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Objective: To evaluate the value of oral contrast-enhanced ultrasonography and 
radiomics analysis in predicting the National Institutes of Health (NIH) staging of 
gastrointestinal stromal tumors (GISTs). 

Methods: A retrospective cohort study was conducted on 204 patients 
presenting with GISTs in Tianjin Medical University Cancer Institute and 
Hospital from January 2020 to January 2023. The clinical profiles, oral 
contrast-enhanced ultrasonography (CEUS), and endoscopic ultrasound (EUS) 
imaging data were collected. 105 patients with high-risk and moderate-risk 
GISTs were classified into the high-risk group, while 99 patients with low-risk 
and very-low-risk GISTs were classified into the low-risk group. The ITK-SNAP 
software and Pyradiomics (version 3.0.1) package were used to extract a 
comprehensive set of ultrasonographic radiomics features from the 
segmented regions of interest (ROIs). The patient dataset was randomly 
divided into a training set and a validation set at a ratio of 7:3. Leveraging the 
XGBoost (XGB) algorithm within the Scikit-learn (Sklearn) machine-learning 
library, three distinct predictive models were developed: a clinical ultrasound 
imaging model (US model), an ultrasonographic radiomics model (US radiomics 
model), and a combined model integrating both clinical, ultrasound, and 
radiomics features. Additionally, 51 GIST patients from Tianjin Medical 
University General Hospital were included in the external validation analysis. 

Results: 636 ultrasonic radiomics features from ROIs were successfully 
extracted. 6 key ultrasonic radiomics features were finally selected for 
subsequent model construction. In the internal validation set, the area under 
the curve (AUC), sensitivity, specificity, and accuracy for the US model, US 
radiomics model, combined model, and endoscopic ultrasound were 0.69, 
0.62, 0.66, 0.64; 0.83, 0.85, 0.74, 0.79; 0.91, 0.86, 0.85, 0.85; and 0.94, 0.95, 
0.85, 0.89, respectively. In the external validation set, the AUC, sensitivity, 
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specificity, and accuracy for the US model, US radiomics model, combined 
model, and endoscopic ultrasound were 0.71, 0.65, 0.67, 0.66; 0.81, 0.77, 0.72, 
0.74; 0.89, 0.85, 0.80, 0.83; and 0.90, 0.93, 0.86, 0.90, respectively. The Delong 
test showed a larger AUC in the US radiomics model compared with the US 
model (Z = 2.776, P < 0.01). The performance of the combined model was 
significantly better than that of the US model (Z = 4.822, P < 0.01) and the US 
radiomics model (Z = 2.200, P = 0.029). However, there was no significant 
difference in AUC between the combined model and the endoscopic ultrasound 
(Z = 1.150, P = 0.141). The superiority of the combined model was further 
demonstrated by the calibration curve (CC) and decision curve analysis (DCA) 
in both the internal and external validation sets. 

Conclusion: This study demonstrates that the US radiomics model, based on oral 
contrast-enhanced ultrasonography images, is feasible for predicting the NIH risk 
stratification of gastrointestinal stromal tumors (GISTs). The combined model 
showed a better diagnostic performance. 
KEYWORDS 

gastrointestinal stromal tumor, oral contrast-enhanced ultrasonography, radiomics, 
NIH risk stratification, endoscopic ultrasound (EUS) 
Introduction 

Gastrointestinal Stromal Tumors (GISTs) are the most 
common gastrointestinal tract mesenchymal-derived tumors, 
arising from Cajal’s interstitial cells (1).GISTs are primarily 
located in the stomach and small intestine, predominantly in the 
extra-luminal region. Approximately 10-30% of GISTs may develop 
malignant tumors (2). However, only about 18% of patients exhibit 
clinical symptoms that are usually nonspecific (2), including nausea, 
vomiting, abdominal distension, early satiety, and abdominal pain. 
Nevertheless, the presentation of an abdominal mass is infrequently 
encountered (3). Most GISTs are discovered incidentally during an 
abdominal CT scan, endoscopy, or surgery. In 2008, the National 
Institute of Health (NIH) developed the GIST risk stratification 
criteria. This criterion classifies GISTs into four categories: 
extremely low risk, low risk, moderate risk, and high risk, based 
on tumor size, mitotic count, and the site of lesion location (4). The 
risk of metastasis or recurrence increases with the rise of NIH risk 
stratification. Therefore, accurate preoperative prediction of the risk 
stratification of GIST and the corresponding treatment may 
improve the prognosis. 

