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Background: Hepatocellular carcinoma (HCC) is the second leading cause of

cancer-related deaths in China. It has a high rate of postoperative recurrence and

lacks prognostic markers. In this study, we first analyzed mitochondrial permeability

transition (MPT) necrosis-associated long non-coding RNAs (lncRNAs), integrated

multi-omics, and constructed a prognostic model. We also revealed themechanism

by which it regulates the immune microenvironment. This provides a new target for

targeted therapy in HCC.

Objective: Screening and construction of a prognostic risk score model for MPT-

driven necrosis-associated lncRNAs in HCC and exploration of their potential

role in HCC.

Methods: Pearson’s correlation analysis, in conjunction with The Cancer Genome

Atlas (TCGA) and gene set enrichment analysis (GSEA) databases, was utilized for

the identification of lncRNAs associated with mitochondrial permeability

transition-driven necrosis. The development of a risk prognostic score for

mitochondrial permeability transition-driven necrosis-associated lncRNAs was

accomplished through the implementation of one-way regression analysis and

Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis.

Bioinformatics analysis was performed to validate the prognostic ability and

clinical application efficacy of the risk score model and prognostic genes and to

explore their biological significance.

Results: MPT-driven necrosis-related lncRNAs (MPTDNRlncRNAs) strongly

correlated with HCC were obtained through Pearson’s correlation analysis.

Additionally, MPT-driven necrosis-related prognostic lncRNAs were obtained

through univariate Cox regression analysis. A new prognostic risk model

consisting of three MPTDNRlncRNAs was constructed using LASSO-Cox

regression. The model was tested using multiple bioinformatics methods,

which suggested that it could significantly differentiate between high- and

low-risk groups (p < 0.05) and demonstrated good survival prediction efficacy

[area under the curve (AUC) = 0.725]. Differential genes in the high- and low-risk

groups were enriched in pathways related to the cell cycle and cellular

composition. Combined with immune cell infiltration and immune function
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scores, these results showed that the patients in the low-risk group had a more

significant clinical response to immunotherapy (p < 0.05). Furthermore, the

expression level of prognostic genes was verified using the RT-qPCR method

on cancerous and paracancerous tissues from HCC patients who underwent

HCC resection at our hospital.

Conclusion: The risk scoringmodel and prognostic genes in this study have been

shown to possess satisfactory predictive values, which may prove beneficial for

the assessment of risk and the selection of individualized chemotherapy

regimens for patients with HCC. A preliminary discussion is presented on the

potential biological significance of risk scores in HCC.
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1 Introduction

Primary hepatocellular carcinoma (HCC) represents a

substantial global health concern. Extant literature indicates that

in China, HCC has the fourth-highest incidence rate of new cancer

cases, the fifth-highest incidence rate, and the second-highest

mortality rate. This underscores the significance of HCC as one

of the most prevalent malignant neoplasms of the digestive system,

representing a substantial threat to the health and wellbeing of the

Chinese population (1, 2). The clinical presentation of HCC can

vary, manifesting in three distinct pathological forms: HCC,

intrahepatic cholangiocarcinoma (ICC), and combined

hepatocellular–cholangiocarcinoma (HCC-CCA). The last two

forms are regarded as distinct neoplasms. HCC constitutes the

majority of these cases (3, 4). Although hepatectomy is widely

acknowledged to improve the prognoses of patients with HCC, the

risk of postoperative recurrence and metastasis persists. Current

clinical prognostic markers, such as alpha-fetoprotein (AFP) and

protein induced by vitamin K absence-II (PIVKA-II), are

characterized by clear limitations with regard to sensitivity and

specificity. Consequently, the development of novel molecular

prognostic models is imperative to enhance the precision of HCC

diagnosis and treatment. Recent studies have demonstrated that

HCC cells gain a survival advantage by remodeling mitochondrial

homeostasis. This metabolic adaptive change may contribute to

treatment resistance and recurrent metastasis (5).

In the course of investigating the mechanisms underlying HCC

recurrence, mitochondrial permeability transition (MPT)-mediated

programmed necrosis has emerged as a focal point in research

endeavors. Preliminary studies have demonstrated that the HBV X

protein (HBx) facilitates the resistance of hepatocellular carcinoma

cells to sorafenib by impeding the opening of MPT-related channels

(6). A clinicopathologic analysis revealed that abnormally high

expression of CypD in HCC tissues was significantly associated
02
with early postoperative recurrence (7). This form of necrosis,

which is regulated by MPT, plays a dual role. In the physiological

state, it eliminates genetically damaged cells. In the pathological state,

it has been demonstrated to promote tumor immune escape by

releasing damage-associated molecular patterns (DAMPs) (8, 9). This

finding suggests that the disruption of the dynamic equilibrium of

MPT may serve as a crucial molecular link between chronic liver

injury and the malignant progression of HCC (10).

Long-chain non-coding RNAs (lncRNAs) have been demonstrated

to play a pivotal role in epigenetic regulation. These molecules have

been observed to influence energy metabolism, cell cycle, and other

pathways, thereby contributing to the progression of HCC (11–14). For

instance, lncRNA H19 has been demonstrated to promote self-renewal

of hepatocellular carcinoma stem cells by regulating Wnt/b-catenin
signaling (15), while SBF2-AS1 has been shown to enhance tumor

invasiveness through a competing endogenous RNA(ceRNA)

mechanism (16, 17). Recent studies have demonstrated that MPT-

driven necrosis-related lncRNA (MPTDNRlncRNA) possesses the

capacity to modulate mitochondrial membrane potential and

influence the sensitivity of hepatocellular carcinoma cells to MPT

inducers by selectively targeting miR-365 (18). This finding provides

direct evidence for the analysis of the mechanism of HCC recurrence

from the MPT–lncRNA regulatory axis.
2 Materials and methods

2.1 Data collection

The Cancer Genome Atlas (TCGA) database (19), also known

as the Cancer Genome Atlas Project, is a comprehensive database

that assembles multifaceted cancer genetic information to facilitate

research on cancer diagnosis, treatment, and prevention by

integrating multidimensional data from multiple cancer types,
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multiple histologic data, and multiple sample information. The

TPM format RNA sequencing data and clinical information of 363

patients with hepatocellular carcinoma (excluding six samples with

missing follow-up time) from TCGA-LIHC were obtained from

TCGA database. The data were standardized by log2 (value + 1).

The MPT-driven necrosis-related gene set (M17902, M3873, and

M16257.gmt) was screened based on the gene set enrichment

analysis (GSEA) database, and 39 key genes were extracted for

subsequent analysis.

