a rational approach by combining cytotoxic and immune-mediated mechanisms to achieve more durable responses. While earlier studies established the superiority of PC over chemotherapy alone, emerging evidence indicates that the benefits may vary across patient subgroups, particularly those with low or negative PD-L1 expression (17, 20). Additionally, the safety profile of PC, especially the incidence of irAEs, remains a critical concern, particularly for vulnerable populations such as elderly patients or those with pre-existing autoimmune conditions (21, 27). These uncertainties underscore the need for an updated meta-analysis to synthesize the latest

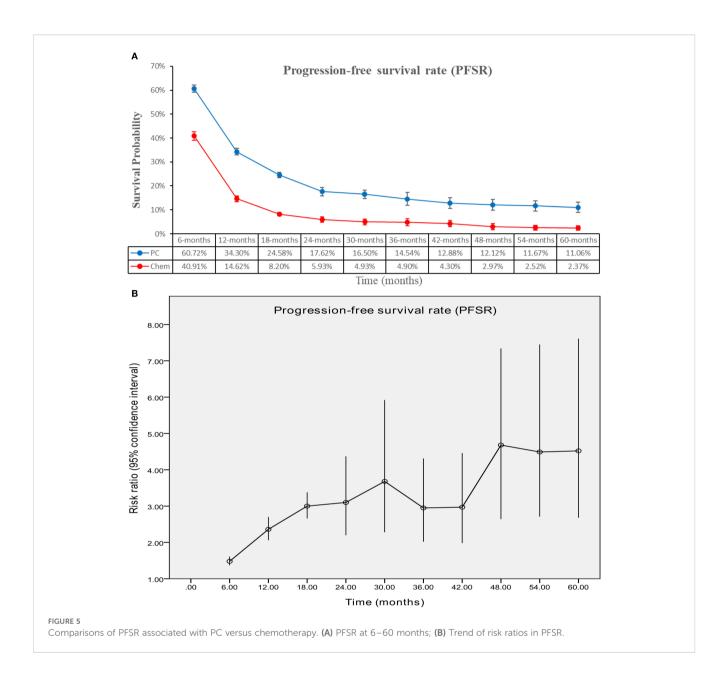
evidence and conduct a thorough assessment of PC's effectiveness and safety in advanced NSCLC. This updated meta-analysis, encompassing 19 phase 3 RCTs and 9,335 patients, confirms the significant survival benefits of PC over chemotherapy alone. The pooled results demonstrate substantial improvements in OS, PFS, DOR, and ORR. Subgroup analyses further reveal that patients with brain metastases and those with a PD-L1 CPS > 50% derive the greatest benefit from PC. Nevertheless, the combined treatment showed increased occurrences of AEs, including TEAEs, TRAEs, and irAEs, necessitating careful risk-benefit assessment in clinical practice.


The survival benefits of PC in advanced NSCLC are robust, as evidenced by marked improvements in OS (HR: 0.73) and PFS (HR: 0.56) in our meta-analysis. These findings align with recent studies, such as the KEYNOTE-189 and IMpower130 trials, which reported similar hazard ratios for OS and PFS in favor of PC (35, 37). Notably, the survival benefits of PC appear to increase over time, with OS and PFS rates showing greater divergence between the PC and chemotherapy groups at longer follow-up intervals. This suggests that the immunomodulatory effects of PD-1/PD-L1 inhibitors may provide durable clinical benefits, a phenomenon also observed in other malignancies treated with immune checkpoint inhibitors (4, 20). Subgroup analyses further illuminate the differential efficacy of PC across patient populations. Patients with brain metastases, a historically poor prognostic group, exhibited particularly pronounced survival benefits from PC. This finding is consistent with recent studies highlighting the potential of immunotherapy to penetrate the blood-brain barrier and exert antitumor effects in the central nervous system (37, 49). Meanwhile, all evaluated PD-1/PD- L1 inhibitors confer OS and PFS benefits versus chemotherapy, supporting a class effect in advanced NSCLC. While numerical differences in pooled HRs are apparent across agents, these arise from indirect, across-trial contrasts with heterogeneous populations, backbones, PD-L1 assays, and follow-up durations. Notably, patients with PD-L1 CPS >50% have consistently demonstrated a greater magnitude of benefit from immunotherapy-based regimens, highlighting the potential of CPS as a predictive biomarker in clinical decision-making. However, variability in testing methods and thresholds remains a challenge for universal application (58). In our subgroup analysis, patients with elevated PD-L1 expression (CPS > 50%) showed greater survival advantages, underscoring PD-L1 as a key predictor of immunotherapy effectiveness. In contrast, the survival benefits in patients with low or negative PD-L1 expression, though statistically significant, were less pronounced, raising considerations regarding the cost-effectiveness of PC in this subgroup (37, 39). Tumor mutational burden (TMB) has emerged as another promising biomarker, as tumors with high TMB tend to harbor more neoantigens, which can enhance immune recognition and response to immune checkpoint inhibitors. Recent evidence suggests that TMB may serve as an independent predictor of treatment efficacy across multiple cancer types. Incorporating both PD-L1 CPS and TMB into predictive models may improve the precision of patient stratification in future clinical trials (59). These findings highlight the need for further research to identify additional biomarkers that can refine patient selection for PC. Enhanced DOR further reinforces PC's survival advantage, with a significantly prolonged duration in the PC group (HR: 0.50). This suggests that PC not only delays disease progression but also sustains tumor