Endoscopic ultrasonography (EUS) was valuable in evaluating 
the location, morphology, and echo characteristics of GISTs. EUS 
can provide a general assessment of the preoperative risk 
classification of GISTs and guide the choice of clinical treatment 
options. International guidelines recommend regular ultrasound 
endoscopic follow-up for very low-risk GISTs and endoscopic 
02 
treatment or surgical resection for low-, intermediate-, and high-
risk cases. However, endoscopy has a limitation in detecting GISTs 
with an extra-cavitary growth pattern (5). In recent years, oral 
contrast-enhanced ultrasonography has emerged as a screening tool 
for gastric submucosal lesions. Gastric contrast agents can be 
administered orally to visualize the hierarchical structure of the 
gastric wall. Oral contrast agent eliminates the interference of 
intraluminal gases and mucus on the gastric wall, resulting in an 
obvious contrast effect (6). This facilitates the discrimination of 
GISTs and the normal gastrointestinal wall. Previous studies have 
demonstrated that oral contrast-enhanced ultrasonography can 
effectively examine the location, size, and infiltration degree of 
gastric tumors (7–9). 

In 2012, Lambin introduced the concept of radiomics, which 
can extract shape, grayscale, and texture features from medical 
images in a high-throughput way (10). Then, traditional statistical 
models, including support vector machines, random forests, and 
XGBoost, were employed for statistical analysis. Researchers 
converted image information into various radiomics features for 
in-depth quantitative studies. This approach has been extensively 
applied in various aspects of oncology, including the accurate 
determination of tumor grading, precise staging of tumors, and 
the effective prediction of tumor prognosis (11–14). However, few 
studies have been reported on predicting GIST risk stratification 
based on ultrasonographic radiomics. 

In the current study, we performed radiomics analysis of ultrasound 
images of GISTs based on oral contrast-enhanced ultrasonography. The 
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predictive performance of different models was compared, including the 
oral contrast-enhanced ultrasonography model, the ultrasonographic 
radiomics model, the combined model integrating both clinical, 
ultrasound, and radiomics features, and the EUS model. 
 

Materials and methods 

Study population 

Between January 2020 and January 2023, 315 GIST patients 
who underwent histological examination at Tianjin Medical 
University Cancer Institute and Hospital (Institution 1) were 
enrolled to establish the training and internal validation sets. 
Additionally, 170 GIST patients from Tianjin Medical University 
General Hospital (Institution 2, June 2021 to August 2023) were 
retrospectively enrolled to construct the external validation set. This 
research was approved by the Tianjin Medical University Cancer 
Institute and Hospital Ethics Committee (BC2023124). The 
inclusion criteria for this study were as follows: (1) Patients 
underwent endoscopic ultrasonography (EUS) and oral contrast-
enhanced ultrasound within two weeks before surgery, having 
precise imaging  of  the tumor’s maximum diameter; (2) a 
postoperative pathological diagnosis of gastrointestinal stromal 
tumors (GISTs). The exclusion criteria were as follows: (1) a 
previous history of malignant tumor; (2) significant artifacts in 
the ultrasound images; (3) incomplete assessment of the patient’s 
National Institutes of Health (NIH) risk stratification. Finally, 204 
GIST patients were enrolled for model construction and internal 
validation, with 51 additional patients for external validation 
(Figure 1). Of these, 83 underwent endoscopic resection, and 172 
had surgery. Based on NIH risk stratification, the internal validation 
group consisted of 105 high-risk patients (66 males, 39 females; 
mean age 61.28 ± 9.39 years) and 99 low-risk patients (55 males, 44 
females; mean age 58.56 ± 10.23 years). The external validation 
group had a mean age of 59.37 ± 11.38 years, comprising 28 males 
and 23 females. Informed consent was obtained from all 
participants. Study data are available from the corresponding 
author upon request. 
Methods of oral contrast-enhanced 
ultrasound and EUS examination, image 
analysis 

We utilized Color Doppler ultrasound diagnostic instruments, 
including the Philips EPIQ5, Toshiba Aplio 500, and Toshiba Aplio 
Abbreviations: GISTs, Gastrointestinal Stromal Tumors; ROI, region of interest; 