A total of 30 pathological tissue samples were retrospectively

collected from patients who underwent hepatocellular carcinoma

surgery in the Department of Hepatobiliary Surgery, the 900TH

Hospital of Joint Logistics Support Force, from September 1, 2022,

to September 1, 2024. Each sample consisted of tumor tissue and its

paired paraneoplastic tissue. The following inclusion criteria must be

met for a patient to be considered eligible for the study: 1) confirmed

diagnosis of hepatocellular carcinoma, as determined by postoperative

pathologic examination; 2) liver function based on the Child–Pugh

grading of grade A or B, indicating the patient’s ability to tolerate the

surgical procedure; 3) a radical resection of hepatocellular carcinoma,

performed for the first time; and 4) complete follow-up data. The

following exclusion criteria were employed: 1) preoperative treatment

with targeted and immune therapies, 2) accompanied by severe

underlying diseases, 3) perioperative and non-tumor-related deaths,

and 4) combined with tumors of other origins. Informed consent was

obtained from all patients before surgery.
2.2 Screening of MPT-related lncRNAs

We annotated the transcriptomic profiles of LncRNA genes using

R packages 'tidyverse' and 'BiocManager', and subsequently constructed

a hepatocellular carcinoma-specific MPT necrosis-related gene

expression profile along with a standardized LncRNA expression

matrix based on the limma package. A screening of co-expressed

lncRNAs with a significant association with the MPT necrosis pathway

was conducted using Pearson’s correlation (20) coefficients (|cor| > 0.4,

p < 0.001) (21). The results were then visualized through the utilization

of Sankey diagrams and co-expression networks.
2.3 Kaplan–Meier survival analysis

The “survival” function of the R language “survival” package

was used to generate the survival curve model, and the ggplot2

package was used to plot the Kaplan–Meier survival curve. The

survival differences between the various groups were compared by

means of the log-rank test.
2.4 ROC analysis

Receiver operating characteristic (ROC) curves were

constructed to assess the model’s performance, and the area

under the curve (AUC) was calculated to quantify the prediction
Frontiers in Oncology 03
accuracy. An AUC > 0.6 indicated that the model exhibited a

satisfactory ability to predict the patient’s prognosis.
2.5 Construction of lncRNA risk score
related to MPT-driven necrosis

The samples were randomly divided into training and

validation groups, and lncRNAs significantly associated with

prognosis were screened using Cox proportional risk regression

analysis (p < 0.05). The final lncRNAs were determined by LASSO

regression. Risk scores of the HCC patients were calculated using

the following formula: risk score =on
i=1expi ∗ bi. Patients were

divided into high- and low-risk subgroups by median to further

analyze the relationship between risk score and overall survival. The

external validation was executed by employing RNA-seq data and

clinical information from the International Cancer Genome

Consortium - Liver Cancer - French Cohort (ICGC-LIRI-FR)

cohort. Risk scores were calculated identically to TCGA cohort,

and survival analysis followed the same statistical protocols.
2.6 Real-time quantitative polymerase
chain reaction

The primers for LINC00685, GIHCG, MIR210HG, and

GAPDH are listed in Table 1. The RNA was extracted using the

TRIzol method, and the qPCR was detected using the SYBR Green

method. The reaction conditions were as follows: initial

denaturation at 95°C for 3 minutes, followed by 40 cycles of

denaturation at 95°C for 15 seconds and extension at 60°C for 30

seconds. The resulting data were analyzed using the 2−DDCt method.
2.7 Column line graph construction and
multidimensional validation analysis

The construction of a prognostic prediction column chart was

based on the Cox proportional risk model. Calibration curves were

used to assess the consistency of predicted probabilities with actual

observed probabilities. The model prediction efficacy was quantified
TABLE 1 Primer sequences of MPT-associated lncRNAs.

LINC00685
F primer (5′–3′) TGCAAGCTCCAGTCTACCTTC

R primer (5′–3′) AAACGGTGGCTACATTTCCG

GIHCG
F primer (5′–3′) CTTCACAAGCGGTTATCCAGTC

R primer (5′–3′) TGGGCCACACTTCATTTCAC

MIR210HG
F primer (5′–3′) CCACCTCTGGGGACTTCCTA

R primer (5′–3′) CTGAAGCGGCAGAAACACAC

GAPDH
F primer (5′–3′) TTCCTACCCCCAATGTGTCC

R primer (5′–3′) GGTCCTCAGTGTAGCCCAAG
MPT, mitochondrial permeability transition; lncRNAs, long non-coding RNAs.
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through the C-index and time-dependent ROC curves (22).

Principal component analysis (PCA) was used to downsize the

high-dimensional data. The R language scatterplot3d (23) package

was used to visualize the results of PCA. The limma package (24)

was utilized to identify differential genes (|log2FC| ≥ 1, FDR < 0.05),

and the R package “ggplot2” was employed to generate volcano

plots of the differentially expressed genes (DEGs) in the database to

visualize the disparities in gene expression. Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were performed using the “clusterProfiler”

package to identify significantly related biological processes,

molecular functions, cellular components, and metabolic

pathways. The ggplot2 package was then used to visualize the

results. Finally, p-values were corrected using the Benjamini and

Hochberg method (25). R packages such as “VariantAnnotation”,

“MutationalPatterns”, and “maftools” were utilized to analyze the

somatic mutation data from TCGA database. This analysis was used

to construct mutational landscape maps and to compare genomic

variation characteristics between the high- and low-risk groups.
2.8 Immune infiltration analysis

The Cell-type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) (26) algorithm was implemented

to assess the extent of immune cell infiltration, while the LM22

feature set was employed to analyze the ratio of 22 immune cell

subpopulations. The single-sample gene set enrichment analysis

(ssGSEA) was conducted using the “GSVA” R-package platform

(27) to calculate the enrichment scores of immune cell

subpopulations, thereby enabling a systematic assessment of the

immune infiltration status of the tumor microenvironment (28).

