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Background and Aims: Esophageal cancer (EC) patients may achieve pathological

complete response (pCR) after receiving total neoadjuvant therapy (TNT), which

allows them to avoid surgery and preserve organs. We aimed to benchmark the

performance of existing artificial intelligence (AI) methods and develop a more

accurate model for evaluating EC patients’ response after TNT.

Methods: We built the Beijing-EC-TNT dataset, consisting of 7,359 images from

300 EC patients who underwent TNT at Beijing Cancer Hospital. The dataset was

divided into Cohort1 (4,561 images, 209 patients) for cross-validation and Cohort

2 (2,798 images, 91 patients) for external evaluation. Patients and endoscopic

images were labeled as either pCR or non-pCR based on postoperative

pathology results. We systematically evaluated mainstream AI models and

proposed EC-HAENet, a hybrid-architecture ensembled deep learning model.

Results: In image-level classification, EC-HAENet achieved an area under the

curve of 0.98 in Cohort 1 and 0.99 in Cohort 2. In patient-level classification, the

accuracy of EC-HAENet was significantly higher than that of endoscopic biopsy

in both Cohorts 1 and 2 (accuracy, 0.93 vs. 0.78, P<0.0001 and 0.93 vs.

0.71, P<0.0001).

Conclusion: EC-HAENet can assist endoscopists in accurately evaluating the

response of EC patients after TNT.
KEYWORDS

esophageal cancer, endoscopy, total neoadjuvant therapy, pathological complete
response, deep learning
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1 Introduction

Esophageal cancer (EC) has a high incidence and mortality rate

compared to other types of malignant tumors (1). Surgery is the

primary treatment for locally advanced EC. Although complications

and mortality have decreased with technological progress, 0.4% to

2.2% of patients die during the perioperative period (2). Existing

studies have shown that patients who achieve pathological complete

response (pCR) after neoadjuvant chemotherapy have better overall

survival and disease-free survival than those without pCR (3). pCR

is defined as the absence of any tumor residue in both the primary

tumor site and lymph nodes. However, due to the low pCR rate in

the era of chemotherapy, all patients have typically undergone

further surgical intervention, regardless of their response to

neoadjuvant therapy. With the development of systemic therapy

based on chemotherapy and immunotherapy, the high pCR rate has

made organ preservation possible (4, 5). The phase III clinical trial -

SANO - published in 2023 indicated that patients who achieve CR

after total neoadjuvant therapy (TNT) may choose the Watch and

Wait, not surgery (6). Additionally, many more phase III clinical

trials are underway. Therefore, there is an enormous demand for

accurately identifying pCR after TNT to optimize treatment

strategies and avoid unnecessary surgeries.

Endoscopy is an important method for evaluating the tumor

residue at the primary tumor site after TNT, and detecting tumor

residue in lymph nodes may require other methods, such as fine

needle aspiration (FNA), CT or PET-CT. The preparation before

the SANO trial - pre-SANO showed that bite-on-bite biopsies,

endoscopic ultrasonography, and fine-needle aspiration could

evaluate locoregional responses, and PET-CT can assess interval

metastases (7). However, even using bite-on-bite biopsies combined

with fine-needle aspiration, 10% of TRG 3–4 and 23% of TRG 2–4

tumors were still missed (7, 8). Further research indicates that the

number of biopsies, rather than performing deep biopsies, is crucial

for improving detection accuracy (9). However, the number of

biopsies cannot be infinitely increased due to factors such as

bleeding after biopsy. Given these challenges, new methods are

needed to enhance the accuracy of identifying pCR during

endoscopic examination.

Artificial intelligence (AI), particularly deep learning, has

demonstrated significant advantages in improving the diagnostic

accuracy of EC. First, AI could achieve satisfactory diagnostic

accuracy in early EC. In a study involving 218 patients with early

EC and 7,976 images, AI showed a sensitivity of 0.9, specificity of

0.89, positive predictive value (PPV) of 0.77, and negative predictive

value (NPV) of 0.97 (10). More than that, AI also outperforms

endoscopists with less than 15 years of experience (11). Second, AI

could assist endoscopists in enhancing diagnostic accuracy. A study

by Waki et al. demonstrated that incorporating AI assistance

significantly improved the sensitivity of endoscopists in diagnosing

EC, particularly in less experienced endoscopists (12). Therefore, we

hope that AI can improve the accuracy of response assessment after

TNT. Regrettably, 2 previous studies used only 98 and 123 patients

for training and validation, and the accuracy was only 0.81 and 0.70,

respectively, but still higher than endoscopists 0.66 (13, 14).
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In this study, we hope to demonstrate that the deep learning