control over a more extended period, a key factor in improving long-term outcomes. The durability of response is particularly important in the context of immunotherapy, where the immune system's memory effect can lead to prolonged antitumor activity even after treatment discontinuation (17, 21). Although our meta-analysis focuses on clinical outcomes, emerging preclinical and translational studies provide insight into the potential mechanisms underlying the superior efficacy of PD-1/PD-L1 inhibitors combined with chemotherapy. Chemotherapy can enhance tumor immunogenicity by increasing neoantigen presentation and promoting immunogenic cell death, thereby synergizing with PD-1/PD-L1 blockade to enhance cytotoxic T-cell responses. Furthermore, PC therapy has been shown to modulate the tumor microenvironment by reducing immunosuppressive cells such as regulatory T cells and myeloid-derived suppressor cells, and by increasing the infiltration and

activation of effector CD8+ T cells. Cytokine profiling studies have also suggested that combined therapy may augment proinflammatory cytokine production, contributing to durable antitumor responses (60). Recent studies have further broadened the landscape of NSCLC research in ways that may intersect with immunotherapy. For example, analysis of bronchoalveolar lavage fluid microbiota has revealed significant associations with prognosis and immune modulation in NSCLC, while novel agents such as cycloastragenol have shown antitumor efficacy through apoptosis and autophagy pathways, potentially enhancing immunotherapeutic responses. These findings highlight the need to integrate clinical, microbiological, and molecular perspectives to optimize future immunotherapy-based strategies (61, 62).

In addition to survival outcomes, this meta-analysis highlights the superior response rates associated with PC. The PC group exhibited an



ORR approximately 60% higher than the chemotherapy group (RR: 1.59), with similar improvements observed in DCR, CR, and PR rates. These findings are consistent with recent trials, such as the ORIENT-11 and RATIONALE-307 studies, which reported ORRs exceeding 60% in the PC arms (49, 56). The improved response rates likely contribute to the observed survival benefits, as deeper and more durable responses are associated with prolonged disease control and delayed progression. The DOR, a key measure of treatment response durability, was notably extended in the PC group (HR: 0.50). This finding aligns with the hypothesis that immunotherapy enhances the immune system's ability to maintain long-term tumor control, even after the cessation of treatment (9, 43). However, the higher rates of PD in the chemotherapy group suggest that PC may be particularly effective in preventing disease progression, a key determinant of survival in advanced NSCLC. The improved response rates and DOR observed in the PC group may also have implications for patient quality of life. Patients who achieve a complete or partial response are more likely to experience symptom relief and improved functional status, which are critical considerations in the management of advanced NSCLC (4, 17). Furthermore, the higher rates of disease control in the PC group may reduce the need for subsequent lines of therapy, thereby minimizing the cumulative toxicity associated with multiple treatment regimens.

While the efficacy of PC is well-established, its safety profile remains a critical consideration. Our meta-analysis verifies that PC leads to increased incidences of TEAEs, TRAEs, and irAEs relative to chemotherapy alone. The most common AEs in the PC group were hematologic toxicities, such as anemia and decreased neutrophil count, which are likely attributable to the chemotherapy component of the regimen. However, the higher incidence of irAEs,

including pneumonitis, hepatitis, and colitis, underscores the unique toxicity profile of immunotherapy (54, 56). The higher occurrence of grade 3-5 AEs, especially irAEs, in the PC group underscores the importance of close monitoring and proactive toxicity management. Recent studies have emphasized the importance of multidisciplinary care teams and standardized protocols for managing irAEs, which can significantly reduce morbidity and mortality associated with these events (63). Additionally, the higher rates of treatment discontinuation and death due to TRAEs/irAEs in the PC group underscore the importance of patient selection and risk stratification, particularly for vulnerable populations such as elderly patients or those with pre-existing autoimmune conditions (49, 52). The safety profile of PC also has implications for treatment sequencing and combination strategies. For example, a greater occurrence of irAEs in the PC group might hinder the viability of future immunotherapy for patients with severe toxic effects. Although rare, severe irAEs such as myocarditis and Guillain-Barré syndrome were observed in the PC group. These findings underscore the importance of vigilant monitoring and long-term follow-up, as some rare toxicities may emerge late or be underreported in clinical trials (64). This underscores the need for personalized treatment approaches that balance the potential benefits of PC with the risks of toxicity, particularly in patients with comorbidities or poor performance status (58).

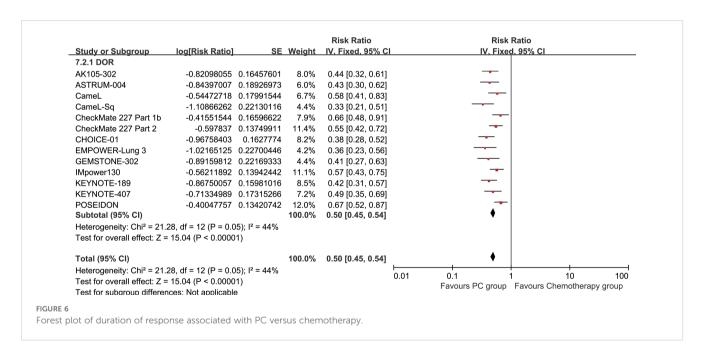
Compared with the study by Meng et al. (2022), which analyzed a broader NSCLC population and demonstrated consistent OS and PFS benefits across PD-L1 subgroups, our findings align in confirming the robust efficacy of ICI plus chemotherapy but also expand upon their work by including additional trials and updated

evidence (65). In contrast, Chen et al. (2022) focused specifically on squamous NSCLC, reporting stronger relative benefits in OS and PFS, likely reflecting histology-specific sensitivity to chemo-immunotherapy, but with a higher incidence of hematologic and hepatic toxicities (66). These differences can be largely attributed to variations in patient populations (all NSCLC vs. squamous only), the scope of included trials, and the weighting of safety endpoints (67). Taken together, our meta-analysis complements prior work by providing a more comprehensive overview across different PD-1/PD-L1 inhibitors and NSCLC subtypes, while also highlighting that efficacy and safety profiles may vary depending on histology and study design.

