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Introduction: The development of high-throughput sequencing technologies

and targeted therapeutic strategies has significantly improved the prognosis of

lung adenocarcinoma (LUAD) patients with sensitive gene mutations. However,

patients harboring rare or no actionable mutations were rarely benefit from these

targeted therapies. This study aimed to identify novel molecular subtypes and

construct a prognostic signature to enhance the stratification of LUAD prognosis.

Materials and methods: Novel molecular subtypes of LUAD patients were

identified by applying 10 distinct clustering algorithms on multi-omics data.

Single-cell RNA-sequencing (scRNA-seq) data were integrated to characterize

subtype-specific immune microenvironments. A multi-omics and machine

learning-driven prognostic signature (MO-MLPS) was constructed in The

Cancer Genome Atlas (TCGA) LUAD dataset using ten machine learning

algorithms and subsequently validated across six independent datasets from

the Gene Expression Omnibus (GEO) database. The robustness of the model was

assessed using the concordance index (C-index), Kaplan-Meier survival analyses,

receiver operating characteristic (ROC) curves, and both univariate and

multivariate Cox regression analyses. We further confirmed the effects of ANLN

knockdown and the expression of a domain-negative anillin protein (dnANLN) via

western blotting, cell proliferation assays, flow cytometry, and transwell

migration assays in vitro.

Results: Our analysis revealed that the novel molecular subtypes exhibited

differences in prognoses, biological functions, and immune infiltration profiles

in LUAD. The MO-MLPS was successfully established and validated across TCGA-

LUAD cohorts, six independent GEO datasets, and their composite meta-cohort.
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Higher risk scores from the MO-MLPS correlated with poorer prognosis in LUAD,

with AUC values exceeding 0.5 at 1, 3, and 5 years across various cohorts. The

signature outperformed 49 previously published prognostic signatures.

Furthermore, patients classified as high risk exhibited significantly worse overall

and progression-free survival than those classified as low risk. Notably, ANLN

knockdown and dnANLN expression significantly inhibited cell proliferation and

migration in vitro and enhanced the efficacy of docetaxel.

Conclusion: A comprehensive analysis of multi-omics data redefines the

molecular subtype of LUAD patients. The MO-MLPS derived from subtype

characteristics has the potential to serve as a clinically valuable prognostic tool.

Furthermore, ANLN emerges as a promising novel therapeutic target in the

treatment of LUAD.
KEYWORDS

single-cell RNA sequencing, lung adenocarcinoma, multi-omics, prognostic signature,
machine learning
Introduction

Lung cancer remains the leading cause of cancer-related

morbidity and mortality globally (1–3). Among its subtypes,

adenocarcinoma represents the predominant form of non-small

cell lung cancer (NSCLC), comprising approximately 40% of all

lung cancer cases (4–6). Recent advancements in molecular

detection technologies and the development of targeted therapies

have significantly improved overall survival for LUAD patients with

sensitive mutations (7, 8). Nevertheless, only a small fraction of

LUAD patients benefit from these therapies, particularly those who

lack actionable driver mutations. Consequently, it is urgent to

define novel LUAD molecular subgroups to facilitate the accurate

prediction of disease progression and optimize targeted

therapeutic strategies.

The ongoing advancements in omics technologies enable the

elucidation of the molecular characteristics of various diseases at

genetic, epigenetic, and transcriptomic levels (9–11), shedding light

on the molecular heterogeneity of these diseases and facilitating the

development of effective treatment strategies. Multi-omics analysis,

which integrates multiple datasets, can provide profound insights

into the molecular mechanisms underlying complex diseases as well

as highlight critical associations among various omics data types

(12). Unfortunately, the majority of existing molecular subtypes of

LUAD are based on one single type of omics data, with limited

prognostic indicators derived from multiple omics analyses.

Therefore, an integrated multi-omics approach may reveal novel

insights into mechanisms affecting LUAD patients with poor

prognosis and identify potential therapeutic targets.

In this study, we integrated bulk RNA sequencing profiles

(including mRNA, long non-coding RNA, and microRNA),

genomic mutations, as well as epigenomic DNA methylation and
02
RNA editing data to develop consensus molecular subtypes of

LUAD patients using ten different multi-omics integration

algorithms. We further explored subtype-specific immune

microenvironment discrepancies based on single-cell sequencing

data. Subsequently, we identified a total of 123 stable prognosis-

related genes that were upregulated in differential subtypes, utilizing

ten machine learning algorithms to construct the MO-MLPS. Our

results demonstrated the robust performance of the MO-MLPS in

predicting overall survival across both training and validation

cohorts, establishing a strong correlation between high the MO-

MLPS risk scores and poorer outcomes in LUAD patients.

Moreover, we investigated the potential role of ANLN as a

therapeutic target, noting that dnANLN may address the current

limitations in available targeted therapies for anillin. Our study

provides a foundation for refining the novel molecular subtypes of

LUAD and offers an effective tool for predicting patient survival

outcomes in this malignancy.
Materials and methods

Integrating multi-omics datasets of LUAD

Multi-omics data of LUAD were obtained from the TCGA-

LUAD cohort, encompassing profiles of whole transcriptome

sequencing, DNA methylation, somatic mutations, and pertinent

clinical information. The expression matrix (in transcripts per

kilobase million format) for mRNA, lncRNA and somatic

mutations was obtained from the “TCGAbiolinks” package (13).

Annotations for TCGA’s microRNA IDs were generated using the

“miRBaseVersions.db” package (14). RNA editing profiles were

obtained from the Synapse data repository. Patients with an
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overall survival duration of less than one month were excluded from

analysis. Prior to comprehensive analysis, the omics data from the

six dimensions were matched each other via sample IDs. Multi-

omics data integration was performed according to established

protocols (15). Briefly, continuous variable gene features were

filtered utilizing the “getElites” function from the “MOVICS”

package, with the “method” parameter set to “mad” to select the

top 1,500 genes exhibiting the greatest variability. For the analysis of

binary gene mutation data, the “oncoPrint” function from the

“maftools” package was initially employed to identify the top

5,000 genes with the highest mutation levels. Subsequently, the

“getElites” function was utilized with the “method” parameter

adjusted to “freq” to isolate the top 5% of genes with the highest

mutation frequency. By integrating clinical data, genes that

demonstrated statistical significance (p < 0.05) were identified as

prognostic markers. These six dimensions were included for further

analysis in the study.
Multi-omics consensus ensemble analysis

To determine the optimal number of subtypes for LUAD

patients, the “get ClustNum” function from the “MOVIC”

package was utilized to estimate the number of clusters (15).