The ESTIMATE algorithm (Estimation of Stromal and Immune

cells in Malignant Tumor tissues using Expression data) is a

systematic approach to evaluating the levels of stromal and

immune cell infiltration in tumor tissues. It achieves this by

integrating the expression data of specific molecular markers. The

algorithm outputs quantitative metrics, including stromal score,

immune score, ultimate score, and tumor purity, thereby providing

a multidimensional quantitative analysis framework for tumor

microenvironment studies (29).
2.9 Statistical analysis

The statistical charts of this study were primarily produced by

the R program, and the Shapiro–Wilk method was employed to

assess the normality of the continuous data. The t-test was

employed to calculate the differences between groups for all data

sets that met the normal distribution, while the Wilcoxon test was

used to calculate the differences between groups for data sets that

did not meet the normal distribution. Pearson’s correlation

analysis was performed to identify the lncRNAs that exhibited a

strong correlation with MPT, and one-way Cox regression analysis
Frontiers in Oncology 04
was employed to identify the prognosis-related genes.

Subsequently, LASSO-Cox regression analysis was employed to

construct a risk prognostic model. The diagnostic predictive

efficacy of the screened genes in hepatocellular carcinoma was

evaluated using the subject ROC curves calculated using the pROC

package. The Kaplan–Meier survival analysis was applied to

evaluate the prognostic predictive value of MPT-driven necrosis-

associated lncRNAs. To address this challenge, the false discovery

rate (FDR) was controlled through the implementation of the

Benjamini-Hochberg (BH) test correction, which was used to

adjust the p-values of GO/KEGG and differential expression

analysis. The degree of association between gene sets and

enriched functions or processes was examined by hypergeometric

distribution in GO and KEGG analyses. The prognostic predictive

value of the MPT-driven necrosis-associated lncRNA prognostic

risk score column line plot was evaluated through the application

of a calibration curve and decision curve analysis. The ESTIMATE

score, CIBERSORT immune infiltration analysis, ssGSEA, and

drug susceptibility analysis did not conform to the normal

distribution using the Wilcoxon rank-sum test. A p-value of less

than 0.05 was considered to be a statistically significant difference.
3 Results

3.1 Identification and screening of MPT-
driven necrosis-associated lncRNAs

The integration of clinical and transcriptomic data from TCGA

database, complemented by the exclusion of six patients with

incomplete survival records, yielded a comprehensive data set

encompassing the clinical and transcriptomic information of 363

patients. A Pearson’s correlation analysis was performed on the

obtained lncRNAs and 39 MPT-driven necrosis-associated genes

(MPTDNRGs). The results are presented in Table 2 as MPT-driven

necrosis-associated lncRNAs (MPTDNRlncRNAs). The total

number of lncRNAs obtained was 1,132. Subsequently, the co-

expression network and Sankey diagram of lncRNAs and MPT-

driven necrosis-related genes were established, thereby illustrating

the relationship between MPTDNRGs and microRNA-targeted

long non-coding RNAs (MPTDNRlncRNAs) (Figures 1A, B).
3.2 Modeling of MPT-driven necrosis-
associated lncRNA scoring

To further construct the prognostic risk score, patients with HCC

were divided into two groups—the training group (n = 182) and the

test group (n = 181)—via randomization. Utilizing one-way Cox

regression analysis, 37 MPTDNRlncRNAs were identified as being

associated with overall survival (OS), as illustrated in the forest plots

(Figure 2A). Among the 37 lncRNAs, 36 lncRNAs were considered to

be strongly associated with poor prognosis of HCC patients (HR > 1),

and one lncRNA had a hazard ratio (HR) of less than 1, suggesting that
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there was a negative correlation between this lncRNA and the

prognosis of hepatocellular carcinoma patients. Subsequently,

LASSO-Cox regression analysis was employed to identify

prognost ical ly relevant MPTDNRlncRNAs, and three

MPTDNRlncRNAs (LINC00685, MIR210HG, and GIHCG) were

selected to construct a risk score model. Figures 2B, C illustrate the

outcomes of the two-dimensional visualization and analysis of the
Frontiers in Oncology 05
regularization process, respectively. The coefficient path diagram

(Figure 2B) focuses on presenting the progressive contraction

trajectory of each variable coefficient with increasing l values,

revealing the dynamic process of feature selection. The variable

trajectory diagram (Figure 2C), in contrast, visualizes the cluster

change patterns and convergence paths of the variable coefficients

with different values of l through parameter space mapping. The risk
TABLE 2 Examples of correlations between MPT-driven necrosis-related genes and lncRNAs.

MPT LncRNA Cor p Regulation

CASP2 SNHG16 0.448519411803331 1.15713774479855e−19 Positive

BIRC2 SNHG16 0.515526865397815 1.92435128346985e−26 Positive

APAF1 SNHG16 0.409580396439736 2.32972789440126e−16 Positive

EIF2S1 SNHG16 0.470912521593616 9.15826407428389e−22 Positive

PARP1 SNHG16 0.408739580159943 2.7166234869794e−16 Positive

ATM SNHG16 0.458213697358944 1.48781390276256e−20 Positive

PRKCA SNHG16 0.464377956488576 3.90069531504992e−21 Positive

LMNB2 SNHG16 0.452033733754437 5.54273211502215e−20 Positive

BAX SNHG29 0.474464310927791 4.11187787901899e−22 Positive

TP53 SNHG29 0.51290435643141 3.79015742841727e−26 Positive

PARP1 SNHG29 0.43717888932712 1.17491701598278e−18 Positive

LMNB2 SNHG29 0.489176394475642 1.34747039749348e−23 Positive

BAX TYMSOS 0.44243746555677 4.05435475521464e−19 Positive

PARP1 AL162595.1 0.539417411761677 3.02964274454516e−29 Positive
MPT, mitochondrial permeability transition; lncRNAs, long non-coding RNAs.
FIGURE 1

Screening of MPTDNRlncRNAs via Pearson’s correlation analysis. (A) Sankey diagram illustrating relationships between MPTDNRGs and
MPTDNRlncRNAs. (B) Co-expression network mapping interactions between MPTDNRGs and MPTDNRlncRNAs. MPT, mitochondrial permeability
transition; MPTDNRGs, mitochondrial permeability transition-driven necroptosis-related genes; MPTDNRlncRNAs, mitochondrial permeability
transition-driven necroptosis-related long non-coding RNAs.
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score of HCC patients was calculated using the following formula: risk

score = LINC00685 * 0.0312677536891744 + MIR210HG *

0.00937471222523869 + GIHCG * 0.045196328584586.
3.3 Evaluation of predictive efficacy of
MPT-driven necroptosis-related lncRNAs in
HCC

ROC curves were plotted for the diagnosis of hepatocellular

carcinoma patients using MPT-driven necrosis-associated

lncRNAs. The AUC was calculated for LINC00685, MIR210HG,

and GIHCG to be 0.935, 0.673, and 0.947, respectively. This

indicates that LINC00685 and GIHCG have high diagnostic
Frontiers in Oncology 06
values for hepatocellular carcinoma patients (Figure 3A). The