Despite its comprehensive scope, this meta-analysis has several limitations. First, heterogeneity among the included studies in

patient populations, treatment regimens, and follow-up durations might have impacted the pooled outcomes. Second, the subgroup analyses, while informative, were limited by the availability of data in the original studies. For example, the impact of specific genetic mutations, such as EGFR or ALK alterations, on the efficacy of PC could not be fully explored due to insufficient data. Third, the long-term safety profile of PC remains incompletely characterized, as many of the included studies had relatively short follow-up periods. Fourth, the meta-analysis was unable to assess the cost-effectiveness of PC, a important consideration for healthcare systems worldwide. Fifth, our study is limited by the lack of data on the optimal sequencing of PD-1/PD-L1 inhibitors and chemotherapy, as most trials used induction chemoimmunotherapy followed by maintenance immunotherapy. Sixth, a further limitation is the

TABLE 2 Subgroup analysis of overall survival and progression-free survival.


		Overall sur	rvival	Progression-free survival					
Subgroups	Included studies	Patients	HR (95% CI)	Р	Included studies	Patients	HR (95% CI)	Р	
Total	19	9335	0.73 [0.69, 0.77]	< 0.00001	19	9335	0.56 [0.52, 0.60]	< 0.00001	
Age									
< 65 years	14	4066	0.68 [0.59, 0.77]	< 0.00001	17	4568	0.52 [0.46, 0.59]	< 0.00001	
> 65 years	14	3291	0.79 [0.72, 0.87]	< 0.00001	17	3648	0.59 [0.55, 0.64]	< 0.00001	
Sex									
Female	13	1849	0.69 [0.61, 0.78]	< 0.00001	16	1819	0.58 [0.52, 0.65]	< 0.00001	
Male	13	5159	0.76 [0.71, 0.82]	< 0.00001	16	6048	0.55 [0.49, 0.60]	< 0.00001	
Race									
Asia	15	4136	0.69 [0.64, 0.76]	< 0.00001	14	4415	0.50 [0.47, 0.54]	< 0.00001	
White	3	1380	0.78 [0.63, 0.97]	0.03	4	1558	0.66 [0.59, 0.73]	< 0.00001	
ECOG PS									
0	14	2251	0.70 [0.63, 0.79]	< 0.00001	17	2300	0.53 [0.48, 0.59]	< 0.00001	
1	14	5191	0.75 [0.70, 0.80]	< 0.00001	17	5902	0.56 [0.51, 0.61]	< 0.00001	
Smoking status									
Current/former	12	4866	0.67 [0.60, 0.76]	< 0.00001	12	4984	0.51 [0.45, 0.58]	< 0.00001	
Never	13	1125	0.82 [0.70, 0.96]	0.02	15	1282	0.62 [0.54, 0.71]	< 0.00001	
Pathological ty	pe								
Squamous	13	4319	0.72 [0.67, 0.79]	< 0.00001	13	4279	0.53 [0.47, 0.60]	< 0.00001	
Non-squamous	12	5054	0.73 [0.68, 0.79]	< 0.00001	12	5053	0.59 [0.55, 0.63]	< 0.00001	
Stage									
III	6	396	0.70 [0.52, 0.96]	0.02	9	713	0.42 [0.35, 0.51]	< 0.00001	
IV	15	7392	0.71 [0.65, 0.78]	< 0.00001	18	8210	0.57 [0.52, 0.61]	< 0.00001	
Brain metastase	es								
Yes	6	363	0.61 [0.47, 0.79]	0.0002	6	319	0.41 [0.31, 0.55]	< 0.00001	
No	7	3079	0.70 [0.65, 0.77]	< 0.00001	7	2707	0.52 [0.47, 0.57]	< 0.00001	
Liver metastase	es								
Yes	7	673	0.84 [0.70, 1.00]	0.05	10	675	0.71 [0.60, 0.85]	0.0002	
No	6	3012	0.78 [0.68, 0.91]	0.0009	9	3869	0.56 [0.52, 0.60]	< 0.00001	
PD-L1 CPS									
<1%	14	3393	0.80 [0.73, 0.87]	< 0.00001	17	3706	0.69 [0.63, 0.75]	< 0.00001	
>1%	9	2711	0.68 [0.61, 0.75]	< 0.00001	11	2976	0.48 [0.44, 0.52]	< 0.00001	
1%-49%	10	2030	0.70 [0.62, 0.80]	< 0.00001	13	2282	0.55 [0.50, 0.62]	< 0.00001	
>50%	11	1416	0.61 [0.52, 0.71]	< 0.00001	14	1757	0.45 [0.39, 0.50]	< 0.00001	
PD-1/PD-L1 inh	nibitors type								
Penpulimab	1	350	0.55 [0.40, 0.75]	0.0002	1	350	0.43 [0.33, 0.56]	< 0.00001	
Sugemalimab	2	1016	0.67 [0.56, 0.79]	< 0.00001	2	1016	0.50 [0.43, 0.59]	< 0.00001	
Camrelizumab	2	801	0.67 [0.55, 0.81]	< 0.0001	2	801	0.47 [0.35, 0.64]	< 0.00001	

(Continued)