AUC, Area under the ROC curve; CC, Calibration Curve; DCA, Decision Curve 

Analysis; GLCM, gray level cooccurrence matrix; GLRLM, gray-level run-length 

matrix; GLSZM, gray level size zone matrix; GLDM, gray level dependence 

matrix; ICCs, Interclass and intraclass correlation coefficients; MRMR, max-

relevance and min-redundancy; VIF, Variance Inflation Factor; XGBoost, 

eXtreme Gradient Boosting; GBDT, Gradient Boosting Decision Tree. 
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800, for examination and image storage. Fasting for 8–12 hours, 
patients received 500–600 ml of gastric contrast agent (Huzhou 
Dongya Medical Supplies Co., Ltd.) before undergoing ultrasound 
scanning. The probe moved continuously from the gastric cardia to 
the duodenal bulb, focusing on the cardia, the gastric fundus, the 
anterior and posterior walls of the gastric body, the gastric angle, 
and the gastric antrum. The examination positions were the left 
lateral position, supine position, and right lateral position. We 
carefully examined the continuity of the gastric mucosa and 
hierarchical structure of the gastric wall. The thickness and the 
maximum upper and lower diameters of the GIST were measured, 
and the standard images were retained. 

EUS was performed using the EG-3870UK ultrasound endoscope 
(Fuji Co., Ltd., Japan) or the GF-UCT260 ultrasound endoscope 
(Olympus Corporation). Generally, the patients were fasting for 8– 
12 hours, and placed in the left lateral position, and propofol and 
midazolam were used for intravenous anesthesia. The examination 
was from the duodenum to the esophagus, through the lower part of 
the stomach (antrum, pylorus), to the upper part (gastric body, 
fundus, cardia), and then back to the duodenum. EUS features were 
recorded, including tumor size, borders, level of origin, echo 
homogeneity, echo intensity, ulceration, and cystic changes. Image 
acquisition and analysis were performed by two independent 
sonographers and two independent endoscopists (all with more 
than 10 years of experience). In case of any discrepancies in the 
results, a consensus diagnosis was reached through discussion. 

The postoperative risk of GIST was classified according to the 
grading criteria of the Chinese Consensus on the Diagnosis and 
Treatment of Gastrointestinal Mesenchymal Tumors (2013 
edition): very-low-risk: maximum diameter of tumor ≤ 2 cm,

with nuclear schizophrenia count (NSC)≤ 5/50 HPF; low-risk: 
maximum diameter of tumor is 2 ~ 5 cm, with NSC≤ 5/50 HPF; 
intermediate-risk: maximum diameter of tumort 2 cm, with NSC 6 
~ 10/50 HPF; or maximum diameter of tumor is 2 ~ 5 cm, with NSC 
6 ~ 10/50 HPF; or maximum diameter of tumor is 5 ~ 10 cm, with 
NSC≤ 5/50 HPF; high-risk: maximum diameter of tumor is >5 cm, 
NSC >5/50 HPF; or maximal diameter of tumor is >10 cm, 
unlimited NSC; or unlimited maximal tumor diameter, NSC >10/ 
50 HPF; or tumor rupture with unlimited maximal tumor diameter 
and NSC. 
Image segmentation and preprocessing 

The cross-sectional ultrasound images with the largest diameter 
of GIST were imported into the ITK-SNAP software (version v3.8.0, 
www.itksnap.org). Two experienced sonographers, blinded to the 
pathological outcomes, independently evaluated all images of each 
GIST and annotated the region of interest (ROI) (Figure 2). In cases 
of disagreement, a dialogue and consensus with a third sonographer 
was produced. 

Standardization techniques were implemented to preprocess 
the images and data, ensuring the reproducibility of the findings. 
The intraclass correlation coefficient (ICC) was employed to 
evaluate the replicability between observers and within observers. 
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Two weeks later, 80 GIST images were randomly selected, 
consisting of 50 individuals with high-risk GISTs and 30 with 
low-risk GISTs. Sonographers A and B separately delineated the 
ROIs to evaluate the intra- and inter-observer ICC. 
Radiomics features extraction 

Before feature selection in ultrasonic radiomics, we extracted 
radiomics data of varying orders of magnitude and standardized 
data using the Z-score method. The screening and extraction of 
radiomics features in segmented ROI images were performed using 
the Pyradiomics (v3.0.1) module in Python 3.8.7. Two different 
radiomics features were extracted, including the geometric and 
Frontiers in Oncology 04
textural features. The geometric features consisted of two-
dimensional shape features and first-order features. The textural 
features consisted of features of the Gray Level Co-occurrence 
Matrix (GLCM), the Gray Level Run Length Matrix (GLRLM), 
the Gray Level Size Zone Matrix (GLSZM), and the Gray Level 
Dependence Matrix (GLDM). The intra-observer and inter-
observer ICCs were performed on the features extracted from the 
ROI. The higher the consistency, the better the reproducibility. A 
Mann-Whitney U test was performed to screen features with a 
significance level of p<0.05 for further analysis. Features with an 
ICC value greater than 0.9 in both tests were preserved, while 
features with a variance equal to 0 were excluded. The maximum 
correlation and minimum redundancy features were obtained by 
screening the max-relevance and min-redundancy (MRMR) 
Preoperative ultrasound 