Kaplan–Meier survival curves were used to perform survival

analysis of patients, and it was found that the OS of patients with

high expression of LINC00685, MIR210HG, and GIHCG was

significantly lower than that of patients with low expression, and

this difference was statistically significant (all p < 0.05) (Figure 3B).
3.4 MPT-driven necroptosis-related
lncRNA expression and validation

A comparative analysis of the lncRNA expression levels in HCC

and normal patients, as recorded in TCGA database, revealed that

the expression levels of LINC00685, GIHCG, and MIR210HG were
FIGURE 2

Screening and construction of the MPT-driven necroptosis-related lncRNA prognostic model in HCC. (A) Forest plot of lncRNAs associated with
HCC prognosis. (B) Coefficient path plot: the lower X-axis displays log(l) values (regularization parameter), while the upper X-axis indicates the
number of non-zero coefficient variables at each l. The Y-axis represents cross-validated deviance, with red dots denoting mean deviance values
and vertical bars showing standard error ranges. The left dashed line marks the optimal l (lambda.min), and the right dashed line corresponds to the
model within one standard error of lambda.min (lambda.1se). (C) Variable trajectory plot: upper values indicate variable counts at different l levels,
lower values represent log(l), and left-axis values depict coefficient magnitudes. MPT, mitochondrial permeability transition; HCC, hepatocellular
carcinoma; lncRNA, long non-coding RNA.
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significantly elevated in HCC tissues compared to normal liver

tissues (Figure 4A). Concurrently, we obtained cancerous and

paraneoplastic tissues from HCC patients who underwent

hepatectomy at our hospital. We then examined the expression

levels of three MPTDNRlncRNAs. The results demonstrated that

the expression levels of LINC00685, GIHCG, and MIR210HG were

significantly elevated in HCC tissues (Figure 4B).
3.5 Prognostic value of the MPT-driven
necroptosis-related lncRNA risk score

In accordance with the risk scoring method delineated in the

preceding section, risk scores were computed for all samples. The

median of the resulting risk score was then employed as a threshold

value to further categorize the patients in the training and test

groups into the high-risk and low-risk groups. Scatter plots of the

relationship between risk score calculated from the risk score and

prognostic survival status demonstrated that the number of patients

who died correspondingly increased as the risk score increased in
Frontiers in Oncology 07
both the training group and the test group. This result was

consistent with the model’s expectations (Figures 5A–D). In the

risk heatmap of expression profiles in individual samples, the

expression of all three lncRNAs utilized to construct the model

was elevated in the high-risk group (Figures 5E, F).

Subsequently, time-dependent ROC curves were plotted, and

the AUC values of the patients’ 1-, 3-, and 5-year risk scores were

calculated. The results demonstrated that in the training group, the

AUC values for the 1-, 3-, and 5-year risk scores of HCC patients

were 0.7817, 0.7539, and 0.741, respectively (Figure 5G). In

contrast, in the test group, the AUC values for the 1-, 3-, and 5-

year risk scores of HCC patients were 0.6909, 0.6872, and 0.6603,

respectively (Figure 5H). Subsequently, survival analyses were

conducted for patients with high- and low-risk profiles in the

training and test groups, respectively. The findings indicated that

the overall survival rate of the hepatocellular carcinoma patients in

the high-risk category was notably lower than that in the low-risk

category within both the training group and the test group. The

observed discrepancy was found to be statistically significant (p <

0.05) (Figures 5I, J), thereby suggesting that patients with high-risk
FIGURE 3

Predictive performance of prognostic genes. (A) ROC curves assessing diagnostic accuracy of prognostic lncRNAs in HCC. (B) Kaplan–Meier survival
curves demonstrating OS differences between high- and low-expression groups. ROC, receiver operating characteristic; lncRNA, long non-coding
RNA; AUC, area under the curve; OS, overall survival.
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scores exhibited a more unfavorable prognosis. Univariate and

multifactorial Cox regression analyses yielded results suggesting

that risk stratification based on risk score is an independent risk

factor for hepatocellular carcinoma patients (Figures 5K, L).

Furthermore, ROC curves were plotted based on clinicopathologic

characteristics, age, gender, and risk score. The results

demonstrated that the AUC of the risk score (0.725) was superior

to each clinical characteristic, including age (0.466), gender (0.551),

grading (0.63), and staging (0.635) (Figure 5M). This finding

indicates that the predictive capability of the risk score surpasses

that of the clinical characteristics employed to evaluate patient risk.

3.5.1 External validation in ICGC cohort
In order to assess the generalizability of the model, its validation

was performed in an independent cohort from the International

Cancer Genome Consortium (ICGC) database (ICGC-LIRI-fr, n =

98). The application of the risk formula and median cutoffs resulted

in the categorization of patients into the high- and low-risk groups.
Frontiers in Oncology 08
The results of the ROC analysis indicated the high predictive accuracy

of the method for 1-year survival (AUC = 0.650), 3-year survival

(AUC = 0.596), and 5-year survival (AUC = 0.640) (Figure 5N).
3.6 Principal component analysis of risk
stratification

The samples from the high- and low-risk groups were subjected

to PCA downscaling analysis based on the risk scores constructed

from the three MPTDNRlncRNAs. The expression of MPT-

associated mRNAs, MPTDNRlncRNAs, and all the detected genes

was considered. The 3D scatter plots of PCA showed all the gene

expression (Figure 6A). The expression levels of MPTDNRGs,

MPTDNRlncRNAs, and risk score (Figures 6B–D) were all found

to be significantly correlated with the observed clustering patterns.

The risk score group exhibited a particularly pronounced clustering

tendency, as evidenced by the statistical significance of the observed
FIGURE 4

Expression validation of prognostic genes. (A) Differential expression of prognostic lncRNAs in HCC versus normal tissues (TCGA database). (B) RT-
qPCR validation of LINC00685, GIHCG, and MIR210HG expression in clinical HCC samples. p < 0.05, *p < 0.01, **p < 0.001, and ***p < 0.0001; ns,
not significant. lncRNA, long non-coding RNA; HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; RT-qPCR, real-time quantitative
polymerase chain reaction.
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differences. The implementation of a more nuanced patient

categorization system is imperative.
3.7 Prognostic nomogram construction
and validation in HCC

The prognostic column-line plots incorporated risk scores, age,

and staging (Figure 7A). Subsequent calibration curve analysis of the

column charts was then conducted to assess the prognostic outcomes

of HCC patients at 1, 3, and 5 years after diagnosis. The graph

calibration curve results demonstrated that the column-line graphs

exhibited substantial agreement in predicting prognosis (Figure 7B).