model could achieve an accuracy superior to endoscopic biopsy, and

ultimately, enhance the accuracy of endoscopic biopsy with the

assistance of a deep learning model to provide an ethical and

technical basis for making non-surgical decisions. To achieve these,

we first developed a large dataset called the Beijing-EC-TNT dataset,

comprising 7,359 endoscopic images from 300 EC patients at Beijing

Cancer Hospital. Using this dataset, we evaluated various mainstream

AI models and identified three key insights for designing more

accurate endoscopic AI models: pretraining, efficient local features,

and robust global features. Based on these findings, we built EC-

HAENet, a hybrid-architecture ensemble deep learning model that

demonstrated superior performance compared to endoscopic biopsy

in evaluating patient responses to TNT.
2 Materials and methods

2.1 Study design and participants

This was a retrospective study, approved by the Peking

University Cancer Hospital Ethics Committee (2025KT33) and

conducted according to the principles of the Declaration of

Helsinki. All patients were informed and consented to be enrolled

in the study. We conducted a retrospective multi-cohort study using

white-light endoscopic images from Beijing Cancer Hospital. As

shown in Figure 1, our Beijing-EC-TNT dataset contains two

temporally independent cohorts. Cohort 1 included patients from

May 2018 to February 2023, while Cohort 2 included patients from

March 2023 to March 2024. The study included patients with

pathologically confirmed esophageal squamous cell carcinoma or

adenocarcinoma and excluded patients with rare malignant tumors

such as neuroendocrine carcinomas, sarcomas, and melanomas. All

examinations were performed with high-definition gastroscopes

(GIF-H290, GIF-HQ290, GIF-H260 [Olympus, Tokyo, Japan] or

EG-760Z, EG-760R, EG-L600ZW7, EGL600WR7, and EG-580R7

[Fujifilm, Tokyo, Japan]).

Al l the pat ients underwent TNT, which included

chemotherapy, chemoimmunotherapy, or systemic therapy

combined with radiotherapy. After the final TNT, all patients

underwent gastroscopy performed by various senior endoscopists

to evaluate response for TNT, and certain patients underwent

biopsies. We saved images from the gastroscope for training and

evaluating AI models. Finally, all the patients underwent surgery.

Surgically resected EC tumors were staged according to the 8th

edition of the TNM staging system stipulated by the American Joint

Committee on Cancer. Each patient and their corresponding

endoscopic images were labeled as either pCR or non-pCR based

on postoperative pathology results. Furthermore, patients in the

non-pCR group were further classified into MPR [major

pathological response (15)] and Cancer groups based on the

proportion of residual tumors. In this classification, pCR was

defined as the absence of residual tumor in the primary tumor,

MPR as a residual tumor in the primary tumor of 10% or less, and

Cancer as a residual tumor in the primary tumor of more than 10%.
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2.2 Model development

We employed five-fold cross-validation in Cohort 1 and tested

only in Cohort 2 using the trained weights from Cohort 1 to evaluate

the performance of several mainstream AI models, including CNNs

(16–22), Transformers (23–25), and models designed for efficient

computation (21, 22, 25). In the five-fold cross-validation, we

partitioned the data by the patient rather than by image to ensure

that all images from the same patient appeared in only one-fold,

thereby preventing potential data leakage. Specifically, for patient-

level diagnosis, when the model predicts non-pCR for a particular

image, we classify the patient’s overall response as non-pCR. We

summarized key design principles to enhance endoscopic AI

performance (pretraining, efficient local features, and robust global

features) based on the evaluation results. This led to our design of EC-

HAENet, a hybrid-architecture ensemble model. EC-HAENet

integrates convolutional and attention mechanisms to collectively

extract both local and global information from endoscopic images

for accurate diagnosis. The overall architecture of EC-HAENet is
Frontiers in Oncology 03
illustrated in Figure 1. Within this architecture, we utilized Dense

Convolution Blocks as the local feature extractor and a multi-layer

Transformer module with sliding windows as the global feature

extractor. Subsequently, the local and global features were

concatenated and fed into an ensemble classifier for the final

prediction. The ensemble of the local and global features enhanced

the ability to identify tumor residue. Two auxiliary classifiers were

introduced only during training to facilitate the learning of

different branches. Random data augmentation, sharpness-aware

minimization (26), and focal loss (27) were used to improve

robustness against possible poor image quality and class imbalance.