With the integration of clustering prediction indexes (CPI), gaps

statistics, and silhouette score, LUAD patients were ultimately

classified into two distinct subtypes. The clustering process was

conducted through ten clustering algorithms using the “getMOIC”

function, including Cancer Integration via Multikernel Learning

(CIMLR), Consensus Clustering, Similarity Network Fusion (SNF),

iClusterBayes, Perturbation Clustering for data Integration and

disease Subtyping (PINSPlus), moCluster, NEMO, Integrative

Non-negative Matrix factorization (IntNMF), Contrastive

Captioners (COCA), and Low-Rank Approximation (LRA),

following the methodologies established by Niu et al. (16). The

integration of clustering results from the ten algorithms,

accomplished through the “getConsensusMOIC” function,

improved the robustness of the consensus subtypes, leading to the

final clustering outcome. In the process, the “distance” parameter of

“getConsensusMOIC” was configured to “euclidean”, while the

“linkage” parameter was set to “average”.
Survival analysis

Survival curves were fitted using the Kaplan-Meier formula in

the “survival” package, and visualizations were generated using the

“ggsurvplot” function from the “survminer” package.
Gene expression data of GSE cohorts
preprocessing

Six independent datasets and their clinic information were

retrieved from the GEO database (http://www.ncbi.nlm.nih.gov/
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geo) as external validation cohort, including GSE30219 (17),

GSE31210 (18), GSE37745 (19), GSE42127 (20), GSE50081 (21)

and GSE72094 (22). All array data underwent preprocessing

through the robust multiarray averaging (RMA) algorithm and

were annotated using the “SeqMap” package (23). Patients with an

overall survival less than 30 days were excluded. Validation datasets

were merged, with batch effects corrected, normalization

performed, and log2 transformation completed through the

“limma” and “sva” packages.
Differential gene expression and functional
enrichment analysis

Differentially expressed genes (DEGs) were identified using the

“limma” package among the different novel subtypes. Gene set

enrichment analyses (GSEA), Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were

performed to explore the biological functions of DEGs via the

“clusterProfiler” package (24).
Collection, quality control and annotation
of scRNA-seq data

Single-cell RNA sequencing data from 12 LUAD samples were

acquired from the GSE171145 cohort in GEO database and the

PRJCA001731 cohort from the China National Center for

Bioinformation. Base on the consistency of consensus subtypes,

seven LUAD samples were classified into subtype 1, while five

samples were classified into subtype 2. Data processing and

visualization were performed using the “Seurat” package. Three

quality control criteria were applied to the raw data matrix: genes

expressed in at least 200 and at most 10,000 single cells, cells

expressing between 100 and 80,000 genes, and single cells

containing fewer than 20% mitochondrial genes . All

mitochondrial and ribosomal genes were excluded to enhance

insight into protein-coding genes. The UMI count data were

normalized to 10,000 per cell and then log-transformed. Then,

Principal Component Analysis (PCA) was performed based on the

top 5,000 hypervariable genes. To correct batch effects among

samples, the “RunHarmony” function from the “harmony” R

package was performed using default parameters before clustering

analysis. Uniform manifold approximation and projection

(UMAP), t-distributed stochastic neighbor embedding (t-SNE)

algorithms, and cell clustering were executed using the top 20

PCs. Cell annotation was carried out through a mixed automated

approach using “SingleR”, with manually corrections based on

known marker genes (25).
Cell-to-cell communication analysis

The “Cell Chat” package, a tool for analyzing intercellular

communication, was used in our study to identify major signaling
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pathways for each novel LUAD subtypes, along with their outgoing,

incoming, and overall communication patterns (26).
Establishment and assessment of a
consensus multiple machine learning
algorithms-driven prognostic signature

Ten machine learning algorithms, including CoxBoost, stepwise

Cox, Least Absolute Shrinkage and Selection Operator (Lasso),

Ridge, Elastic Net (Enet), survival support vector machines

(survival-SVM), supervised principal components (SuperPC),

generalized boosted regression models (GBM), partial least Cox

(plsRcox), and Random Forest (RSF), were utilized for constructing

the MO-MLPS. Methodological details were derived from

previously published methodology (27). Specifically, 100 genes

that were upregulated for each subtype were identified as

candidate genes. Subsequently, univariate Cox analysis of

candidate genes was performed to screen significant prognosis-

related genes in TCGA-LUAD cohort, which were then used to

further construct the prognostic signature. With TCGA-LUAD as

the training set and six GSE datasets as validation sets, 100

combinations were utilized to construct the predictive prognostic

model, selecting the signature with the highest C-index as the MO-

MLPS. Risk levels were calculated for patients across different

cohorts based on the MO-MLPS and categorized into high and

low-risk groups. The prognostic significance of the signature was

evaluated through Kaplan-Meier curves and time-dependent C-

index curves via “survminer” and “survival ROC”. Moreover, 49

LUAD-associated prognostic signatures have already published

were retrieved and calculated the risk score for each patient. The

prognosis predictive ability of all signatures was assessed by the C-

index in different cohort.
Analyses of tumor microenvironment
infiltration

TME cell infiltration levels were calculated via the “IOBR”

package. The ssGSEA algorithm was employed to calculate scores

for 28 immune cell subtypes, reflecting TME infiltration and

inflammatory status. Six immune subtypes were identified

according to the expression profile of all solid tumors in TCGA.
Statistical analysis

Standard Student’s t-tests were employed for pairwise

comparisons, while one-way ANOVA was utilized for multiple

group comparisons. A significance threshold of p < 0.05 was set for

all statistical methods. Data analysis and figure generation were

conducted using R v4.3.1, RStudio, and GraphPad Prism v10.0
Frontiers in Oncology 04
software. Notations include ns for p > 0.05; * for p < 0.05; ** for p <

0.01; *** for p < 0.001.
Experimental reagents

Details regarding experimental reagents are listed in

Supplementary Table 11. Further methodological details associated

with in vitro experiments are available in the Supplementary Methods.
Result

Identification of multi-omics-based
consensus survival prognosis-related
molecular subtypes of LUAD

When identifying novel disease subtypes, the selection of clustering

methods often varies depending on individual researcher preferences,

focusing primarily on individual-omics data (16, 28). To address this

limitation, we employed ten ensemble clustering algorithms to

independently characterize prognostic subtypes of LUAD. Our

comprehensive analyses led to the identification of two novel

subtypes, substantiated through the integration of Cluster prediction

index, Gap statistics, and Silhouette score. The clustering results were

further integrated through consensus ensemble approach with different

molecular expression profiles across transcriptomic, epigenetic

methylation, somatic mutations, and RNA editing events

(Figures 1A-C). Our classification demonstrated a significant relation

to overall survival (OS) (Figure 1D), revealing that subtype 1 was

associated with poorer prognoses compared to subtype 2.
Partitioning and characterization of
integrative consensus molecular subtypes
in LUAD

Currently, most molecular subtyping of LUAD relies on

molecular features that correlate with specific biological functions.