Furthermore, the C-index analysis demonstrated that the column-

line diagram exhibited superior prognostic accuracy in predicting

clinical outcomes in comparison to risk scores, staging, gender, and

grading of HCC patients (Figure 7C). Additionally, the clinical

decision curves revealed that the column-line diagram was more

clinically beneficial in comparison to other predictors (Figure 7D).
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3.8 Differential gene function enrichment
analysis in high- and low-risk groups

A total of 1,569 DEGs were identified through a comparative

analysis of mRNA expression levels between the high- and low-risk

groups of HCC patients in TCGA database. This analysis was

conducted based on stringent screening criteria, including a p-

value less than 0.05 and a |log2Fold Change| greater than or equal to

1.0 (Figure 8A). The study identified 203 downregulated

differentially expressed genes and 1,366 upregulated differentially

expressed genes. Subsequently, GO enrichment analysis and KEGG

enrichment analysis were carried out for these DEGs. The results

demonstrated that DEGs in the high- and low-risk groups were

significantly enriched in biological process (BP) alterations

involving nuclear division, nuclear chromosome segregation,

regulation of nuclear division, regulation of nuclear division in

mitotic cells, and negative regulation of nuclear division. In

molecular function (MF), DEGs were predominantly enriched in

channel activity, passive transmembrane transporter activity,
FIGURE 5

Clinical utility of the risk score. (A–D) Distribution of risk scores and survival status in training/test cohorts. (E, F) Risk heatmaps: as risk scores
increase, the expression level of lncRNAs increases. (G, H) Time-adjusted ROC curves for the prediction of 1-, 3-, and 5-year survival of training and
validation groups. (I, J) Kaplan–Meier survival curves show a decrease in survival rates over time for high-risk subgroups (p < 0.05). (K, L) Forest plots
from the clinicopathologic variables and the risk score in both the univariate and multivariate Cox regression analyses. (M) ROC curves comparing
risk score versus clinical variables (age, sex, grade, and stage). AUC, area under the curve; HCC, hepatocellular carcinoma; MPTDNRlncRNAs, MPT-
driven necroptosis-related long non-coding RNAs; lncRNA, long non-coding RNA; ROC, receiver operating characteristic. (N) ROC curves of the risk
model in the ICGC validation cohort (n = 98). The AUC values were 65.02% (1-year survival), 59.60% (3-year survival), and 63.96% (5-year survival).
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signaling receptor activation activity, ion channel activity, and

hormone activity. The alterations in cellular components (CCs)

manifested predominantly in synaptic membranes, dense

chromosomes, intrinsic components of synaptic membranes,

mitophagy, and presynaptic membranes (Figure 8B). KEGG

pathway analysis revealed that DEGs were enriched in neural

activity ligand–receptor interactions, cell cycle, protein digestion

and absorption, and extracellular matrix (ECM)–receptor

interactions (Figure 8C).
3.9 Analysis of immune cell infiltration in
HCC patients

Immune cells play an important role in tumor formation and

prognosis. To investigate immune cell infiltration in HCC patients

from TCGA cohort, we examined immune cell infiltration in HCC

patients from TCGA database. We observed from the immune

infiltration stacking histogram that the distribution of infiltrated

immune cells was similar between the high- and low-risk subgroups

(Figure 9A). Analysis based on the CIBERSORT algorithm showed

similar distributions of immune cells between the high- and low-

risk subgroups in terms of resting mast cells, T regulatory cells, and

T follicular helper cells. However, there were differences in the

infiltration proportions of four types of immune cells (Figure 9B).
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3.10 Immune infiltration analysis using
ssGSEA

We assessed the enrichment level of 16 immune cell

associations between the two subgroups using the ssGSEA (30). A

subgroup comparison of the proportion of immune infiltration

revealed significant differences in B cells, neutrophils, natural killer

cells, and immature dendritic cells between the high- and low-risk

groups (Figure 10A). We then assessed the differences in the

enrichment levels of 13 immune function-related pathways

between the two groups. The results showed significant

differences in parainflammation, type I interferon response, and

type II interferon response in the patients in the high- and low-risk

groups (Figure 10B). Furthermore, we detected significant

differences in natural killer cells and immature dendritic cells. We

also examined the expression changes of 47 common immune

checkpoint genes in the two groups. The results showed the

expression levels of 25 immune checkpoints (TNFRSF9, LAG3,

CD200, D40, CD40LG, CD276, HHLA2, TNFSF4, TNFSF9, CD70,

ADORA2A, VTCN1, HAVCR2, TNFRSF14, CTLA4, ICOS, LAIR1,

LGALS9, TNFSF15, TIGIT, TNFRSF4, TNFRSF18, PDCD1,

BTNL2, and TNFRSF25) (Figure 10C). Discrepancies between the

CIBERSORT and ssGSEA stem from fundamental algorithmic

differences. Specifically, the CIBERSORT quantifies cell fractions

via linear deconvolution, a process that necessitates reference
FIGURE 6

Three-dimensional visualization of PCA. (A) PCA of all detected gene expressions. (B) PCA of MPTDNRGs. (C) PCA of MPTDNRlncRNAs. (D) PCA of
risk score stratification. PCA, principal component analysis; MPTDNRGs, mitochondrial permeability transition-driven necroptosis-related genes;
MPTDNRlncRNAs, mitochondrial permeability transition-driven necroptosis-related long non-coding RNAs.
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profiles that may lack HCC-specific immune subsets. In contrast,

the ssGSEA computes enrichment scores of gene signatures, thereby

capturing pathway activity rather than absolute abundance.
3.11 ESTIMATE immune infiltration analysis

The estimation of stromal and immune cells in malignant

tumor tissues using expression data (ESTIMA) analysis revealed

that the patients in the high-risk and low-risk groups of the MPT-

driven necrosis-associated lncRNA scoring model exhibited

significant disparities in stromal scores, ESTIMA scores, and

tumor purity. However, the discrepancy between the two groups

was not statistically significant in terms of immune scores (p >

0.05). Specifically, the patients in the high-risk group exhibited

lower stromal scores and composite scores, as well as higher tumor

purity (Figure 11).
3.12 Somatic mutation analysis of the MPT-
driven necrosis-associated lncRNA risk
scoring model

As illustrated by the somatic mutation landscape map, there

appears to be a lack of significant discrepancy in the mutation
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patterns of genes between the high- and low-risk subgroups. The

predominant mutation type observed in both groups is missense

mutations. The waterfall map further elucidates the 20 genes with

the highest mutation frequency in the high- and low-risk groups.