TABLE 2 Continued

		Overall sui	rvival	Progression-free survival					
Subgroups	Included studies	Patients	HR (95% CI)	Р	Included studies	Patients	HR (95% CI)	Р	
PD-1/PD-L1 inhibitors type									
Nivolumab	2	1118	0.81 [0.70, 0.93]	0.003	2	1118	0.66 [0.57, 0.75]	< 0.00001	
Toripalimab	1	465	0.73 [0.57, 0.93]	0.01	1	465	0.49 [0.39, 0.61]	< 0.00001	
Cemiplimab	1	466	0.65 [0.51, 0.82]	0.0004	1	466	0.55 [0.44, 0.68]	< 0.00001	
Atezolizumab	3	1940	0.85 [0.76, 0.95]	0.004	3	1940	0.65 [0.59, 0.72]	< 0.00001	
Pembrolizumab	2	1175	0.59 [0.50, 0.69]	< 0.00001	2	1175	0.52 [0.45, 0.60]	< 0.00001	
Sintilimab	2	794	0.63 [0.50, 0.79]	< 0.0001	2	754	0.52 [0.43, 0.61]	< 0.00001	
Durvalumab	1	675	0.84 [0.71, 0.99]	0.04	1	675	0.74 [0.62, 0.89]	0.001	
Tislelizumab	2	575	0.77 [0.61, 0.98]	0.03	2	575	0.54 [0.43, 0.66]	< 0.00001	
Platinum chemotherapy type									
Cisplatin	3	501	0.65 [0.44, 0.95]	0.02	4	636	0.55 [0.46, 0.66]	< 0.00001	
Carboplatin	14	5851	0.72 [0.67, 0.77]	< 0.00001	15	6073	0.54 [0.50, 0.57]	< 0.00001	

CI, Confidence interval; CPS, Combined positive score; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HR, Hazard ratio; OS, Overall survival; PC, PD-1/PD-L1 inhibitors combined with chemotherapy; PD, Progressive disease; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; PFS, Progression-free survival.

absence of direct RCTs comparing different PD-1/PD-L1 inhibitors; our agent-level subgroup results versus chemotherapy cannot be interpreted as between-agent comparisons. Seventh, another limitation is the potential bias in AE reporting across trials, as differences in grading systems, monitoring intensity, and reporting standards may affect the comparability of safety outcomes. Finally, the long-term incidence of rare irAEs could not be fully characterized due to limited follow-up in the included trials.

Conclusion

This updated meta-analysis confirms the significant survival and response benefits of PC therapy in advanced NSCLC. The survival benefits were consistent across all subgroups (particularly effective in patients with brain metastases and high PD-L1 expression) and increases with the prolongation of survival time. Nevertheless, the increased occurrence of AEs, especially irAEs,

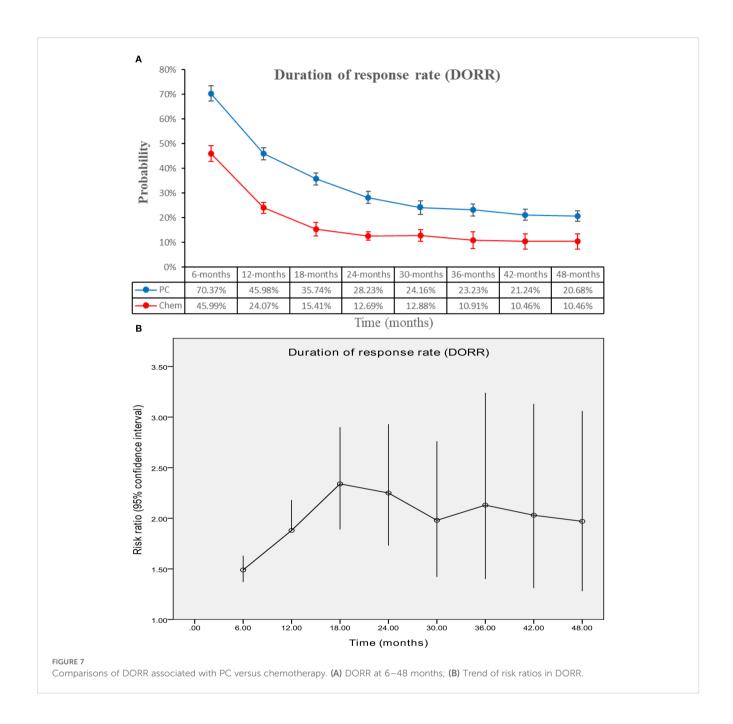


TABLE 3 Tumor Responses.

Dosponsos	PC		Chemothe	erapy	Risk ratio [95%	Р	
Responses	Event/total	%	Event/total	%	CI]		
ORR	2851/5326	53.53%	1348/4009	33.62%	1.59 [1.51, 1.67]	< 0.00001	
DCR	3737/4376	85.40%	2433/3227	75.40%	1.12 [1.07, 1.18]	< 0.00001	
CR	127/4668	2.72%	45/3513	1.28%	2.30 [1.64, 3.23]	< 0.00001	
PR	2384/4668	51.07%	1160/3513	33.02%	1.55 [1.47, 1.64]	< 0.00001	
SD	1354/4376	30.94%	1382/3227	42.83%	0.71 [0.65, 0.78]	< 0.00001	
PD	344/4376	7.86%	454/3227	14.07%	0.55 [0.48, 0.63]	< 0.00001	

CI, Confidence interval; CR, Complete response; DCR, Disease control rate; ORR, Objective response rate; PC, PD-1/PD-L1 inhibitors combined with chemotherapy; PD, Progressive disease; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; PR, Partial response; RR, Risk ratio; SD, Stable disease.

TABLE 4 Summary of adverse events.