Therefore, we investigated the different molecular features of the two

novel subtypes by conducting differential gene expression analysis

and gene set enrichment analyses with GO, KEGG, and GSEA

categories in the TCGA-LUAD cohort (Figures 2A, B,

Supplementary Table 1). Interestingly, key biological processes and

pathways, such as vascular permeability, the VEGF signaling

pathway, and epithelial cell proliferation were significantly enriched

in subtype 1, while subtype 2 characterized by a heightened response

to hypoxia, indicative of a hypoxic tumor microenvironment.

To further validate this classification, we selected 100

upregulated genes from each subtype as classifiers and confirmed

their predictive capacity across multiple external datasets

(Supplementary Table 2). The external validation cohort consisted
frontiersin.org
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FIGURE 1

The novel integrative consensus subtypes of LUAD identified through multi-omics analysis. (A) Comprehensive heatmap of novel integrative subtypes
clustered through 10 cutting-edge multi-omics clustering algorithms in LUAD patients, including mRNA, lncRNA, miRNA, DNA methylation site, mutant
gene and RNA editing event. (B) The cluster prediction index and gap statistical analysis of the multi-omics subtypes. (C) Consensus clustering matrix for
two novel prognostic subtypes based on the 10 clustering methods. (D) Survival difference was observed among the two novel subtypes.
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of 1,058 samples from six different GEO datasets (Supplementary

Table 3). The Nearest Template Prediction (NTP) method was

utilized to categorize samples in validation datasets according to

predefined consensus subtypes (Figure 2C), aligning with initial

findings that subtype 1 exhibited poorer prognoses compared to

subtype 2 (Figure 2D). The consistency of these consensus subtypes

was also evaluated with NTP and partitioning around medoids

(PAM) algorithms (Figure 2E).
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Assessment of the TME in novel consensus
molecular subtypes of LUAD

The integration of 12 tumor samples from LUAD patients across

two independent datasets facilitated comprehensive bioinformatics

analyses of the tumor microenvironment differences between these

subtypes (Supplementary Figures 1A, B). Eighty-eight thousand, one

hundred single cells were clustered into seven lineages and annotated
FIGURE 2

Gene enrichment analysis and validation of novel consensus subtypes in LUAD. (A) The GO and KEGG enrichment analyses of two consensus
subtypes. (B) GSEA enrichment results of two consensus subtypes for hallmark repository. TF: transcription factor; MTORC: mechanistic target of
rapamycin complex; IFN: interferon; ERE: estrogen response early; EMT: epithelial mesenchymal transition. (C) Validation of consensus subtypes in
the nearest template of the integrated external validation cohort (n=1058). (D) Survival analysis of consensus subtypes in the integrated external
validation cohort (n=1058). (E) The consistency of consensus subtypes with NTP, consensus subtypes with PAM, and NTP with PAM in external
validation cohort (n=1058).
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based on canonical marker genes: T/NK cells, B cells, Mon/Mac cells

(monocytes and macrophages), mast cells, fibroblasts, epithelial cells,

and endothelial cells (Figures 3A-C). All cell types underwent

enrichment analysis of DEGs to evaluate annotation accuracy

(Figure 3D, Supplementary Table 4).

The relative proportions and absolute counts of various cell

types within the TME differed significantly between the two

subtypes of LUAD (Figure 3E). Epithelial cells, T/NK cells, and

Mon/Mac cells predominated in both subtypes, with subtype 1

exhibiting higher proportions of epithelial cells, T/NK cells, and B

cells, while subtype 2 evidenced a higher prevalence of endothelial

cells, mast cells, and Mon/Mac cells. To assess subtype distribution

preference, the ratio of observed cell numbers to expected counts
Frontiers in Oncology 07
(Ro/e) was computed (Figure 3F, Supplementary Table 5),

highlighting the significant differences in distribution among

major cell types.
Adverse immune microenvironment in the
poor-prognosis LUAD subtype

T and NK cells account for a significant proportion of TME cell

populations and are essential mediators of anti-tumor immunity. We

analyzed the T/NK cell populations, isolating a total of 37,275 cells

from the T/NK cluster, reclassifying them into 17 distinct clusters based

on functional states and DEGs (Figure 4A, Supplementary Figure 2A).
FIGURE 3

Global landscape and cell types in novel subtypes of LUAD samples. (A-C) tSNE projection of 88,100 profiled cells from 12 LUAD samples that have
been identified into two novel subtypes, and color-coded by different samples, subtypes and major cell lineages. (D) Dot plot of mean expression of
top 8 marker genes for 7 major lineages. (E) Relative proportion and count of cell major lineages for each subtype. (F) Tissue preference of each cell
major lineages that were quantified by the calculation of the ratio of observed cell numbers to expected cell numbers (Ro/e) determined by a chi-
square test. Black dots represent different samples. ns. p > 0.05; * p < 0.05; ** p < 0.01; two-sided Student’s t test.
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FIGURE 4

The immune microenvironment varied significantly between different molecular subtypes. (A) tSNE plot of T and NK cells, color-coded by clusters
and cell subsets as indicated. Tfh: T follicular helper; Th: T helper; Treg: Regulatory T. (B) Relative proportion and cell count of T and NK cells
subsets from samples of each novel subtype. (C) Tissue preference of T and NK cells subsets. (D) tSNE plot of B cells, color-coded by clusters and
cell subsets as indicated. GrB, granzyme B; MALT: mucosa-associated lymphoid tissue. (E) tSNE color-coded by expression of canonical marker
genes for each B cells subset. (F) Relative proportion and cell count of B cells subsets from samples of each novel subtype. (G) Tissue preference of
B cells subsets. (H) tSNE plot of myeloid cells, color-coded by clusters and cell subsets as indicated. Pro-: Pro-inflammatory; Anti-: Anti-
inflammatory. (I) Relative proportion and cell count of myeloid cells subsets from samples of each novel subtype. (J) Tissue preference of myeloid
cells subsets. ns. p > 0.05; * p < 0.05; ** p < 0.01; two-sided Student’s t test.
Frontiers in Oncology frontiersin.org08
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Noteworthy disparities were observed, with subtype 1 exhibiting a

reduction in NK cell proportions and an increase in exhausted CD8+ T

and Treg cells compared to subtype 2 (Supplementary Table 6). The

marked persistence of exhausted CD8+ T and Treg cells in subtype 1

suggests a mechanism contributing to immune evasion during tumor

progression (Figures 4B, C).

We also assessed B cell populations, which mediate anti-tumor

immune responses associated with prolonged patient survival (29,

30). Our analysis revealed eight clusters diverging into four

differentiation states among 3,964 B cells (Figures 4D, E). Follicular

B cells constituted the largest proportion among all LUAD samples,

with a significantly higher abundance in subtype 1 than subtype 2

(Figures 4F, G). Furthermore, subtype 2 displayed greater numbers of

granzyme B-secreting GC B cells, which can enhance cytotoxicity and

function as alternatives to T cells (Supplementary Table 6).