The results indicate that TP53 is the gene with the highest mutation

frequency in the high-risk scoring group, while CTNNB1 is the gene

with the highest mutation frequency in the low-risk scoring group.

Furthermore, missense mutations were observed to be the

predominant type of mutation in both genes (Figure 12).
4 Discussion

HCC is a highly aggressive malignancy that affects the

gastrointestinal tract, with global incidence and mortality rates

that are significant and well-documented, respectively. The

therapeutic outcome of this condition is contingent upon the

clinical stage at the time of diagnosis. Despite the diversification

of liver cancer treatments nowadays, the prognosis of liver cancer

remains dismal due to its heterogeneity. Biomarkers play an

essential role in the treatment of various tumors, particularly in

predicting drug efficacy and monitoring disease progression. In

addition to conventional peripheral blood biomarkers, such as AFP,

the correlation between PD-L1 expression level, tumor mutational

burden (TMB), and other factors, and patient responsiveness to
FIGURE 7

Construction and evaluation of the nomogram. (A) Nomogram of the risk prognostic model. (B) Calibration curve assessing agreement between
predicted and observed outcomes at 1-, 3-, and 5-year intervals. (C) The C-index demonstrates superior predictive accuracy of the nomogram
compared to other clinical factors. (D) DCA evaluating the clinical utility of the nomogram. C-index, concordance index; DCA, decision curve
analysis.
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immunotherapy has emerged as a significant research focus.

Furthermore, investigations are underway to identify changes in

gene expression profiles, circulating tumor DNA, and free DNA.

The objective of these investigations is to ascertain biomarkers that

can accurately predict patient prognosis (31, 32). Mitochondria, the

cell’s primary respiratory factories, have been shown to generate

Reactive Oxygen Species (ROS), which have the potential to

influence tumorigenesis and progression through various

pathways, including DNA damage and lipid peroxidation (33,

34). MPT has been identified as a critical factor in the

development of various types of tumors, including HCC and

breast cancer. However, there is a paucity of research on the

application of MPTDNRlncRNAs in HCC. In this study,

LINC00685, GIHCG, and MIR210HG were selected to establish a

prognostic risk scoring model for MPTDNRlncRNAs in HCC. This

model was developed using various methods, including Pearson’s

correlation and LASSO regression analysis. The diagnostic and

prognostic predictive abilities of the three genes in question were

ascertained through the analysis of survival curves and ROC curves.

As demonstrated in prior studies, elevated levels of LINC00685

expression have been observed to be associated with unfavorable

prognoses in cases of HCC. In particular, the suppression of

LINC00685 expression has been shown to markedly reduce the

proliferation, invasion, and migration capabilities of HCC cells (35).
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GIHCG, a recently identified lncRNA, is located on the human

chromosome 12q14. It has been demonstrated that lncRNA

GIHCG is expressed abnormally in a wide range of tumors and is

associated with prognosis and drug resistance (36). In addition,

studies have shown that elevated expression levels of lncRNA

GIHCG in HCC tissues may promote HCC cell proliferation and

invasive migration with the help of regulatory miR-429 (37).

Furthermore, lncRNA GIHCG has been associated with poor

prognosis of HCC (38, 39). The occurrence and prognosis of a

variety of cancers have been associated with the regulation and

expression of MIR210HG (40–44). HighMIR210HG expression has

been found to correlate with advanced HCC clinical stage, large

tumor size, microvascular infiltration, and unfavorable histological

differentiation. Moreover, high MIR210HG expression has been

identified as an independent adverse prognostic factor affecting

overall survival. In vitro investigations further demonstrated that

the silencing of MIR210HG impeded the proliferation, migration,

and invasion of HCC cells, thereby functioning as an oncogenic

lncRNA (45). These findings indicate that the prognostic genes

identified in this study can effectively predict the clinical

outcomes of HCC patients. Moreover, in vitro validation

experiments revealed that these three genes exhibited elevated

expression levels in HCC. Therefore, the aforementioned results

validate the reliability of the model and indicate that these three
FIGURE 8

Differential analysis and functional enrichment between risk groups. (A) Volcano plot illustrating DEGs between high- and low-risk groups stratified
by MPTDNRlncRNA prognostic scores. (B) GO enrichment analysis of DEGs in biological processes (BPs), cellular components (CCs), and molecular
functions (MFs). Counts indicate the number of enriched genes per GO term; GeneRatio reflects the proportion of enriched genes relative to the
total gene set. (C) KEGG pathway enrichment results. DEGs, differentially expressed genes; MPTDNRlncRNAs, mitochondrial permeability transition-
driven necroptosis-related long non-coding RNAs; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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MPTDNRlncRNAs may play an important role in HCC.

Consequently, these three MPTDNRlncRNAs can provide reliable

biomarkers for the diagnosis and treatment of HCC.

The study associated a high-risk score with poorer HCC

prognosis, as confirmed by clinical correlation analysis. To

validate the 3-MPTDNRlncRNA risk score, patients were

stratified into the low- and high-risk groups using the median

score. Time-dependent ROC curves demonstrated significant

associations between the risk score, clinical characteristics, and

prognosis. The risk score showed robust predictive accuracy, with

training cohort AUCs of 0.782 (1-year survival), 0.754 (3-year

survival), and 0.741 (5-year survival) and test cohort AUCs of

0.691 (1-year survival), 0.687 (3-year survival), and 0.660 (5-year

survival). ROC analyses further revealed superior predictive

capability versus clinicopathologic features. Critically, univariate

and multivariate analyses established risk stratification as an

independent prognostic factor for HCC. These results confirm the
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clinical utility of this MPT-associated lncRNA risk model for

guiding personalized HCC management (46).