GISTs from Institution 1 
(n=315) 

January 2020 to January 2023 

Clear lesion 

Yes 

n=35 
No 

Patients included in this study 
(n=204) 

Yes 

n=22 
No 

Exclusion criteria: 
(1) Incomplete pathologic 

diagnosis (n=11) 
(2) Incomplete clinal 

information on patients 
(n=43) 

High-risk group 
(n=105) 

Low-risk group 
(n=99) 

Training set 
(n=143) 

Internal validation set 
(n=61) 

Distributed 7:3 

GISTs from Institution 2 
(n=170) 

June 2021 to August 2023 

External validation set 
(n=51) 

FIGURE 1 

Flowchart of enrollment and exclusion. 
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algorithms. The collinearity among the ultrasonic features was 
evaluated by calculating the Variance Inflation Factor (VIF). 
Features without obvious collinearity (Spearman’s r < 0.7 and VIF 
< 5) were included. After the above steps, the radiomics features in 
this study exhibited good stability. 
The establishment of an ultrasonic 
radiomics model 

The Extreme Gradient Boosting (XGBoost) algorithm was 
employed to handle the high-dimensional, sparse data and 
capture the nonlinear relationships in this study, utilizing the 
Scikit-learn module (Python 3.8.7). The selected ROI radiomics 
features were input into the XGBoost algorithm to construct the US 
radiomics model. Furthermore, a combined model integrating 
clinical, ultrasound, and radiomics features was established to 
predict the NIH risk stratification of GISTs. Feature importance 
was evaluated using Shapley Additive Explanation (SHAP) values to 
quantify the contributions of each feature. Seventy percent of the 
enrolled patients were randomly selected for model training, and 
30% were used for model testing. Both feature extraction and model 
establishment were subjected to 10-fold cross-validation, and 
parameter adjustments were carried out to optimize the predictive 
performance of the models. Figure 3 illustrates the flowchart of 
radiomics analysis steps. 
 

Statistical analysis 

Continuous variables are expressed as the mean ± standard 
deviation (SD), and categorical variables are presented as 
frequencies and percentages. An independent samples t-test, 
Mann-Whitney U test, or chi-square test was performed to 
compare the clinical and ultrasound features in the high-risk and 
low-risk groups. The predictive performance of the US model, the 
US radiomics model, the combined model, and the EUS model for 
Frontiers in Oncology 05 
GISTs NIH risk stratification was evaluated through the receiver 
operating characteristic (ROC) curve. The area under the curve 
(AUC), sensitivity, specificity, and accuracy were calculated for 
these models. The Delong test was employed to compare the AUC 
values among different models. The performance of different 
models was comprehensively assessed using the calibration curve 
(CC). The clinical decision curve analysis (DCA) was applied to 
determine the net benefit for patients precisely. All data were 
analyzed by Python 3.8.7, R 4.2.2, and SPSS 23.0 software. A two-
tailed p-value of <0.05 was considered statistically significant. 
Results 

Comparison of clinical ultrasound and 
endoscopic ultrasound features 

The NIH risk stratification for 204 GIST patients (institution 1) 
was according to the pathological analysis in this study. These 
patients were categorized into two groups: high-risk and low-risk. 
Gastrointestinal symptoms were present in 87 patients. 46 cases of 
GISTs located in the cardia and fundus, 110 in the body, and 48 in 
the sinus. Table 1 shows the baseline clinical features of 204 GIST 
patients for the internal validation, and Table 2 shows the baseline 
clinical features of 51 GIST patients for external validation. Oral 
contrast-enhanced ultrasonography detected more larger tumors 
(≥5cm), a higher prevalence of necrotic cystic degeneration, unclear 
tumor boundaries, and tumor rupture in the high-risk group 
compared with the low-risk group (P < 0.05,  Table 3). 
Meanwhile, endoscopic ultrasound detected more larger tumors 
(umorse calcification, necrotic cystic degeneration, inhomogeneous 
echo pattern, unclear tumor boundaries, and tumor rupture in the 
high-risk group compared with the low-risk group (P < 0.05,