Details of EC-HAENet construction and training hyper-parameters

are provided in Appendix A.
2.3 Statistical analysis

Statistical analysis was conducted with R version 4.41.

Differences between groups were examined using the c2 test.
FIGURE 1

Dataset construction and model architecture of EC-HAENet. The dashed line indicates the auxiliary module during the training phase, and the blue
arrow indicates the direction of the gradient update of the loss function. EC, esophageal cancer; TNT, total neoadjuvant therapy; pCR, pathological
complete response; MPR, major pathological response.
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Accuracy, sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) were calculated for Cohort 1

and Cohort 2, and 95% confidence intervals (CI) were calculated

using the Clopper-Pearson method. Receiver operating

characteristic (ROC) curves were used to calculate the area under

the curve (AUC) for Cohort 1 and Cohort 2 to evaluate the

diagnostic performance of EC-HAENet. All statistical

comparisons were performed using two-tailed tests, and P < 0.05

was considered statistically significant.
3 Results

3.1 Baseline characteristics

We collected 4,561 images from 209 EC patients as Cohort 1.

This cohort included 43 patients (20.6%) with pCR, 45 patients

(21.5%) with MPR, and 121 patients (57.9%) with Cancer.

Afterward, we formed Cohort 2, which comprised 2,798 images

from 91 patients. Within this cohort, 18 patients (19.8%) were pCR,

17 patients (18.7%) were MPR, and 56 patients (61.5%) were

Cancer. All patients underwent at least one cycle of TNT, mainly

involving chemotherapy and chemoimmunotherapy (n=297,

99.0%), and only 3 patients (1.0%) received preoperative

radiotherapy. Supplementary Table 1 provides more detailed

clinical information regarding gender, age, drinking history,

tumor site, cT stage, etc.
3.2 Diagnostic performance of EC-HAENet

As presented in Table 1 and Figure 2, in Cohort 1, our EC-

HAENet achieved the highest diagnostic performance in both five-

fold cross-validation among all models. The image-level AUC was

0.98 (95%CI: 0.97-0.98), accuracy was 0.92 (0.91-0.93), sensitivity

was 0.92 (0.90-0.93), and specificity was 0.92 (0.90-0.93). We

externally evaluated its performance in Cohort 2 and found that
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AUC was 0.99 (0.98-0.99), accuracy was 0.93 (0.92-0.95), sensitivity

was 0.95 (0.93-0.96), and specificity was 0.92 (0.90-0.94). For

patient-level performance, where we classify the patient’s response

as non-pCR when the model predicts non-pCR for a particular

image, EC-HAENet achieved an accuracy of 0.93 (0.89-0.96) in

Cohort 1 and 0.93 (0.86-0.98) in Cohort 2, the other metrics are also

provided in Table 1 for reference.

As shown in Figures 3a, b, we also used Axiom-based Grad-

CAM [XGrad-CAM (28)] to interpret the decisions made by EC-

HAENet. The class activation maps (CAMs) visualization results

indicated that EC-HAENet could accurately locate the regions

containing tumors, achieving reliable image classification. More

details for generating the heatmap are provided in Appendix B.
3.3 Evaluation of different deep learning
models

Figure 4 illustrates the classification performance of different

deep learning models in Cohort 2, with their Flops and model

parameters. Flops, or Floating-Point Operations Per Second, is a

metric that quantifies a computing system’s performance in

executing mathematical calculations and lower Flops mean better

computational efficiency. We found that models like Swin

Transformer and ConvNeXt, which leverage sliding windows to

introduce local bias or expand the receptive field for better long-

range dependency, achieved the highest accuracy among

existing methods.