Myeloid cells play a crucial role in maintaining lung tissue

homeostasis and regulating inflammatory responses. As shown in

Figure 4H, our analysis categorized 23,220 myeloid cells into 23

subclusters, identifying subclusters as monocytes, macrophages,

and dendritic cells (DCs). Alveolar macrophages, possessing

important homeostatic functions, displayed heightened expression

of specific genes, such as MARCO, MCEMP1, and FABP4 genes.

Different to tissue-resident macrophages, Mo-Macs were recruited

from circulating monocytes and exhibited distinct phenotypes,

including pro-inflammatory Mo-Macs (highly expressed IL1B and

CXCL8) and anti-inflammatory Mo-Macs (high expression of

APOE, CD163, and C1QB genes). Comparative analysis indicated

that subtype 1 exhibited a higher abundance of pro-inflammatory

Mo-Macs and proliferating myeloid cells, whereas subtype 2 had a

higher concentration of alveolar macrophages (Figures 4I, J,

Supplementary Figure 2B, Supplementary Table 6).
Cell-to-cell communication analyses in
novel subtypes of LUAD

The influence of cell-cell communication has been r recognized

as crucial on the tumor immune microenvironment. To clarify

intercellular communications differences between these two novel

subtypes, we utilized the “CellChat” package to analyze networks of

communication signals from scRNA-Seq data. Many significant

ligand–receptor pairs were detected among cell types, with subtype

1, exhibiting substantially higher interaction frequencies and

strengths (Figures 5A, B). Moreover, the endothelial cells

contribute most to the outgoing or incoming signals in the

number of inferred interactions, while the fibroblasts contribute

most to the outgoing and the B cells contribute most to the

incoming signals in the interaction strength. However, the

communication between fibroblasts and myeloid cells achieved

the highest relative values. Then, we overviewed the outgoing and

incoming signaling in these subtypes (Supplementary Figure 3A).

The main incoming signals and outgoing signals in subtype 1

were MIF and SPP1 signaling, and SPP1, GALECTIN and UGRP1

signaling in subtype 2 (Figure 5C, Supplementary Figures S3B, C).

Furthermore, we identified altered ligand-receptor pairs among
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these cell types by comparing their communication probabilities

between different subtypes. Results showed that MIF signaling, such

as MIF-(CD74+CXCR4), MIF-(CD74+CD44), and SPP1 signaling,

especially SPP1-CD44, were increased in myeloid cells and

epithelial cells to their receivers in the subtype 1 compared to the

subtype 2 (Figures 5D-F). However, ANNEXIN signaling, such as

ANXA1-FPR1, and GALECTIN signaling, such as LGALS9-CD44

and LGALS9-CD45 were decreased from myeloid cells and

endothelial cells to their receivers in the subtype 1 (Figures 5G-I).

Our analysis identified specific signaling pathways, including MIF

and SPP1 signaling in subtype 1, which were noted for their

implications in tumor progression and immunosuppression.
Development of a multi-Omics machine
learning-driven prognostic signature in
LUAD

Through univariate Cox regression, a total of 123 prognosis related

genes were filtered from 200 specifically upregulated for each LUAD

subtype in the TCGA-LUAD (as training cohort) and 6 GEO datasets

(as validation cohort). We integrated these candidate genes within an

ensemble machine-learning framework to construct the MO-MLPS

(Figure 6A, Supplementary Figure 4). Our predictions revealed that the

Enet [alpha=0.7] algorithm yielded the highest average C-index (0.67),

showcasing far superior predictive capabilities compared to alternative

methodologies in both training and validation cohorts (Figures 6B-D,

Supplementary Tables 7, 8). Hence, the seven genes MO-MLPS

constructed via Enet [alpha=0.7] algorithm was identified as the final

risk signature: risk score = 0.21003 × FOSL1 + 0.05394 × EXO1 +

0.05671 × GJB3 + 0.14348 × HMMR + 0.08324 × CCNB1 + 0.04620 ×

ANLN + 0.15915 × RHOV. The results of GO and KEGG for the seven

genes in the risk signature enrichment in biological processes related to

the cell cycle, nuclear division, and organelle fission, as well as pathways

of mismatch repair and P53 signaling pathway (Figures 6E).

The resulting MO-MLPS, defined by the risk score equation,

subdivided patients into high- and low-risk groups with markedly

differing clinical outcomes. As illustrated in Figure 6F, patients with

high-risk score had significantly poorer clinical outcomes compared

to those with low-risk score in the training and validation datasets.

Furthermore, the meta-cohort dataset that merged all validation

patients showed the same trend. Subsequently, the discrimination

of our signature were assessed via ROC analysis, with 1-, 3-, and

5-year AUCs of 0.664, 0.672, and 0.621 in TCGA-LUAD; 0.831,

0.820, and 0.834 in GSE30219; 0.721, 0.690, and 0.734 in GSE31210;

0.563, 0.590, and 0.600 in GSE37745; 0.819, 0.668, and 0.672 in

GSE50081; 0.757, 0.711, and 0.704 in GSE50081; 0.699, 0.632, and

0.648 in GSE72094; 0.691, 0.669, and 0.685 in meta-

cohort, respectively.
Evaluation of the MO-MLPS performance

Given the proliferation of transcriptome-based prognostic

signatures reported in contemporary literature, we performed a
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systematic review to compare the predictive efficacy of the MO-MLPS

against previously published signatures. Exclusions were applied for

signatures relying on miRNA and lncRNA due to dataset limitations.

In total, 49 distinct signatures were analyzed (Supplementary Table 9),
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with the MO-MLPS demonstrating superior predictive performance,

especially within the meta-cohort (Supplementary Figure 5,

Supplementary Table 10). Furthermore, those signatures performed

better than the MO-MLPS presumably because in their own training
FIGURE 5

The difference of signaling pathways between two novel subtypes in LUAD. (A) The number of inferred interactions and the interaction strength
between different molecular subtypes. (B) The number of inferred interactions for each subtype. (C) The overall signaling of each cell population
between different subtypes. (D-I) Identification of up- and down-regulated signaling in the Subtype 1 through the comparison of communication
probabilities mediated by ligand-receptor pairs in all cell populations.
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FIGURE 6

Integration of multiple machine learning algorithms developed a prognostic signature in LUAD patients. (A) The top 25 kinds of prediction models
based on a comprehensive computational framework and then the C-index of each model was calculated through training dataset and all validation
datasets. (B, C) Coefficients of 7 prognosis-related genes selected by Enet [alpha = 0.7] regression. The regularization parameter l is used to select
covariates. (D) Lollipop plots displaying the coefficients of the MO-MLPS genes. (E) GO and KEGG term enrichment results of the MO-MLPS gene
set. (F) Survival analysis and ROC curves for OS at 1-, 3-, and 5-years for all LUAD patients classified into high-risk and low-risk groups based on the
MO-MLPS. The analysis includes data from the TCGA-LUAD (n = 383), GSE30219 (n = 83), GSE31210 (n = 226), GSE37745 (n = 105), GSE42127 (n =
130), GSE50081 (n = 128), GSE72094 (n = 386) cohorts, and a meta-cohort (n = 1058) for validation.
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set or a few internal validation datasets, while performed weakly in

other datasets.