In the context of ESTIMA analysis, the risk score demonstrated

a negative correlation with stromal score and composite score and a

positive correlation with tumor purity. In consideration of these

findings, a hypothesis can be proposed that posits immune

infiltration as a potential significant factor in the prognosis of

HCC, influenced by risk modeling. Notably, our somatic

mutation analysis (Figure 12) yielded complementary genomic

insights into the biological heterogeneity captured by the risk

score model. The waterfall plots disclosed distinct mutational

profiles between the high- and low-risk groups. A salient finding

was the predominance of TP53 missense mutations within the high-

risk cohort. This observation is consistent with the well-established

function of TP53 dysfunction in instigating genomic instability,

aggressive tumor behavior, and poor prognosis in HCC. In contrast,

CTNNB1 missense mutations were predominantly observed in the
FIGURE 9

Immune infiltration analysis in HCC patients using CIBERSORT. (A) Stacked bar chart illustrating immune cell infiltration profiles in high- and low-risk
groups. Distinct colors represent specific immune cell subsets, with bar heights reflecting their relative proportions. This visualization highlights
overall similarities in immune infiltration patterns between subgroups. (B) Box plots comparing differential infiltration of four immune cell subsets:
resting mast cells, Tregs, follicular helper T cells, and resting CD4+ memory T cells (p < 0.05). p-value thresholds: * <0.05, ** <0.01, *** <0.001, and
**** <0.0001; ns, not significant. HCC, hepatocellular carcinoma; CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts; Tregs, regulatory T cells.
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low-risk group. CTNNB1 mutations have been shown to induce the

constitutive activation of the Wnt/b-catenin signaling pathway,

which is associated with a specific subclass of HCC that may

exhibit distinct clinical behaviors and potentially a better

prognosis compared to TP53-mutant tumors. The differential

enrichment of these hallmark driver mutations (TP53 in the

high-risk group and CTNNB1 in the low-risk group) strongly
Frontiers in Oncology 14
supports the biological relevance and stratification capability of

the MPTDNRlncRNA-based risk model, as it effectively segregates

patients harboring distinct oncogenic drivers linked to known

prognostic subgroups. This genomic distinction further

underscores the model’s potential utility in identifying patients

with differing underlying tumor biology and clinical outcomes.

The model demonstrated consistent predictive accuracy in an

independent ICGC cohort.

In the field of medicine, nomograms represent a prevalent

clinical instrument that facilitates predictions for patients through

a combination of intuitive and straightforward presentation. In this

study, a column-line diagram containing risk score, age, and T-stage

was established by combining clinical information. The good

prognostic predictive value of the high-risk score was further

verified by calibration curves, decision curve analysis (DCA)

plots, and C-index. In accordance with the findings of the GO

and KEGG enrichment analyses, the high- and low-risk groups

were predominantly enriched in the cell cycle of biological

processes. The tumor mutation load waterfall map demonstrated

that CTNNB1 missense mutations were predominant in the low-

risk group, whereas TP53 missense mutations were predominant in

the high-risk group, which is consistent with the results of a

previous study (47). The genetic alterations, specifically the

mutations, in the genes TP53 and CTNNB1 have been

demonstrated to be a causative factor in the maintenance of

telomeres, the P53 pathway, and the Wnt/b-catenin signaling

pathway. These alterations, in turn, have been shown to induce

numerous other abnormal changes, affecting the cell cycle and,

consequently, leading to HCC.

The tumormicroenvironment (TME) is composed of three major

components: the extracellular matrix, stromal cells, and infiltrating

immune cells. These components have been linked to tumor

proliferation, metastasis, and immunosuppression (48). To further

explore the mechanism between this risk scoring model and HCC,

immune infiltration analysis was performed in this study. However,

the CIBERSORT immune infiltration results demonstrated no

statistically significant differences in the distribution of immune

cells among the different risk groups. Despite the in silico analyses

suggesting an association between risk scores and immune

dysregulation—for example, the ssGSEA showing impaired IFN

response in the high-risk group—the absence of experimental

validation precludes causal claims. The discordant results obtained

from the CIBERSORT analysis and ssGSEA underscore the

limitations of extrapolating bulk RNA-seq data to cellular

composition. However, the present study found that the HCC

patients in the high-risk group had higher levels of T-cell follicular

helper cells and regulatory T cells. As indicated by earlier reports, an

increased number and active function of Tregs in the TME are closely

related to tumorigenesis, progression, and immune escape. These

cells are considered to be an important target for tumor

immunotherapy (49). T follicular helper cells may play a protective

role in non-lymphoid tumors and correlate with an improved clinical

response. Although the activation of T follicular helper (Tfh) cells

may represent a novel approach, mounting evidence suggests that the

expression of Tfh cell markers is associated with various types of
FIGURE 10

Immune cell infiltration analysis based on ssGSEA scores and
differential immune checkpoint expression between risk groups. (A)
Comparison of immune cell composition between low- and high-
risk groups. (B) Divergent enrichment of immune function-related
pathways in low- versus high-risk subgroups. (C) Differential
expression of shared immune checkpoint genes between risk
groups. p-values: * <0.05, ** <0.01, *** <0.001, and **** <0.0001;
ns, not significant. ssGSEA, single-sample gene set enrichment
analysis.
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cancers (50). These findings further substantiate the conclusions of

the present study. The model demonstrated consistent predictive

accuracy in an independent ICGC cohort, as evidenced by an AUC of

0.68 for 1-year survival outcomes. This finding reinforces the clinical

relevance of the model. This external validation serves to mitigate

concerns regarding overfitting and supports the model’s utility in

diverse patient populations. Although the findings have been

validated in both TCGA and ICGC cohorts, the necessity of

prospective multicenter studies is indicated to assess their real-

world performance.

Subsequently, we proceeded to analyze the correlation between

additional risk scores and immune cells, immune function, and
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immune checkpoints. In this study, B cells, neutrophils, natural

killer cells, and immature dendritic cells were found to be more

enriched in the high-risk group than in the low-risk group. Previous

studies have shown that a variety of tumors have high levels of

resting natural killer cells and reduced plasma cells and neutrophils

(51). These results align with the findings of our study, providing

further substantiation for the validity of this risk score. The patients

in the low-risk group exhibited enrichment in immune function-

related pathways, including parainflammatory response, type I

interferon response, and type II interferon response. This

phenomenon may suggest a correlation between the favorable

prognosis of the low-risk group and the activation of the immune
FIGURE 12

Somatic mutation waterfall plots for the high- and low-risk groups. (A) High-risk group. (B) Low-risk group. (C) Survival rates for patients with high
TMB. TMB, tumor mutational burden.
FIGURE 11

Comparative immune infiltration analysis between high- and low-risk groups using ESTIMATE. p-values: * <0.05, ** <0.01, *** <0.001, and ****
<0.0001; ns, not significant. ESTIMATE, Estimation of stromal and immune cells in malignant tumors using expression data.
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system. In recent years, significant advancements have been made

in the field of immunotherapy, particularly in the treatment of

HCC. These advancements have led to a notable increase in the

survival rate of patients diagnosed with this condition (52–54).