Table 4). However, no significant differences were observed in 
gender, age, and tumor location between different groups (P > 
0.05, Table 1). The typical endoscopic, ultrasonic, and EUS features 
of GIST patients were illustrated in Figures 4–6. 
FIGURE 2 

Annotation of the tumor ROIs. (A)The GIST ultrasound image based on oral contrast-enhanced ultrasonography. (B)The red region indicates the 
region of interest (ROI). 
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Selection of ultrasonographic radiomics 
features 

Six hundred thirty-six ultrasonographic radiomics features were 
extracted using the Pyradiomics software package. After regression 
dimensionality reduction processing, six ultrasonographic 
radiomics features were retained, including one shape feature 
(Original shape elongation), two GLSZM features (GLSZM ­
Zone entropy, GLSZM - Small Area High Gray Level Emphasis), 
and three GLDM features (GLDM - Large dependence low gray 
level emphasis, GLDM - Large dependence low gray level emphasis, 
GLDM - Large dependence low gray level emphasis). The mean 
absolute value of the SHAP values of radiomics features was as 
follows: Original shape elongation: 0.25; GLSZM - Zone entropy: 
0.12; GLSZM - Small Area High Gray Level Emphasis: 0.22; GLDM 
- Large dependence low gray level emphasis: 0.18; GLDM - Small 
dependence high gray level emphasis: 0.15; GLDM - dependence 
variance: 0.08. Figure 7 shows the Spearman correlation heatmap 
among various ultrasonic radiomics features. The color serves as a 
Frontiers in Oncology 06
graphical representation of correlation strength, with darker colors 
corresponding to higher levels of correlation. 
Diagnostic efficacy of different models 

Table 5 shows the comparison of diagnostic efficacy among the 
US model, the US radiomics model, the combined model, and the 
EUS model. The Delong test results indicated a significant 
difference in AUC between the US radiomics model and the US 
model (internal validation set: Z = 2.776, P < 0.01; external 
validation set: Z = 2.009, P = 0.045). The diagnostic performance 
of the combined model was superior to that of the US model 
(internal validation set: Z = 4.822, P < 0.01; external validation set: Z 
= 4.047, P<0.01) and the US radiomics model (internal validation 
set: Z = 2.200, P = 0.029; external validation set: Z = 2.063, P = 
0.040, Figure 8). Moreover, no significant difference was found in 
AUC between the combined model and EUS (internal validation 
set: Z = 1.150, P = 0.141; external validation set: Z = 0.813, P = 
FIGURE 3 

Flow chart of radiomics analysis steps. 
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0.416). A better performance of the combined model was observed 
in both the calibration curve (CC) and the decision curve analysis 
(DCA) in the validation set (Figures 9, 10). 
Discussion 

With the development of radiomics, the evaluation of tumor 
imaging features has been transformed from previous morphological 
features to radiomics or molecular typing features (15, 16). Radiomics 
can reflect the internal microstructure of tumors (17). It enables the 
quantitative assessment of tumor heterogeneity by analyzing the 
distribution and correlation of gray levels and pixels in the images 
(18, 19). Therefore, it can distinguish between benign and malignant 
tumors, assess their biological behavior, and predict the risk of 
recurrence and survival (20–22). The first-order and second-order 
methods are common radiomics techniques in texture analysis. The 
first-order parameter is primarily used in histograms to depict the 
comprehensive texture characteristics (23). The second-order 
parameter is used mainly in the gray-scale covariance matrix to 
describe the local texture features of the image (24). Several studies 
have been conducted to establish radiomics models from CT or MR 
images, and their results demonstrated the high utility in diagnosing 
GISTs (25, 26). However, ultrasound is the most convenient and cost-
effective imaging modality for screening abdominal tumors. Reports 
Frontiers in Oncology 07 
on the establishment and clinical significance of ultrasonographic 
radiomics are relatively rare. 

There were significant differences in US features between high-
and low-risk groups, including maximum tumor diameter, 
boundaries, echo pattern, calcifications, necrotic cystic degeneration, 
blood flow signals, and tumor rupture. However, the US model 
presented a limited diagnostic ability: with a sensitivity of merely 
0.62 and an accuracy of 0.64 in predicting GISTs’ NIH risk 
stratification. This may be attributed to some overlap of sonogram 
features between the two groups. In contrast, the sensitivity and 
accuracy of the US radiomics model were 0.85 and 0.79, which were 
significantly better than those of the US model. This suggests that the 
features of ultrasonic radiomics can help us extract deep-level 
information from the images. To develop the US radiomics model, 
636 ultrasonographic radiomics features were extracted. These 
features underwent regression-based dimensionality reduction, and 
ultimately, six stable radiomics features in ultrasonography 
were preserved. 