A.I	P	С	Chemo	therapy	Distance (OF9) CII	Р		
Adverse events	Event/total	%	Event/total	%	Risk ratio [95% CI]			
TEAEs								
Total TEAEs	5178/5326	97.22%	3793/4009	94.61%	1.01 [1.00, 1.02]	0.03		
Grade 3–5 TEAEs	3606/5326	67.71%	2404/4009	59.97%	1.10 [1.05, 1.15]	< 0.0001		
Serious TEAEs	1481/3504	42.27%	774/2681	28.87%	1.43 [1.26, 1.62]	< 0.00001		
TEAEs leading to discontinuation	1081/5326	20.30%	479/4009	11.95%	1.65 [1.40, 1.94]	< 0.00001		
TEAEs leading to death	375/4949	7.58%	235/3631	6.47%	1.20 [1.02, 1.40]	0.02		
TRAEs								
Total TRAEs	3969/4349	91.26%	3025/3433	88.12%	1.03 [1.01, 1.06]	0.007		
Grade 3–5 TRAEs	2384/4349	54.82%	1660/3433	48.35%	1.14 [1.06, 1.23]	0.0003		
Serious TRAEs	725/2852	25.42%	375/2293	16.35%	1.55 [1.27, 1.90]	< 0.0001		
TRAEs leading to discontinuation	450/3143	14.32%	162/2458	6.59%	2.17 [1.83, 2.58]	< 0.00001		
TRAEs leading to death	100/4229	2.36%	52/3312	1.57%	1.58 [1.13, 2.21]	0.007		
irAEs								
Total irAEs	1312/3719	35.28%	404/2548	15.86%	2.59 [1.94, 3.47]	< 0.00001		
Grade 3–5 irAEs	341/3719	9.17%	77/2548	3.02%	3.04 [2.38, 3.87]	< 0.00001		
Serious irAEs	31/513	6.04%	6/512	1.17%	5.16 [2.17, 12.25]	0.0002		
irAEs leading to discontinuation	20/513	3.90%	3/512	0.59%	6.65 [1.99, 22.25]	0.002		
irAEs leading to death	11/1957	0.56%	1/1545	0.06%	3.19 [0.89, 11.41]	0.07		

AE, Adverse event; CI, Confidence interval; irAE, Immune-related adverse event; PC, PD-1/PD-L1 inhibitors combined with chemotherapy; PD-1, Programmed cell death protein 1; PD-L1, Programmed death-ligand 1; RR, Risk ratio; TEAE, Treatment-emergent adverse event; TRAE, Treatment-related adverse event.

requires careful patient selection and proactive toxicity control. Future studies should aim to discover novel biomarkers for better patient stratification and develop strategies to mitigate PC-related risks.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

YX: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. BZ: Conceptualization, Data curation, Formal Analysis, Writing – original draft. CY: Conceptualization, Data curation, Formal Analysis, Writing – original draft. QH: Conceptualization, Data curation, Formal

Analysis, Writing – original draft. WC: Conceptualization, Data curation, Formal Analysis, Writing – original draft. WZ: Conceptualization, Data curation, Formal Analysis, Writing – original draft. WXZ: Conceptualization, Data curation, Formal Analysis, Writing – original draft. TZ: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research, and/or publication of this article.

Acknowledgments

The authors appreciate all the public health workers who participated in the databases (PubMed, ScienceDirect, the Cochrane Library, Scopus, EMBASE, and Web of Science).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2025.1590017/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Cochrane Risk Assessment

SUPPLEMENTARY FIGURE 2

Forest plots of OSR at 6-60 months associated with PC versus chemotherapy.

SUPPLEMENTARY FIGURE 3

Forest plots of PFSR at 6-60 months associated with PC versus chemotherapy.

SUPPLEMENTARY FIGURE 4

Forest plots of DORR at 6-48 months associated with PC versus chemotherapy.

SUPPLEMENTARY FIGURE 5

Forest plots of responses associated with PC versus chemotherapy.

SUPPLEMENTARY FIGURE 6

Sensitivity analysis of PFS (A), DCR (B), and total TEAEs (C).

SUPPLEMENTARY FIGURE 7

Funnel plots of OS (A), PFS (B), ORR (C), and grade 3-5 TEAEs (D).

SUPPLEMENTARY FIGURE 8

Egger's and Begg's tests of OS (A), PFS (B), and grade TEAEs (C).

References

- 1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. (2025) 75:10–45. doi: 10.3322/caac.21871
- 2. Leighl NB, Ismaila N, Durm G, Florez N, Freeman-Daily J, Pellini B, et al. Therapy for stage IV non-small cell lung cancer without driver alterations: ASCO living guideline, version 2024.3. *J Clin Oncol*. (2025) 43(10):e17–30. doi: 10.1200/JCO-24-02786
- 3. Wang L, Yang Y, Yu J, Zhang S, Li X, Wu X, et al. Efficacy and safety of anti-PD-1/PD-L1 in combination with chemotherapy or not as first-line treatment for advanced non-small cell lung cancer: A systematic review and network meta-analysis. *Thorac Cancer.* (2022) 13:322–37. doi: 10.1111/1759-7714.14244
- 4. Zhong H, Sun S, Chen J, Wang Z, Zhao Y, Zhang G, et al. First-line penpulimab combined with paclitaxel and carboplatin for metastatic squamous non-small-cell lung cancer in China (AK105-302): a multicentre, randomised, double-blind, placebocontrolled phase 3 clinical trial. *Lancet Respir Med.* (2024) 12:355–65. doi: 10.1016/S2213-2600(23)00431-9
- 5. Zhou C, Hu Y, Arkania E, Kilickap S, Ying K, Xu F, et al. A global phase 3 study of serplulimab plus chemotherapy as first-line treatment for advanced squamous non-small-cell lung cancer (ASTRUM-004). *Cancer Cell.* (2024) 42:198–208.e3. doi: 10.1016/j.ccell.2023.12.004
- 6. Borghaei H, O'Byrne KJ, Paz-Ares L, Ciuleanu TE, Yu X, Pluzanski A, et al. Nivolumab plus chemotherapy in first-line metastatic non-small-cell lung cancer: results of the phase III CheckMate 227 Part 2 trial. *ESMO Open.* (2023) 8:102065. doi: 10.1016/j.esmoop.2023.102065
- 7. Zhong J, Fei K, Wu L, Li B, Wang Z, Cheng Y, et al. Toripalimab plus chemotherapy for first line treatment of advanced non-small cell lung cancer (CHOICE-01): final OS and biomarker exploration of a randomized, double-blind, phase 3 trial. Signal Transduct Target Ther. (2024) 9:369. doi: 10.1038/s41392-024-02087-6
- 8. Baramidze A, Makharadze T, Gogishvili M, Melkadze T, Giorgadze D, Penkov K, et al. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer with PD-L1 \geq 1%: A subgroup analysis from the EMPOWER-Lung 3 part 2 trial. Lung Cancer. (2024) 193:107821. doi: 10.1016/j.lungcan.2024.107821
- 9. Peters S, Cho BC, Luft AV, Alatorre-Alexander J, Geater SL, Laktionov K, et al. Durvalumab with or without tremelimumab in combination with chemotherapy in