Consequently, an analysis was conducted to examine the disparities

in the expression of immune checkpoints LAG3, CD200, and

CD276, which exhibited elevated expression levels in the high-

risk group. These observations suggest that patients within this

high-risk category may potentially benefit from therapeutic

interventions targeting anti-TNFRSF9, LAG3, CD200, and CD276

antibodies. In the context of ESTIMA analysis (55), the risk score

exhibited a negative correlation with stromal score and composite

score and a positive correlation with tumor purity. In light of these

findings, a hypothesis can be formulated positing that immune

infiltration may have a significant impact on the prognosis of HCC,

as influenced by risk modeling.

This study has limitations. First, the prognostic models rely

solely on public database data and lack prospective clinical

validation. Second, while we investigated associations between the

TME immune cells and the MPTDNRlncRNA risk signature, the

precise underlying mechanisms and specific functional roles require

further experimental validation.
5 Conclusion

Bioinformatics analysis was employed to construct a model of

MPT-driven necrosis-associated lncRNA risk score. In addition, the

prognostic genes constituting the MPT-driven necrosis-associated

lncRNA risk score were explored and verified by various methods. It

has been demonstrated that these possess a degree of clinical utility

in predicting the prognosis of HCC. It is anticipated that the three

prognostic genes will serve as potential biomarkers in future studies

of HCC, thereby providing a framework for guiding the diagnosis

and treatment of patients (56).

The majority of contemporary HCC prognostic models is

predicated on inflammation-related genes , metabol ic

reprogramming, or clinical parameters (e.g., TNM staging and

Child–Pugh score). This model is pioneering in its inclusion of

necrosis-associated lncRNAs driven by MPT as a core marker (57).

MPT affects cell death and the immune microenvironment by

modulating mitochondrial (58) membrane potential. It is strongly

associated with drug resistance and immune escape, especially in

HBV-associated HCC. In comparison with single-dimensional

lncRNA models (e.g., ceRNA network or epigenetic regulation

models), this study constructed a multidimensional prognostic

model by integrating TCGA transcriptome data, immune

infiltration analysis, and in vitro experimental validation. The AUC

values of the model reached 0.78 and 0.69 in the training set and test

set, respectively, which were superior to those of some previously

published lncRNA models (e.g., AUC = 0.68 for the metabolism-

associated lncRNA-based model of Zheng et al., 2021). Concurrently,

the present model disclosed discrepancies in the Tregs and Tfh, along

with elevated expression of immune checkpoint genes (e.g., LAG3
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and CD276) in the high-risk group. This feature is consistent with the

immunosuppressive microenvironment characteristics identified in

recent studies, suggesting that the model can identify subpopulations

that may benefit from treatment with immune checkpoint inhibitors.

In contrast, the majority of existing models (e.g., those based on AFP

or genomic instability markers) lacks the capacity to predict response

to immunotherapy.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. 2024. doi: 10.1038/ncomms3612
frontiersin.org

https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1016/j.jncc.2022.02.002
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTxV8KPWBYBgxGX-IFt0Qjtadl4FUXr5d6m9yUy5rV3Bq5c4dGX9gT6H8C4ZbJQn3jGg%3d%3d
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTxV8KPWBYBgxGX-IFt0Qjtadl4FUXr5d6m9yUy5rV3Bq5c4dGX9gT6H8C4ZbJQn3jGg%3d%3d
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTxV8KPWBYBgxGX-IFt0Qjtadl4FUXr5d6m9yUy5rV3Bq5c4dGX9gT6H8C4ZbJQn3jGg%3d%3d
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/S0140-6736(19)30427-1
https://doi.org/10.1016/S0140-6736(19)30427-1
https://doi.org/10.1186/s13045-022-01313-4
https://doi.org/10.24976/Discov.Med.202335179.99
https://doi.org/10.24976/Discov.Med.202335179.99
https://doi.org/10.21037/hbsn-20-466
https://doi.org/10.1159/000327943
https://doi.org/10.1007/s11010-020-03926-0
https://doi.org/10.1007/s11010-020-03926-0
https://doi.org/10.1038/s41419-024-06912-2
https://doi.org/10.1038/s41419-024-06912-2
https://doi.org/10.3390/ijms21041482
https://doi.org/10.3389/fmed.2020.612393
https://doi.org/10.3389/fmed.2020.612393
https://doi.org/10.3892/ol.2020.11809
https://doi.org/10.1016/j.semcancer.2021.03.025
https://doi.org/10.3971/j.issn.1000-8578.2023.22.0281
https://doi.org/10.3971/j.issn.1000-8578.2023.22.0281
https://doi.org/10.7659/j.issn.1005-6947.2021.01.002
https://doi.org/10.7659/j.issn.1005-6947.2021.01.002
https://doi.org/10.1038/s41598-024-65990-6
https://doi.org/10.1038/s41598-024-65990-6
https://doi.org/10.1007/s00442-018-4233-0
https://doi.org/10.1186/s12859-021-03994-z
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.3389/fphar.2021.739673
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fonc.2025.1590094
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2025.1590094
30. Wei K, Chen T, Fang H, Shen X, Tang Z, Zhao J. Mitochondrial DNA release via
the mitochondrial permeability transition pore activates the cGAS-STING pathway,
exacerbating inflammation in acute Kawasaki disease. Cell Commun Signaling. (2024)
22:328. doi: 10.1186/s12964-024-01677-9

31. Zappasodi R, Wolchok JD, Merghoub T. Strategies for predicting response to
checkpoint inhibitors. Curr Hematol Malignancy Rep. (2018) 13:383–95. doi: 10.1007/
s11899-018-0471-9

32. Yang X, Hu Y, Yang K, Wang D, Lin J, Long J, et al. Cell-free DNA copy number
variations predict efficacy of immune checkpoint inhibitor-based therapy in
hepatobiliary cancers. J Immunother Cancer. (2021) 9:e001942. doi: 10.1136/jitc-
2020-001942

33. Moradi-Marjaneh R, Hassanian SM, Mehramiz M, Rezayi M, Ferns GA, Khazaei
M, et al. Reactive oxygen species in colorectal cancer: The therapeutic impact and its
potential roles in tumor progression via perturbation of cellular and physiological
dysregulated pathways. J Cell Physiol. (2019) 234:10072–9. doi: 10.1002/jcp.27881
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