Among these features, the shape feature was used to characterize 
the morphology of GISTs. At the same time, Elongation represented 
the ratio of the short axis to the long axis of a GIST tumor. The 
smaller the ratio was, the more irregular the GIST shape was. In this 
study, we also found that the degree of regularity of GISTs was 
correlated with the NIH risk stratification of GISTs. In the low-risk 
group, the tumor elongation was closer to 1.0, and the shape was 
TABLE 1 Baseline clinical features of 204 GISTs for internal validation. 

Variable Categories High-risk 
group(n=105) 

Low-risk 
group(n=99) 

c2 P 

Gender Male 66(62.9%) 55(55.6%) 
1.126 0.289 

Female 39(37.1%) 44(44.4%) 

Age <50 years old 52(49.5%) 37(37.4%) 
3.059 0.080 

≥50 years old 53(50.5%) 62(62.6%) 

Body mass index(kg/m2) <18.5 30 (28.6%) 26(26.3%) 

3.400 0.18318.5-22.9 45(42.9%) 54(54.5%) 

≥4( 30(28.6%) 19(19.2%) 

Smoking No 61(58.1%) 59(59.6%) 
0.470 0.828 

Yes 44(41.9%) 40(40.4%) 

Drinking No 69(65.7%) 73(73.7%) 
1.550 0.213 

Yes 36(34.3%) 26(26.3%) 

Gastrointestinal disease 
family history 

No 67(63.8%) 84(84.8%) 
11.729 0.001 

Yes 38(36.2%) 15(15.2%) 

Clinical symptoms Exist 61(58.1%) 26(26.3%) 
21.110 0.000 

None 44(41.9%) 73(73.7%) 

Location Gastric cardia 
and fundus 

24(22.9%) 22(22.2%) 

1.390 0.499 
Gastric body 53(50.5%) 57(57.6%) 

Gastric sinus 28(26.7%) 20(20.2%) 
GISTs, gastrointestinal stromal tumors. 
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TABLE 2 Baseline clinical features of 51 GISTs for external validation. 

Variable Categories High-risk group(n=29) Low-risk group(n=22) c2 P 

Gender Male 16(55.2%) 13(59.1%) 
0.078 0.780 

Female 13(44.8%) 9(40.9%) 

Age <50 years old 10(34.5%) 7(31.8%) 
0.040 0.842 

≥50 years old 19(65.5%) 15(68.2%) 

Body mass index(kg/m2) <18.5 9 (31.0%) 7(31.8%) 

0.617 0.73518.5-22.9 8(27.6%) 8(36.4%) 

≥23 12(41.4%) 7(31.8%) 

Smoking No 16(55.2%) 14(63.6%) 
0.370 0.543 

Yes 13(44.8%) 8(36.4%) 

Drinking No 17(58.6%) 13(59.1%) 
0.001 0.973 

Yes 12(41.4%) 9(40.9%) 

Gastrointestinal disease 
family history 

No 11(37.9%) 16(72.7%) 
6.080 0.014 

Yes 18(62.1%) 6(27.3%) 

Clinical symptoms Exist 20(69.0%) 10(45.5%) 
2.855 0.091 

None 9(31.0%) 12(54.5%) 

Location Gastric cardia 
and fundus 

12(41.4%) 9(40.9%) 

0.008 0.946 
Gastric body 12(41.4%) 9(40.9%) 

Gastric sinus 5(17.2%) 4(18.2%) 
F
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GISTs, gastrointestinal stromal tumors. 
TABLE 3 Ultrasonic features of 204 GISTs. 

Variable Categories High-risk group(n=105) Low-risk group(n=99) c2 P 

Maximum tumor diameter 
<5cm 29(27.6%) 54(54.5%) 

15.309 0.000 
≥5cm 76(72.3%) 45(45.5%) 

Tumor boundaries 
Clear 40(38.1%) 53 (53.5%) 

4.897 0.027 
Unclear 65(61.9%) 46 (46.5%) 

Echo pattern 
Homogeneous 50(40.0%) 60 (55.6%) 

3.459 0.063 
Inhomogeneous 55(60.0%) 39 (44.4%) 

Calcification 
Exist 27(25.7%) 15 (15.2%) 

3.477 0.062 
None 78(74.3%) 84 (84.8%) 

Necrotic cystic degeneration 
Exist 39(37.1%) 16(16.2%) 

11.391 0.001 
None 66(62.9%) 83(83.8%) 

Blood flow signals 
Exist 57(54.3%) 47(37.4%) 

0.946 0.331 
None 48(45.7%) 52(62.6%) 

Tumor rupture 
Exist 15(14.3%) 1(1.0%) 

12.425 0.000 
None 90(85.7%) 98(99.0%) 
GISTs, gastrointestinal stromal tumors. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1590432
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1590432 
TABLE 4 Endoscopic ultrasound features of 204 GISTs. 