first-line metastatic NSCLC: five-year overall survival outcomes from the phase 3 POSEIDON trial. *J Thorac Oncol.* (2025) 20:76–93. doi: 10.1016/j.jtho.2024.09.1381

- 10. Wang H, Xia J, Yu A, Cao M, Zhao Y, Qin X, et al. Observation on the therapeutic efficacy of camrelizumab combined with chemotherapy in non-small cell lung cancer and the cutaneous immune-related adverse events: A retrospective study. *Anticancer Agents Med Chem.* (2025) 25(8):574–87. doi: 10.2174/0118715206350978241105080452
- 11. Bertaglia V, Petrelli F, Dottorini L, Carnio S, Morelli AM, Nepote A, et al. Chemotherapy plus immunotherapy as first line combination in older patients with extensive stage small cell lung cancer: A systematic review and meta-analysis. *Semin Oncol.* (2024) 52:14–8. doi: 10.1053/j.seminoncol.2024.11.001
- 12. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials.* (1996) 17:1–12. doi: 10.1016/0197-2456(95)00134-4
- 13. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. (2011) 343:d5928. doi: 10.1136/bmj.d5928
- 14. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. *J Clin Epidemiol.* (2011) 64:380–2. doi: 10.1016/j.jclinepi.2010.09.011
- 15. Langhorne P. Bias in meta-analysis detected by a simple, graphical test. Prospectively identified trials could be used for comparison with meta-analyses. *BMJ*. (1998) 316:471.
- 16. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics.~(1994)~50:1088-101.~doi:~10.2307/2533446
- 17. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, et al. Camrelizumab plus carboplatin and pemetrexed as first-line therapy for advanced non-squamous non-small-cell lung cancer: 5-year outcomes of the CameL randomized phase 3 study. *J Immunother Cancer*. (2024) 12:e009240. doi: 10.1136/jitc-2024-009240
- 18. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, et al. Camrelizumab plus carboplatin and pemetrexed as first-line treatment for advanced nonsquamous NSCLC: extended follow-up of cameL phase 3 trial. *J Thorac Oncol.* (2023) 18:628–39. doi: 10.1016/j.jtho.2022.12.017

- 19. Zhou C, Chen G, Huang Y, Zhou J, Lin L, Feng J, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial. *Lancet Respir Med.* (2021) 9:305–14. doi: 10.1016/S2213-2600(20)30365-9
- 20. Ren S, Chen J, Xu X, Jiang T, Cheng Y, Chen G, et al. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-sq): A phase 3 trial. *J Thorac Oncol.* (2022) 17:544–57. doi: 10.1016/j.jtho.2021.11.018
- 21. Reck M, Ciuleanu TE, Lee JS, Schenker M, Zurawski B, Kim SW, et al. Systemic and intracranial outcomes with first-line nivolumab plus ipilimumab in patients with metastatic NSCLC and baseline brain metastases from checkMate 227 part 1. *J Thorac Oncol.* (2023) 18:1055–69. doi: 10.1016/j.jtho.2023.04.021
- 22. Brahmer JR, Lee JS, Ciuleanu TE, Bernabe Caro R, Nishio M, Urban L, et al. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small-cell lung cancer in checkMate 227. *J Clin Oncol.* (2023) 41:1200–12. doi: 10.1200/JCO.22.01503
- 23. Paz-Ares LG, Ramalingam SS, Ciuleanu TE, Lee JS, Urban L, Caro RB, et al. First-line nivolumab plus ipilimumab in advanced NSCLC: 4-year outcomes from the randomized, open-label, phase 3 checkMate 227 part 1 trial. *J Thorac Oncol.* (2022) 17:289–308. doi: 10.1016/j.jtho.2021.09.010
- 24. Reck M, Schenker M, Lee KH, Provencio M, Nishio M, Lesniewski-Kmak K, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial. *Eur J Cancer*. (2019) 116:137–47. doi: 10.1016/j.ejca.2019.05.008
- 25. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. (2019) 381:2020–31. doi: 10.1056/NEJMoa1910231
- 26. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. *N Engl J Med.* (2018) 378:2093–104. doi: 10.1056/NEJMoa1801946
- 27. Wang Z, Wu L, Li B, Cheng Y, Li X, Wang X, et al. Toripalimab plus chemotherapy for patients with treatment-naive advanced non-small-cell lung cancer: A multicenter randomized phase III trial (CHOICE-01). *J Clin Oncol.* (2023) 41:651–63. doi: 10.1200/JCO.22.00727
- 28. Makharadze T, Gogishvili M, Melkadze T, Baramidze A, Giorgadze D, Penkov K, et al. Cemiplimab plus chemotherapy versus chemotherapy alone in advanced NSCLC: 2-year follow-up from the phase 3 EMPOWER-lung 3 part 2 trial. *J Thorac Oncol.* (2023) 18:755–68. doi: 10.1016/j.jtho.2023.03.008
- 29. Gogishvili M, Melkadze T, Makharadze T, Giorgadze D, Dvorkin M, Penkov K, et al. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: a randomized, controlled, double-blind phase 3 trial. *Nat Med.* (2022) 28:2374–80. doi: 10.1038/s41591-022-01977-y
- 30. Zhou C, Wang Z, Sun M, Cao L, Ma Z, Wu R, et al. Interim survival analysis of the randomized phase III GEMSTONE-302 trial: sugemalimab or placebo plus chemotherapy as first-line treatment for metastatic NSCLC. *Nat Cancer*. (2023) 4:860–71. doi: 10.1038/s43018-023-00578-z
- 31. Zhou C, Wang Z, Sun Y, Cao L, Ma Z, Wu R, et al. Sugemalimab versus placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial. *Lancet Oncol.* (2022) 23:220–33. doi: 10.1016/S1470-2045(21)00650-1
- 32. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. *Lancet Oncol.* (2019) 20:924–37. doi: 10.1016/S1470-2045 (19)30167-6
- 33. Jotte R, Cappuzzo F, Vynnychenko I, Stroyakovskiy D, Rodríguez-Abreu D, Hussein M, et al. Atezolizumab in combination with carboplatin and nab-paclitaxel in advanced squamous NSCLC (IMpower131): results from a randomized phase III trial. *J Thorac Oncol.* (2020) 15:1351–60. doi: 10.1016/j.jtho.2020.03.028
- 34. Lu S, Fang J, Wang Z, Fan Y, Liu Y, He J, et al. Results from the IMpower132 China cohort: Atezolizumab plus platinum-based chemotherapy in advanced non-small cell lung cancer. *Cancer Med.* (2023) 12:2666–76. doi: 10.1002/cam4.5144
- 35. Nishio M, Saito H, Goto K, Watanabe S, Sueoka-Aragane N, Okuma Y, et al. IMpower132: Atezolizumab plus platinum-based chemotherapy vs chemotherapy for advanced NSCLC in Japanese patients. *Cancer Sci.* (2021) 112:1534–44. doi: 10.1111/
- 36. Nishio M, Barlesi F, West H, Ball S, Bordoni R, Cobo M, et al. Atezolizumab plus chemotherapy for first-line treatment of nonsquamous NSCLC: results from the randomized phase 3 IMpower132 trial. *J Thorac Oncol.* (2021) 16:653–64. doi: 10.1016/j.jtho.2020.11.025
- 37. Garassino MC, Gadgeel S, Speranza G, Felip E, Esteban E, Dómine M, et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. *J Clin Oncol.* (2023) 41:1992–8. doi: 10.1200/JCO.22.01989