EC-HAENet, designed to enhance both local and global feature

extraction (using DenseNet-121 as the local CNN block and Swin

Transformer as the global attention block), achieved the best

classification accuracy (93.3%) across all models without

significantly increasing computational load. Alternatively, EC-

HAENet can be built with lighter-weight transformer models

(such as Efficient ViT) to reduce computational complexity while

maintaining superior accuracy compared to other models. For

example, ConvNeXt paired with EfficientViT achieved 0.91
TABLE 1 Image-level and patient-level classification metrics of EC-HAENet with 95% confidence interval.

Metrics
Cohort 1 Cohort 2

Image-level Patient-level Image-level Patient-level

Accuracy
0.92

(0.91-0.93)
0.93

(0.89-0.96)
0.93

(0.92-0.95)
0.93

(0.86-0.98)

Sensitivity
0.92

(0.90-0.93)
0.98

(0.94-0.99)
0.95

(0.93-0.96)
0.97

(0.90-1.00)

Specificity
0.92

(0.90-0.93)
0.80

(0.66-0.90)
0.92

(0.90-0.94)
0.80

(0.56-0.94)

PPV
0.91

(0.89-0.92)
0.91

(0.78-0.97)
0.94

(0.93-0.96)
0.89

(0.65-0.99)

NPV
0.93

(0.91-0.94)
0.94

(0.89-0.97)
0.93

(0.90-0.94)
0.95

(0.87-0.98)
PPV, positive predictive value; NPV, negative predictive value.
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accuracy, and DenseNet-121 paired with Efficient ViT achieved

0.92 accuracy.

We further validated the generalization ability of our design

principles on other endoscopic image classification tasks on other

endoscopic image classification tasks [Kvasir-v2 dataset (29)]. EC-

HAENet consistently outperformed mainstream models, with

detailed results shown in Supplementary Figure 1 and Appendix C.
3.4 EC-HAENet accuracy vs. biopsy
accuracy

As presented in Table 2, in Cohort 1, biopsies were performed

on 83 patients during endoscopy before surgery. This part included
Frontiers in Oncology 05
50 cases of Cancer, 19 cases of MPR, and 14 cases of pCR.

Compared with postoperative pathology, the biopsy has an

accuracy of 0.78 (95%CI: 0.68-0.86), a sensitivity of 0.75 (0.64-

0.84), and a specificity of 0.93 (0.69-0.99) (Table 2). In Cohort 2, 56

patients underwent biopsy, including 33 cases of Cancer, 12 cases of

MPR, and 11 cases of pCR. The accuracy of the biopsy was 0.71

(0.59-0.82), sensitivity was 0.64 (0.50-0.77), and specificity was 1.00

(0.74-1.00).

Given that the data in Cohort 1 were randomly partitioned into

five folds at the patient level for model development and cross-

validation, and the data in Cohort 2 were solely utilized for testing,

to ensure a fair comparison, we used the average metrics of cross-

validation in Cohort 1, and only use the biopsy data in Cohort to

compare EC-HAENet to biopsy, the patient-level results are shown
FIGURE 3

Feature attribution visualization for decision analysis. (a, b) are correctly classified images, and the heatmap shows that the model can correctly
focus on the lesion areas. (c) MPR is incorrectly predicted as pCR. There are no obvious lesion features in the image. (d) pCR is incorrectly predicted
as cancer. The heatmap shows that the model focuses on the scar areas. pCR, pathological complete response; MPR, major pathological response.
FIGURE 2

Image-level receiver operating curve of EC-HAENet. (a): Cohort 1, (b): Cohort 2.
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in Table 2. EC-HAENet demonstrated significantly better

diagnostic performance in Cohort 1 (0.93 vs. 0.78; accuracy,

P<0.0001) and Cohort 2 (0.93 vs. 0.71; accuracy, P<0.0001). Other

indicators are shown in Table 2. Further analysis of MPR patients

revealed that the accuracy of biopsy in Cohort 1 and Cohort 2 was

0.53 and 0.58, respectively. EC-HAENet was also significantly

superior to biopsy, with an accuracy of 0.79 in Cohort 1 and 0.75

in Cohort 2.
Frontiers in Oncology 06
3.5 Decision analysis with feature
attribution methods

We used the XGrad-CAM method to analyze images

misclassified by the EC-HAENet model. The model failed to

identify 95 images with residual tumors. With XGrad-CAM

analyzing these false negatives, we found that EC-HAENet most

misclassified images with poor image quality (n=35) and MPR
TABLE 2 Patient-level classification metrics of biopsy versus EC-HAENet with 95% confidence interval.