To further evaluate the prognostic value of the MO-MLPS in

LUAD patients, a stratification analysis was performed within

different subgroups. The MO-MLPS demonstrated robust

performance in predicting OS across different subgroups, including

LUAD patients aged ≤ 65 and > 65, both male and female subgroups,

those classified within Stage I~II, tumor stage 1~2 and 3~4, as well as

nodal stage 0~1 and metastatic stage 0 (Figure 7A). There was no

significant difference between different subgroups stratified by age,

gender, AJCC-T, AJCC-M and Lobe but significant between

subgroups stratified by AJCC-N and Stage I~III (Figure 7B). Then,

the predictive value of the MO-MLPS for progression-free survival of

LUAD patients was assessed in GSE30219, GSE31210 and GSE50081

cohorts. According to the Kaplan-Meier curve, LUAD patients with a

high-risk score demonstrated a worse progression-free survival than

those with a low-risk score (Figure 7C). Furthermore, univariate and

multivariate Cox regression analyses were performed to verify the risk

score of the MO-MLPS as an independent prognostic biomarker in

the TCGA datasets (Figures 7D, E). In univariate regression analysis,

the MO-MLPS risk score, age, AJCC-T, AJCC-N and Stage were

associated with patient OS significantly. Multivariate cox regression

analysis identified that the MO-MLPS risk score and Stage were

significant independent risk factors for the OS. Notably, in both

univariate and multivariate Cox regression analyses, the hazard ratio

associated with the risk score exceeded that of conventional clinical

indicators, which might suggest that the risk score may have a

comparatively greater impact on prognosis of LUAD patients.
Immune characteristics related to the MO-
MLPS

Employing the xCell deconvolution algorithm in Immuno-

Oncology Biological Research (IOBR) R package, we performed

immune cell abundance analysis and observed immune cell

infiltration levels of TME in LUAD (Figure 8A). Notably, most

effector and cytotoxic T-lymphoid (CD4+ naive T, CD4+ Tcm, CD4

+ Tem and CD8+ T cells), mature B-lymphoid (Class switched

memory B, B and plasma cells) and effector myeloid cell lines (aDC,

cDC, iDC, and myocytes cells) were significantly higher in the MO-

MLPS low-risk patients than in high-risk patients, which is

suggestive of a state of immune activation (Supplementary

Figure 6). These results suggested an immunoactivity phenotype

among low-risk patients, with heightened levels of effector immune

cells and cytotoxic T-lymphoid populations. Conversely, high-risk

patients exhibited an immunosuppressive profile with reduced

immune cell infiltration, suggesting a cold tumor environment.

To evaluate the characteristics and tumor microenvironment

among patients with different the MO-MLPS risk score, a total of 28

immune infiltration scores were assessed between high- and low-risk

subgroups via the ssGSEA method. The result showed that patients

were categorized into high-risk group had significantly higher score

of APC co-inhibition, inflammation-promoting, MHC class I, para-

inflammation and T helper cells than low-risk group, while the score
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of DCs, B cells, HLA, IDCs, mast cells, neutrophils and type II IFN

response in the low-risk group were higher than that in the high-risk

group (Figure 8B). We further investigated the implications of the

MO-MLPS risk scores on immune checkpoint expression.

According to the result, we found that a variety of classical

immune checkpoint molecules, including ADORA2A, BTLA,

CD160, CD200R1, CD27, CD28, CD40LG, CD48, IDO2,

TNFRSF14, TNFSF15 and TNFSF18 were more highly expressed

in the MO-MLPS low-risk group but the expression of CD274,

CD276, CD70, IDO1, LAG3, PDCD1, PDCD1LG2, TNFRSF18,

TNFRSF9, TNFSF4 and TNFSF9 were higher in high-risk group

(Figure 8C). Furthermore, 335 patients in the TCGA-LUAD cohort

were divided into 5 different immune subtypes. In the low-risk MO-

MLPS group, the majority of patients (65%) were classified under the

C3 immune subtype, whereas in the high-risk MO-MLPS group, the

predominant immune subtype was C2 (44%). And patients of C4

and C6 subtypes were accounted for nearly equal proportion

between low and high risk (Figure 8D). In addition, Tumor

Immune Dysfunction and Exclusion (TIDE) scores, a robust

metric for predicting patient responses to immune checkpoint

inhibitors (ICIs), were calculated to evaluate potential differences

in immunotherapy response between the high-risk and low-risk

groups identified by the MO-MLPS. Nevertheless, no significant

differences were observed in TIDE scores, microsatellite instability,

dysfunction, exclusion, myeloid-derived suppressor cells, and

cancer-associated fibroblasts between the MO-MLPS high-risk and

low-risk groups (Supplementary Figure 7).
Effects of ANLN gene knockdown on LUAD
cells behavior

Given the robust performance of our signature in predicting

the prognosis of LUAD patients, we next investigated the

possibility of these seven genes as therapeutic targets for

LUAD. We integrated LUAD samples from TCGA database

and healthy samples from the Genotype-Tissue Expression

(GTEx) database to identify mRNA expression characteristics

of these genes. The results showed that the transcription levels of

ANLN was highly expressed in most tumor samples and

associated with prognosis of LUAD patients (Figures 9A, B).

Then, the protein expression levels of anillin, encoded by the

ANLN gene, in LUAD tumor and para-cancerous tissues were

explored via the Human Protein Atlas (HPA) database.

Expression of anillin showed that the protein mainly

accumulated in the nucleus of LUAD cells (Figure 9C).