- 38. Rodríguez-Abreu D, Powell SF, Hochmair MJ, Gadgeel S, Esteban E, Felip E, et al. Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol-specified final analysis from KEYNOTE-189. *Ann Oncol.* (2021) 32:881–95. doi: 10.1016/j.annonc.2021.04.008
- 39. Horinouchi H, Nogami N, Saka H, Nishio M, Tokito T, Takahashi T, et al. Pembrolizumab plus pemetrexed-platinum for metastatic nonsquamous non-small-cell lung cancer: KEYNOTE-189 Japan Study. *Cancer Sci.* (2021) 112:3255–65. doi: 10.1111/cas.14980
- 40. Garassino MC, Gadgeel S, Esteban E, Felip E, Speranza G, Domine M, et al. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer (KEYNOTE-189): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Oncol.* (2020) 21:387–97. doi: 10.1016/S1470-2045(19)30801-0
- 41. Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. *J Clin Oncol.* (2020) 38:1505–17. doi: 10.1200/JCO.19.03136
- 42. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. *N Engl J Med.* (2018) 378:2078–92. doi: 10.1056/NEJMoa1801005
- 43. Sugawara S, Tanaka K, Imamura F, Yamamoto N, Nishio M, Okishio K, et al. Pembrolizumab plus chemotherapy in Japanese patients with metastatic squamous non-small-cell lung cancer in KEYNOTE-407. *Cancer Sci.* (2023) 114:3330–41. doi: 10.1111/cas.15816
- 44. Novello S, Kowalski DM, Luft A, Gümüş M, Vicente D, Mazières J, et al. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. *J Clin Oncol.* (2023) 41:1999–2006. doi: 10.1200/JCO.22.01990
- 45. Cheng Y, Zhang L, Hu J, Wang D, Hu C, Zhou J, et al. Pembrolizumab plus chemotherapy for chinese patients with metastatic squamous NSCLC in KEYNOTE-407. JTO Clin Res Rep. (2021) 2:100225. doi: 10.1016/j.jtocrr.2021.100225
- 46. Paz-Ares L, Vicente D, Tafreshi A, Robinson A, Soto Parra H, Mazières J, et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. *J Thorac Oncol.* (2020) 15:1657–69. doi: 10.1016/j.jtho.2020.06.015
- 47. Mazieres J, Kowalski D, Luft A, Vicente D, Tafreshi A, Gümüş M, et al. Health-related quality of life with carboplatin-paclitaxel or nab-paclitaxel with or without pembrolizumab in patients with metastatic squamous non-small-cell lung cancer. *J Clin Oncol.* (2020) 38:271–80. doi: 10.1200/JCO.19.01348
- 48. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. *N Engl J Med.* (2018) 379:2040–51. doi: 10.1056/NEJMoa1810865
- 49. Zhang L, Wang Z, Fang J, Yu Q, Han B, Cang S, et al. Final overall survival data of sintilimab plus pemetrexed and platinum as First-Line treatment for locally advanced or metastatic nonsquamous NSCLC in the Phase 3 ORIENT-11 study. *Lung Cancer.* (2022) 171:56–60. doi: 10.1016/j.lungcan.2022.07.013
- 50. Yang Y, Sun J, Wang Z, Fang J, Yu Q, Han B, et al. Updated overall survival data and predictive biomarkers of sintlimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC in the phase 3 ORIENT-11 study. *J Thorac Oncol.* (2021) 16:2109–20. doi: 10.1016/j.jtho.2021.07.015
- 51. Yang Y, Wang Z, Fang J, Yu Q, Han B, Cang S, et al. Efficacy and Safety of Sintilimab Plus Pemetrexed and Platinum as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC: a Randomized, Double-Blind, Phase 3 Study (Oncology pRogram by InnovENT anti-PD-1-11). *J Thorac Oncol.* (2020) 15:1636–46. doi: 10.1016/j.jtho.2020.07.014
- 52. Zhou C, Wu L, Fan Y, Wang Z, Liu L, Chen G, et al. Sintilimab plus platinum and gemcitabine as first-line treatment for advanced or metastatic squamous NSCLC: results from a randomized, double-blind, phase 3 trial (ORIENT-12). *J Thorac Oncol.* (2021) 16:1501–11. doi: 10.1016/j.jtho.2021.04.011
- 53. Johnson ML, Cho BC, Luft A, Alatorre-Alexander J, Geater SL, Laktionov K, et al. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the phase III POSEIDON study. *J Clin Oncol.* (2023) 41:1213–27. doi: 10.1200/JCO.22.00975
- 54. Lu S, Wang J, Yu Y, Yu X, Hu Y, Ma Z, et al. Tislelizumab plus chemotherapy as first-line treatment of locally advanced or metastatic nonsquamous non-small-cell lung cancer (final analysis of RATIONALE-304: a randomized phase III trial). *ESMO Open.* (2024) 9:103728. doi: 10.1016/j.esmoop.2024.103728
- 55. Lu S, Wang J, Yu Y, Yu X, Hu Y, Ai X, et al. Tislelizumab plus chemotherapy as first-line treatment for locally advanced or metastatic nonsquamous NSCLC (RATIONALE 304): A randomized phase 3 trial. J Thorac Oncol. (2021) 16:1512–22. doi: 10.1016/j.jtho.2021.05.005
- 56. Wang J, Lu S, Yu X, Hu Y, Zhao J, Sun M, et al. Tislelizumab plus chemotherapy versus chemotherapy alone as first-line treatment for advanced squamous non-small-cell lung cancer: final analysis of the randomized, phase III RATIONALE-307 trial. *ESMO Open.* (2024) 9:103727. doi: 10.1016/j.esmoop.2024.103727
- 57. Wang J, Lu S, Yu X, Hu Y, Sun Y, Wang Z, et al. Tislelizumab plus chemotherapy vs chemotherapy alone as first-line treatment for advanced squamous non-small-cell lung cancer: A phase 3 randomized clinical trial. *JAMA Oncol.* (2021) 7:709–17. doi: 10.1001/jamaoncol.2021.0366