Metrics
Cohort 1 Cohort 2

Biopsy EC-HAENet1 Biopsy EC-HAENet2

Accuracy
0.78

(0.68-0.86)
0.93

(0.89-0.96)
0.71

(0.59-0.82)
0.93

(0.83-0.98)

Sensitivity
0.75

(0.64-0.84)
0.98

(0.94-0.99)
0.64

(0.50-0.77)
0.98

(0.88-1.00)

Specificity
0.93

(0.69-0.99)
0.80

(0.66-0.90)
1.00

(0.88-1.00)
0.77

(0.46-0.95)

PPV
0.98

(0.90-1.00)
0.91

(0.78-0.97)
1.00

(0.88-1.00)
0.91

(0.59-1.00)

NPV
0.43

(0.27-0.61)
0.94

(0.89-0.97)
0.41

(0.25-0.59)
0.93

(0.82-0.99)
PPV, positive predictive value; NPV, negative predictive value.
1Evaluated by five-fold cross-validation using all Cohort 1 data.
2Evaluated using the same data as biopsy in Cohort 2.
FIGURE 4

The classification accuracy (in Cohort 2), flops, and parameters of different deep learning models. The numbers in parentheses indicate accuracy.
The red stars indicate different EC-HAENet designs with varying parameters and flops. flops, floating-point operations per second.
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pathology (n=32) (Figure 3c). Additionally, the model incorrectly

labeled 38 images without residual tumors. XGrad-CAM analysis of

these false positives revealed that EC-HAENet most frequently

misclassified images with poor image quality (n=12) and images

with scars (n=24). As illustrated in Figure 3d, the model erroneously

focused on scar areas, resulting in the incorrect classification of pCR

as non-pCR.
4 Discussion

Our research shows that EC-HAENet can accurately identify

responses in patients with EC after TNT. EC-HAENet consistently

and reliably performed well in two cohorts. Compared to

endoscopic biopsy, EC-HAENet shows higher accuracy in

distinguishing between the presence of tumor residue and

minimal tumor residue.

Patients who follow the Watch and Wait strategy mainly rely

on endoscopy to assess the response of the primary tumor to

treatment. However, the accuracy of endoscopy varies depending

on the technique and experience of the endoscopist and is highly

subjective. The preSANO study showed that the false-negative

rate of endoscopic bite-on-bite biopsy with fine-needle aspiration

for the primary tumor remained high at 10%-23% (7, 8). Our

results resemble those of preSANO. From 2018 to 2024, the

biopsy accuracy consistently exceeded 0.7, with sensitivity

ranging from 0.64-0.75 and specificity from 0.93-1.00.

Nevertheless, the accuracy of MPR remained relatively low,

ranging from 0.53-0.58.

AI has demonstrated significant potential in diagnosing EC. In

comparison to endoscopists, AI can examine every detail in all

images without being affected by distractions or fatigue during

endoscopic examinations. A study from China has indicated that AI

models can accurately detect early esophageal squamous cell

carcinoma with an AUC of 0.95 (95%CI, 0.93-0.97), and

endoscopists’ diagnostic accuracy significantly improves after

referring to the AI model’s prediction results (30). However, there

is limited research on constructing AI models for EC patients after

TNT. DAISUKE et al. evaluated four different algorithms using

endoscopic images of 98 EC patients from 2004 to 2016, the

accuracy, sensitivity, and specificity of four different algorithm

models ranged from 0.64-0.81, 0.68-0.81, and 0.37-0.81%, and the

best-performing model achieved an AUC of 0.83, falling short of the

ideal prediction effect. By contrast, our study demonstrates that

the EC-HAENet performed exceptionally well, with an AUC of over

0.98 in both Cohort 1 and Cohort 2. Furthermore, whether judging

all images or MPR images, the EC-HAENet’s accuracy surpasses

that of biopsy conducted by experienced endoscopists, highlighting

the stability and reliability of the EC-HAENet.

We also summarized several design principles for developing

better endoscopic AI models from extensive experiments. Figure 4

illustrates the model accuracy in Cohort 2, parameters, and flops,

and we have drawn the following conclusions that may help further

refine the model design for accessing pCR after TNT:
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1. Pretraining is necessary for improving model performance:

initializing the model with pre-trained weights from

ImageNet-1K (31) can prevent severe overfitting during

the training process.