Variable Categories High-risk group(n=105) Low-risk group(n=99) c2 P 

Maximum tumor diameter 
<5cm 27(25.7%) 53(53.5%) 

16.546 0.000 
≥5cm 78(74.3%) 46(46.5%) 

Tumor boundaries 
Clear 32 (30.5%) 65(65.7%) 

25.287 0.000 
Unclear 73(69.5%) 34(34.3%) 

Echo pattern 
Homogeneous 42(40.0%) 55(55.6%) 

4.944 0.026 
Inhomogeneous 63(60.0%) 44(44.4%) 

Calcification 
Exist 32(30.5%) 13(13.1%) 

8.916 0.003 
None 73(69.5%) 86(86.9%) 

Necrotic cystic degeneration 
Exist 49(46.7%) 16(16.2%) 

21.841 0.000 
None 56(53.3%) 83(83.8%) 

Tumor rupture 
Exist 25(23.8%) 2(2.0%) 

21.067 0.000 
None 80(76.2%) 97(98.0%) 
F
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FIGURE 4 

A 61-year-old woman with a 1.8×1.2cm GIST of low NIH risk stratification. (A) Gastroscopy showed a submucosal elevation with a smooth surface 
visible in the mid-lower anterior portion of the gastric body. (B) Endoscopic ultrasound showed a hypoechoic mass within the fourth layer of the 
gastric wall. (C) By oral contrast, ultrasound showed a hypoechoic mass in the fourth layer of the gastric body structure with clear borders and 
homogeneous internal echogenicity. 
TABLE 5 A comparative analysis of the predictive efficacy among the models in the validation set. 

SET Model AUC Sensitivity Specificity Accuracy 

Internal Validation 

US 0.69 0.62 0.66 0.64 

US radiomics 0.83 0.85 0.74 0.79 

Combined 0.91 0.86 0.85 0.85 

EUS 0.94 0.95 0.85 0.89 

External Validation 

US 0.71 0.65 0.67 0.66 

US radiomics 0.81 0.77 0.72 0.74 

Combined 0.89 0.85 0.8 0.83 

EUS 0.9 0.93 0.86 0.9 
AUC, area under the curve; US, ultrasound; EUS, endoscopic ultrasound. 
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more orthorhombic compared with the high-risk group. The gray-
level size-zone matrix (GLSZM) is formulated by tallying the clusters 
of adjacent, interconnected pixels or voxels with the same gray-level 
value. This numerical count serves as the fundamental building block 
for the GLSZM. In contrast, the gray-level dependence matrix 
(GLDM) is a count matrix. It encloses information regarding the 
number of “dependent” pixels and the frequency at which all pixels 
appear across the entire image. In our study, these two distinct 
features demonstrated that the texture consistency in the high-risk 
group was markedly lower than in the low-risk group. This significant 
disparity indicated that the tumor heterogeneity was substantially 
higher in the high-risk group. Notably, these outcomes were 
consistent with previous findings regarding texture features in 
other types of tumors, further validating the generalizability of 
texture-based characteristics in tumor assessment (26, 27). 
Additionally, ZoneEntropy was employed to characterize the 
randomness of the pixel distribution. The higher the randomness, 
the higher the ZoneEntropy value (28). The ZoneEntropy value and 
dependent variance were higher in the high-risk group than in the 
low-risk group, indicating a higher level of randomness in the 
grayscale distribution within the high-risk group. This may be 
Frontiers in Oncology 10 
attributed to the components (such as cystic degeneration, necrosis, 
and calcification) present in the high-risk group, leading to mixed 
echoes, higher entropy values, and dependent variance. 

Previous studies had suggested that radiomics features may 
compensate for the deficiencies of clinical ultrasound features and 
could effectively enhance the prediction of GISTs’ NIH risk 
stratifications (29). Similarly, the current study demonstrated that 
combining oral contrast-enhanced ultrasonographic radiomics 
features with clinical ultrasound features significantly improved 
the sensitivity, accuracy, and AUC in the model. This finding was in 
line with previous studies (21, 30–32). Furthermore, the CC and 
DCA corresponding to the three US models further showed that the 
combined model exhibited a significantly higher net benefit and an 
obvious advantage. Therefore, the combined model was more 
helpful in predicting the GISTs’ NIH risk stratification before 
surgery, assessing the risk of metastasis and recurrence, and 
developing individualized surgical and treatment plans. 