- 58. Deng Y, Li Y, Xu R, Li J, Cui W. The critical role of PD-L1 expression in immunotherapy for advanced non-small cell lung cancer. *Quant Imaging Med Surg.* (2025) 15:4894–5. doi: 10.21037/qims-2025-209
- 59. Vryza P, Fischer T, Mistakidi E, Zaravinos A. Tumor mutation burden in the prognosis and response of lung cancer patients to immune-checkpoint inhibition therapies. *Transl Oncol.* (2023) 38:101788. doi: 10.1016/j.tranon.2023.101788
- 60. Yang Q, Na J, Qin S, Su J, Huang H, Zhong L. Anticancer mechanisms and applications based on $\gamma\delta$ T cells in cancer immunotherapy. *Crit Rev Oncol Hematol.* (2025) 214:104814. doi: 10.1016/j.critrevonc.2025.104814
- 61. Cheng C, Wang Z, Ding C, Liu P, Xu X, Li Y, et al. Bronchoalveolar lavage fluid microbiota is associated with the diagnosis and prognosis evaluation of lung cancer. *Phenomics.* (2024) 4:125–37. doi: 10.1007/s43657-023-00135-9
- 62. Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenol induces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small cell lung cancer cell lines. *J Integr Med.* (2024) 22:503–14. doi: 10.1016/j.ioim.2024.05.004
- 63. Yu Y, Chen N, Yu S, Shen W, Zhai W, Li H, et al. Association of immune-related adverse events and the efficacy of anti-PD-(L)1 monotherapy in non-small cell lung

- cancer: adjusting for immortal-time bias. Cancer Res Treat. (2024) 56:751-64. doi: 10.4143/crt.2023.1118
- 64. Ogunniyi KE, Djunadi TA, Adewara O, Babawale I, Akinmoju OD, Olaiya VO, et al. Immunotherapy-induced cardiotoxicity: A narrative review of real-world case reports, recent information and clinical evidence. *Cardiovasc Toxicol.* (2025) 25:1381–410. doi: 10.1007/s12012-025-10038-y
- 65. Meng LF, Huang JF, Luo PH, Huang SX, Wang HL. The efficacy and safety of immune checkpoint inhibitor plus chemotherapy in patients with advanced non-small-cell lung cancer: a meta-analysis. *Invest New Drugs.* (2022) 40:810–7. doi: 10.1007/s10637-022-01232-8
- 66. Chen Q, Zhang Z, Li X, Bu L. Chemotherapy combined with immunotherapy as a first-line treatment brings benefits to patients with lung squamous cell carcinoma but different risks of adverse reactions: A systematic review and meta-analysis. *Front Pharmacol.* (2022) 13:940567. doi: 10.3389/fphar.2022.940567
- 67. Chennamadhavuni A, Abushahin L, Jin N, Presley CJ, Manne A. Risk factors and biomarkers for immune-related adverse events: A practical guide to identifying highrisk patients and rechallenging immune checkpoint inhibitors. *Front Immunol.* (2022) 13:779691. doi: 10.3389/fimmu.2022.779691