To elucidate the potential effects of ANLN on biological features

of LUAD cells, the expression pattern of anillin in the different

LUAD cell lines was assessed through western blotting. The results

showed that expression of anillin in carcinoma cell lines (PC-9,

HCC827 and NCI-H1975) was highly relative to healthy lung

bronchial epithelial cell (BEAS-2B) (Figure 9D). Then, PC-9 and

HCC827 with higher levels of anillin were adopted for subsequent

studies. We knockdown anillin expression significantly in the PC-9

and HCC827 cell lines through transfection with siRNAs
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FIGURE 7

Evaluation of the MO-MLPS predictive power for the prognosis of LUAD patients. (A) Survival comparison analysis in different clinical subgroup of
TCGA-LUAD cohort, including age, gender, AJCC stage and clinic stage. (B) Violin plots illustrated the relationship among the MO-MLPS high-risk
and low-risk score in different clinical subgroup in TCGA-LUAD cohort, including subtype, age, gender, AJCC stage, clinic stage and lung lobe. (C)
Kaplan-Meier analysis of progression-free survival of LUAD patients between the MO-MLPS high-risk and low-risk groups. (D, E) The univariate and
multivariable Cox regression analysis results of the MO-MLPS in TCGA-LUAD cohort. Data are presented as mean ± 95% confidence interval [CI]. ns.
p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; two-sided Student’s t test was used between two groups; one-way ANOVA test was used among
multiple groups.
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(Figure 9E). After 48 hours transfection, the number of proliferating

cells significantly decreased with the suppression of ANLN

(Figure 9F). Given the anillin is an actin binding protein and

involved in cytoskeletal stability. Therefore, scratch wound

healing and transwell migration assay was were performed in PC-
Frontiers in Oncology 14
9 and HCC827 with ANLN silencing markedly to evaluate the

impacts of it on cell migration. The result demonstrated that cell

migration ability was decreased significantly upon ANLN

knockdown, as compared to cells transfected with the negative

control (Figures 9G, H).
FIGURE 8

The immune microenvironment landscape in different the MO-MLPS risk group. (A) The relationship between the MO-MLPS risk score and immune
microenvironment infiltrations in TCGA-LUAD dataset. (B, C) The distribution of 28 immune-related cell types and immune checkpoint genes
between the MO-MLPS high-risk and low-risk patients. (D) 335 patients in the TCGA-LUAD cohort were accordingly divided into 5 different immune
subtypes and each immune subtype were statistically different between the MO-MLPS high- and low-risk subgroups (P < 0.001).
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The domain negative anillin protein
expression improved the sensitivity of
LUAD cells to docetaxel treatment

The above in vitro study indicated that the ANLN gene or

anillin protein could serve as potential targets for therapeutic

intervention. However, there were no drugs or small molecule
Frontiers in Oncology 15
inhibitors directly inhibiting ANLN activity and the approach of

targeting siRNA is limited in current clinical utilization, which

would be the challenges for the clinical application of ANLN.

Anillin is a unique scaffolding protein, which regulates major

cytoskeletal structures, such as microtubules, actin filaments and

septin polymers (31). The N-terminal region of anillin contains

binding sites for actin and other cytoskeletal regulators, whereas the
FIGURE 9

The decrease of ANLN expression affected the proliferation and migration ability of human LUAD cells. (A) Differential expression analysis for ANLN
between tumor tissues (n = 541) and normal tissues (n = 637) through integrating TCGA and GTEx database. (B) The Kaplan-Meier survival curves of
the high- and low-expression ANLN groups in LUAD patients. (C) Representative Immunohistochemistry images showing the protein expressions of
anillin. (D) The expression levels of anillin in BEAS-2B, PC-9, HCC827 and NCI-H1975 cell lines. (E) The effect of ANLN knockdown on anillin
expression was measured by western blot analysis. (F) Cell proliferation evaluated by direct cell counting for ANLN knockdown in LUAD cells. (G, H)
Representative images and statistical boxplots of migration ability of LUAD cell with ANLN knockdown assessed by scratch assay and transwell
migration assay. ns. p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; two-sided Student’s t test was used between two groups; one-way ANOVA test
was used among multiple groups.
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C-terminal region contains a pleckstrin homology (PH) domain

that facilitates anillin interacting with the equatorial membrane

(32). Therefore, we engineered a domain-negative anillin

(dnANLN) protein, the C-terminally truncated anillin mutant,

that loses its ability to bind cytoskeletal regulators but still

retained the PH domain to interact with furrows.

The results showed that the molecular mass of domain negative

anillin protein was approximately 45 kDa. Notably, the addition of

the proteasome inhibitor MG132 or the lysosomal inhibitor

chloroquine increased the protein expression level of dnANLN,

but the effect of the former was more pronounced (Figure 10A).

This suggested that dnANLN might mainly degraded via the

ubiquitin-proteasome pathway. To investigate if the truncation

affected the structure of the anillin protein, a tertiary structure

prediction was performed through AlphaFold3 (https://

alphafoldserver.com/). It appeared that the truncation did not

affect the overall structure of anillin (Figure 10B). Then, a colony

formation assay was conducted to evaluate the impact of dnANLN

on colony-forming capacity and cellular viability. The result

demonstrated that the expression of dnANLN declined the

number of colony formation and decreased cell viability

(Figure 10C). Furthermore, results from scratch wound healing

and transwell migration assay indicated that the expression of

dnANLN dramatically inhibited LUAD cell in vitro migration

(Figures 10D, E). Docetaxel is a commonly chemotherapeutic

drug for the treatment of NSCLC and acts through stabilizing

microtubules and prevent their depolymerization. Notably, the

expression of dnANLN markedly increased docetaxel-induced

cytotoxicity in PC-9 and HCC827 cell lines, which suggested that

domain negative anillin protein could improve the drug sensitivity

of LUAD cells to docetaxel treatment (Figures 10F, G).
Discussion

Gene expression is a complex and multifactorial process that

involves diverse mechanisms and interactions among numerous

components, including mutation, methylation, histone

modifications, and post-transcriptional RNA modification (33,

34). Therefore, comprehensive integration of multi-omics data

from patients can provide deeper insights into disease-specific

regulatory mechanisms. However, current research predominantly

focuses on single-omics approaches (28). Furthermore, the selection

of clustering methods for omics is mainly influenced by individual

preferences, which consequently exacerbates the limitations of

specific methods with expansion of the scope of use. To address

these limitations, two novel prognostic LUAD subtypes with

distinct characteristics were identified via integrating the latest 10

clustering algorithms, which may have significant potential for

accurate stratified treatment of LUAD patients. These two novel

subtypes showed consistent stability across multiple cohorts and

revealed significant difference in overall survival. In most previous

studies, the assessment of immune cell infiltration among different

subtypes have primarily relied on bulk-tissue immune scoring

algorithms (29, 35–37). However, with the rapid advancement of
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scRNA-Seq techniques in recent years, it has been possible to

quantitatively characterize cell types at a single-cell resolution. In

this study, we systematically investigated differences in immune

infiltration and intercellular communication between two novel

LUAD subtypes at the single-cell resolution level.