This research utilized a “multivariate filtering” feature selection 
method, namely the Max-Relevance and Min-Redundancy 
(MRMR) algorithm. This algorithm is characterized by its high 
computational speed and strong discriminative power. It endeavors 
FIGURE 6 

A 54-year-old man with a 4.1×2.6cm GIST of moderate NIH risk stratification. (A) Gastroscopy showed a submucosal elevation with a smooth 
surface visible in the gastric fundus. (B) Endoscopic ultrasound showed a hypoechoic mass within the fourth layer of the gastric wall. (C) By oral 
contrast, ultrasound showed a hypoechoic mass in the fourth layer of the gastric body structure with clear borders and homogeneous internal 
echogenicity. 
FIGURE 5 

A 60-year-old man with a 9.6×4.9cm GIST of high NIH risk stratification. (A) Gastroscopy showed a submucosal elevation with a smooth surface 
visible in the gastric fundus. (B) Endoscopic ultrasound showed a hypoechoic mass within the fourth layer of the gastric wall. (C) By oral contrast, 
ultrasound showed a hypoechoic mass in the fourth layer of the gastric body structure with unclear borders and heterogeneous internal 
echogenicity. 
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FIGURE 8 

ROC curves of the models (US, US radiomics, and combined) in the validation set ((A) Internal validation set, (B) External validation set). AUC, area 
under the curve; US, ultrasound; EUS, endoscopic ultrasound. 
FIGURE 7 

Correlation heatmap of ultrasonic radiomics features. 
Frontiers in Oncology 11 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1590432
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1590432 
to maximize the correlation between features and the prediction 
target and simultaneously minimize the correlation among 
individual features. Furthermore, we selected radiomics features 
from multiple perspectives. This strategy reduced information loss 
and prevented the predictive model from overfitting or underfitting. 
Additionally, when partitioning the training and validation sets, we 
ensured that the ratio of high-risk to low-risk groups remained 
consistent. The average result was used as the final prediction. This 
measure was crucial for guaranteeing the stability of the prediction 
results. Finally, this study employed the Extreme Gradient Boosting 
(XGBoost) algorithm, which builds upon the Gradient Boosting 
Decision Tree (GBDT) algorithm. The XGBoost algorithm offers 
the advantages of high efficiency, stability, and applicability. It could 
utilize a parallel processing strategy in training large-scale datasets, 
enabling a quick and steady improvement in model accuracy. It can 
also handle both numerical and categorical features and effectively 
Frontiers in Oncology 12 
deal with missing data values. All of the above ensured the stability 
of this study. 

This study has some limitations. Firstly, this is a retrospective 
investigation. All cases were derived from two medical institutions. 
As a result, the outcomes of this study may be vulnerable to 
selection bias. Secondly, the ultrasound images were acquired 
using diverse ultrasonic diagnostic apparatuses. This variation in 
equipment has the potential to induce heterogeneity within the 
study images, which could impact the consistency and 
comparability of the data. Moreover, the manual segmentation 
method employed for delineating the ROIs might reduce the 
reproducibility of the study findings. Manual segmentation is 
subjective and prone to operator-dependent variability, which 
may limit the generalizability of the results. Looking ahead, we 
intend to conduct multicenter prospective studies to validate the 
stability of the results. Multicenter prospective studies may facilitate 
FIGURE 9 

CC of models (US, US radiomics, and combined) in the validation set ((A) Internal validation set, (B) External validation set). CC, calibration curve; US, 
ultrasound; EUS, endoscopic ultrasound. 
FIGURE 10 

DCA of models (US, US radiomics, and combined) in the validation set ((A) Internal validation set, (B) External validation set). DCA, The clinical 
decision curve analysis; US, ultrasound; EUS, endoscopic ultrasound. 
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better standardization of procedures and data collection, thereby 
improving the reliability and reproducibility of the findings. 

The US radiomics model for the NIH risk stratification of GISTs 
based on oral contrast-enhanced US images can be feasibly constructed. 
The combined model showed a better predictive performance. This 
novel and impactful radiomics model validated the prediction of NIH 
risk stratification of GISTs, offering valuable insights to assist clinicians 
in formulating personalized treatment plans. 
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