Our analysis revealed a significant upregulation of SPP1 and MIF

expression in both myeloid and epithelial cells within the poor-

prognosis subtype. Specifically, these myeloid and epithelial cells

interact with T/NK cells, additional myeloid cells, B cells, fibroblasts,

and mast cells through three distinct ligand-receptor axes: SPP1-CD44,

MIF-(CD74+CD44) or MIF-(CD74+CXCR4) signaling pathway. SPP1

encodes the protein secreted phosphoprotein 1, which functions as a

chemokine that regulates immune cell differentiation and proliferation

(38). It has been reported that elevated levels of SPP1 in tumor cells are

correlated with a poor prognosis in NSCLC (39). On the one hand,

MIF can activate tumor cell proliferation contributing to tumor

progression. On the other hand, MIF can enhance the

immunosuppressive microenvironment by increasing the abundance

of MDSCs within tumors (40).

At present, high-throughput sequencing technology has

been widely applied for clinical diagnosis and treatment as well

as in the investigation of the pathogenic mechanisms

underlying various diseases. Moreover, complete and high-quality

transcriptional information serve as critical biomarkers for

prognostic stratification and therapeutic strategy optimization.

Machine learning algorithms should be an effective and popular

tool to analysis RNA-seq data. We identified specifically upregulated

genes in each novel LUAD subtypes and developed a novel

prognostic prediction signature in the one TCGA dataset and six

GEO datasets using 100 algorithm combinations. Finally, the Enet

algorithm [a = 0.7] was selected and defined as the MO-MLPS, based

on the average C-index from training and multiple validation

datasets. Consistently across all cohorts, the high-risk group

identified by the MO-MLPS exhibited significantly poorer survival

outcomes. Then, the MO-MLPS indicated significant prognostic

value across majority of cohorts in comparison to other published

signatures. And this signature was identified as an independent risk

factor for LUAD patients in both univariate and multivariate Cox

regression. Notably, one of the external validation sets, GSE37745,

showing an AUC value of less than 0.6. By comparison, we found that

LUAD patients with advanced stage account for a high proportion in

the GSE37745 dataset. Given that advanced cancer harbors a high

level of heterogeneity of cells, patients with advanced cancer may be

were more heterogeneous compared to patients with non-advanced

cancer in LUAD. According to the results, the MO-MLPS had a high

a high prognostic predictive accuracy which is robust and stable in

different datasets, indicating a great prospect for future clinical

transformation and application.

In this study, the MO-MLPS was composed of 7 prognosis-related

genes (FOSL1, EXO1, GJB3, HMMR, CCNB1, ANLN, RHOV)

identified in LUAD patients. Most of these genes have well-

established roles in LUAD tumorigenesis, particularly in modulating

proliferation, invasion, and metastatic cascades. First, FOS-like antigen

1 (FOSL1) is a very important member of the FOS family, which

responsible for encoding leucine zipper proteins that dimerize with the
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FIGURE 10

The expression of recombinant dnANLN protein improved the sensitivity of LUAD cells to docetaxel treatment. (A) Schematic illustration of the
dnANLN protein. And the levels of intracellular dnANLN protein expression were determined by western blot. The addition of MG132 affected the
protein expression levels of dnANLN. CQ: chloroquine; dnANLN: domain negative anillin. (B) A tertiary structure prediction of dnANLN protein was
generated using homology modeling method via the AlphaFold3 platform. (C) The colony formation assay was performed to assess the effect of
dnANLN protein expression on colony-forming ability. (D, E) The evaluation of migration ability affected by the intracellular expression of dnANLN
protein through scratch assay and transwell migration assay in LUAD cells. (F, G) The effect of dnANLN protein expression on the viability of LUAD
cells subjected to docetaxel treatment. Cell viability of PC-9 and HCC827 were detected by flow cytometry using an Annexin V/7AAD assay. ns. p >
0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; two-sided Student’s t test.
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JUN family proteins, forming the AP-1 transcription factor complex

(41). Recent studies have shown that the FOSL1 may be a potential

prognostic marker and target for human lung adenocarcinoma with

KRAS mutations (41, 42). Then, Exonuclease 1 (EXO1) plays a pivotal

role in maintaining genomic stability through coordinating dual

activities: RNase H and 5’ to 3’ exonuclease functions. These

activities are essential for DNA repair, regulation of cell cycle

checkpoints, and the dynamics of telomeres (43). It has been

reported that the increased expression of EXO1 is correlated with

larger tumor size, increased tumor metastasis, suppressed immune cell

infiltration and poor overall survival in LUAD patients (44–46). The

protein encoded by Gap Junction Protein Beta (GJB3) is a component

of gap junctions, connexin 31, which has been indicated that highly

expressed in the tissues of LUAD patients and positively correlated

with LUAD stages. And the expression of GJB3 was also associated

with a poor prognosis in LUAD (47, 48). Furthermore, Hyaluronan

Mediated Motility Receptor (HMMR), also named CD168, encodes

protein forming a complex with BRCA1 and BRCA2 (49). Previous

studies reported that the level of HMMR affected cell cycle, DNA

replication and cell metabolism in LUAD tissues (50). And the

expression of HMMR in LUAD was greater than that in the health,

which could increase the progression or recurrence of LUAD patients

(51). Cyclin B1 (CCNB1) acts as the primary regulator of the G2/M

transition, with its expression reaching a peak during mitotic entry

(52). It has been demonstrated that the overexpression of CCNB1 is

closely associated with increased cell proliferation, migration and

tumorigenesis in LUAD cells (53–55). Anillin (ANLN) plays a

critical role in scaffolding actomyosin networks, which are essential

for cytokinesis and mechanical stress adaptation (56). The expression

levels of ANLN have been reported elevated in LUAD cells, and LUAD

patients with higher levels of ANLN had a relatively poor prognosis

(56–59). Ras Homolog Family Member V (RHOV) is a constituent of

the Ras superfamily of small GTPases. The overexpression of RHOV

has been implicated in the enhancement of proliferation, migration,

invasion and epithelial-to-mesenchymal transition of LUAD cells (60,

61). Furthermore, elevated expression levels of RHOV may be

indicative of reduced overall survival in LUAD patients (62).

To strengthen the robustness of the MO-MLPS, our study utilized

a multi-cohort validation framework, including the TCGA-LUAD

training cohort and six independent GEO validation cohorts,

encompassing a total of 1,441 LUAD patients. The total sample size

across all cohorts ensures sufficient statistical power for detecting

clinically meaningful survival differences. Moreover, we observed

substantial event rates in all cohorts, which meet the recommended

thresholds for survival analysis power. Furthermore, the reproducibility

of the MO-MLPS across six GEO datasets and a meta-cohort

minimizes the risk of false-positive results. The pooled C-index and

AUCs across cohorts indicate the robust discriminatory power of the

MO-MLPS, which is corroborated by its superior performance

compared to nearly 49 existing prognostic signatures. However, it is

important to acknowledge that smaller validation cohorts or subgroups

may diminish statistical power. Nonetheless, the consistency of

significance levels across all datasets alleviates this concern.

Moreover, the MO-MLPS demonstrated a large effect size in both

univariate and multivariate analyses, thereby reducing the likelihood of
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type II errors. Notably, the HR associated with risk scores were found

to be greater than those of conventional clinical indicators, suggesting

that the observed survival differences are unlikely attributable to

random variation. The combination of large event numbers, multi-

cohort validation, and biologically meaningful effect sizes underscores

the reliability of our survival analyses, even in stratified subgroups.

Future prospective studies with pre-specified power calculations will be

necessary to further validate these findings.

Given that the impact of tumormicroenvironment on the prognosis

of patients, we further investigated the discrepancy of immune cell

infiltration in different the MO-MLPS risk group. The results indicated

that insufficient infiltration of immune cells and impaired immune

regulation exacerbate the “immune desert” phenotype in theMO-MLPS

high risk group. The proportion of major cells that participate in cancer

cell killing and tumor elimination, including CD4+T cells, CD8+T

cells, mature B cells, monocytes and dendritic cells, were lower in the

MO-MLPS high risk LUAD patients than those with the MO-MLPS

low risk. Although elevated infiltration levels of Th1 cells could inhibit

tumor growth, this protective effect might be counterbalanced by

increased Th2 cells. Moreover, according to the tumor immunotyping

in TCGA, we found that the proportion of patients with C3 and C4

subtypes in the MO-MLPS low risk patients was higher than that in the

MO-MLPS high risk, while the proportion of patients with C1, C2 and

C6 tumors in the MO-MLPS low risk patients was lower. In recent

years, the checkpoint inhibitor immunotherapy has been one of the

most significant treatments in LUAD patients. Therefore, analysis of the

expression levels of checkpoint genes in the MO-MLPS high risk and

low risk groups was performed. Intriguingly, the results indicated that

the checkpoint gene expression levels of CD274 and PDCD1, which can

encode PD-L1 and PD-1 protein inducing the suppression of

anti-tumor immunity, were higher in high-risk patients than in

low-2risk patients. This suggests that our MO-MLPS would be used

to evaluate the expression of immune checkpoint genes, and LUAD

patients with high-risk score may benefit more from anti-PD-L1 or PD-

1 immunotherapy through relieving immune cells from the suppressed

tumor microenvironment. TIDE is a computational framework

designed to model and quantify tumor immune evasion mechanisms,

which are critical determinants of cancer progression and

immunotherapy response. However, no significant differences were

observed between the high- and low-risk groups based on the

MO-MLPS. This lack of differentiation may be due to the fact that

clinical responses to immunotherapy are influenced by a complex

interplay of factors, including tumor mutational burden, neoantigen

presentation, myeloid-derived suppressor cell infiltration, and gut

microbiome composition. These unmeasured variables might obscure

the predictive value of checkpoint expression alone. Furthermore, while

TIDE scores primarily reflect the baseline immune evasion potential, the

dynamic evolution of checkpoint expression during disease progression

or treatment might be closely associated with eventual therapeutic

outcomes. In addition, although TIDE remains a valuable

computational tool, its predictive accuracy varies across different

cancer types and may not fully capture the biological complexity of

certain soft tissue sarcomas. Therefore, clinical validation using real-

world immunotherapy response data is necessary to draw

definitive conclusions.
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Uncontrolled cell division and reproduction is considered one

of the hallmark characteristics of cancer (63). A lot of widely utilized

clinical chemotherapeutic drugs have been designed to target this

hallmark in order to inhibit the rapid proliferation of cancer cells.

To optimize treatment strategies, it is critical to identify suitable

candidates that are overexpressed in cancer cells and are associated

with phase-specific cell cycle functions, thereby maximizing the

therapeutic index. In the signature, we noticed that the ANLN gene,

which encodes an actin-binding protein involved in cell growth,

division and migration, have been identified as a potential target for

the development of novel therapeutic strategies and the design of

new pharmacological agents for the treatment of LUAD. ANLN was

significantly upregulated in adenocarcinoma cells compared with

healthy lung epithelial cells, and related to the progression of LUAD

patients (58). The cause of the observed cell proliferation

suppression through ANLN gene depletion may be multiple. The

most direct reason for this may be decreased levels anillin affected

the formation or the shrinkage degree of cleavage furrow, which is

the requisite element of cell division, and drive the physical

separation of one cell into two cells (64). Other possible reasons

may be through pyroptosis activation or the suppression of PI3K-

AKT pathway (56, 58). The results of scratch assay and transwell

migration assay indicated that knockdown of ANLN gene could

obviously decelerate the cell migration. This might be due to anillin

function as a “bridge” between actin and their binding sites, and

knockdown of ANLN dampen the actin contraction and

cytoskeletal remodeling which plays a key role in the process of

cell migration. However, current strategies for targeting ANLN or

anillin fall short of successful drug discovery and development. To

compensate for this deficiency, we designed a dnANLN protein,

which losing the ability to bind actin but still retained the PH

domain to interact with cleavage furrows, playing a competitive

inhibitory role in endogenous anillin protein (32). Similarly, our

results indicated that the expression of dnANLN could inhibit

colony formation and cell migration of LUAD cells. Furthermore,

it further improved the sensitivity of LUAD cells to docetaxel

treatment. These findings are both surprising and interesting. Our

results opened up another avenue to development of novel

therapeutic strategies for suppressing ANLN, which differs from

conventional inhibitors and degraders.

However, the present study still has several limitations. Firstly, it is

necessary to conduct large-scale prospective clinical studies to verify the

predictive capability of the MO-MLPS. Second, the efficacy MO-MLPS

in predicting the checkpoint gene expression levels in LUAD patients

need to be further confirmed in real-world data. Furthermore, the

preparation, purification and characterization of dnANLN

recombinant protein will be pursued further in future research. In

addition, the functional experiments were conducted in EGFR-mutant

LUAD cell lines. Although these models provided consistent results,

the lack of validation in molecularly distinct LUAD subtypes limits

their broader applicability due to tumor heterogeneity. Future research

should aim to expand validation efforts to additional models with

varying molecular profiles, including primary cells or patient-derived

organoids, to strengthen clinical relevance.
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Conclusion

To summarize, multi-omics data in 6 dimensions were integrated

to characterize novel consensus molecular subtypes of LUAD. These

subtypes had significant differences in molecular biological features,

immune cell infiltration, and their prognosis also differed

significantly. Based on feature genes of each subtype and multiple

machine learning algorithms, a stable and robust prognostic

signature, the MO-MLPS, was developed to assess the prognosis

and recurrence of LUAD patients. Furthermore, cell proliferation and

migratory capacity were significantly inhibited after ANLN

knockdown in LUAD cells. The same effects were present in cells

transfected with recombinant dnANLN and dnANLN improved the

sensitivity of LUAD cells to docetaxel treatment. These results

initially laid the foundation for developing dnANLN as a potential

therapeutic strategy for treating LUAD in the future.
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