2. Local features efficiently access tumor residue: CNNs are

more adept at extracting local features and possess stronger

inductive bias (32). As shown in Figure 4, CNNs achieved

competitive model performance with significantly fewer

parameters. At the same time, when the number of

parameters is comparable (less than 10k), DenseNet-121

demonstrated better classification performance. This may

be related to DenseNet-121’s transition layers, which

facilitate the propagation of local and low-level features

from the shallow layers to the later layers.

3. Global features are beneficial for better generalization

ability: transformer networks like ViT and Swin

Transformer efficiently capture global features. ConvNeXt

is also designed to have a large receptive field, leading to

better long-range dependency ability. As shown in Figure 4,

these models perform better than traditional CNNs on the

external validation dataset.
There are some limitations in this study. Firstly, the EC-

HAENet model was validated using images from a single center,

which may not fully capture the broader variability in image quality

and characteristics across different devices and endoscopists.

Secondly, the model currently lacks the capability to provide real-

time diagnostic feedback, which could increase the workload of

endoscopists and potentially reduce diagnostic efficiency,

particularly for less experienced practitioners. In future work, we

aim to integrate the model into examination devices by connecting

an external workstation to process the signals before feeding them

back to the display screen, enabling real-time assistance to

endoscopists and enhancing their ability to identify complex and

challenging lesions more effectively. And then perform multicenter

external validation to confirm the model’s generalizability and track

long-term patient prognosis.
5 Conclusion

In summary, we developed the EC-HAENet model and

demonstrated superior accuracy and sensitivity in evaluating

responses after TNT, outperforming previous AI results and

endoscopic biopsy. EC-HAENet’s high efficiency supports the

clinical choice of the Watch and Wait strategy in patients post-

TNT and the follow-up development potential of the model.

Additionally, we identified three key principles for improving

endoscopic AI performance in this process: pretraining, efficient

local feature extraction, and robust global feature representation.

Based on our findings, we hope to ultimately enhance the accuracy

of endoscopic biopsy with the assistance of a deep learning model to

provide an ethical and technical basis for making non-

surgical decisions.
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Appendices

A. Details of Model Development.

For the specific details of the model architecture and training,

we employed the encoder of DenseNet-121 as the local dense CNN

blocks and the encoder of the Swin Transformer (base) as our global

attention blocks. The encoders were initialized with weights pre-

trained on ImageNet-1k.

During the training phase, to enhance the extraction of both

local and global features, we initially introduced two linear auxiliary

classifiers consisting of a single fully connected layer. The auxiliary

classifiers were used to train the convolutional and attention

branches independently. Once both branches had converged, we

froze the parameters of the feature extractors in these two branches

and proceeded to train only the ensemble classifier.

Random data augmentation including random rotation, random

clip-resize random vertical and horizontal flips, and brightness-

contrast adjustment was conducted with a probability of 0.3. Focal

loss and sharpness-aware minimization were used for model

optimization to improve model generalization ability. Different

from standard stochastic gradient descent (SGD), which updates

the parameters directly along the direction of gradient descent, SAM

adds perturbations to the model parameters during training to

achieve a flatter loss landscape, leading to better generalization

ability as shown in Equation A.1:

min
w

E(x,y)eD max
jjejj≤r;x,y

L(w + e) + ljjwjj22 (A:1)

where D is the data distribution, L is the loss function, w is the

parameters of the model, jjwjj22 is the regularization term and r
controls the magnitude of weight perturbation.

The learning rate for the pre-trained weights was set to 10−4,

and 10−3 for the randomly initialized auxiliary classifier, and the

learning rate for the ensemble classifier was set to 10−4. The base

optimizer used in SAM was SGD, the e was set to 0.1, and the

weight decay of SGD optimizer was set to 5e−4. During five-fold

cross-validation, we random sample fifteen percent of the training

data as the dev set to select the best hyper-parameters. The batch

size during training was set to 32. The max training epoch for the

training encoder was set to 100, and 50 for the ensemble classifier; if

the classification performance on the dev set did not improve for 10

epochs, the training process would be stopped early, and the

checkpoint with the best classification accuracy and the lowest

loss on the dev set would be saved for evaluation.

B. Attribution Methods.

We utilize Axiom-based Grad-CAM (XGrad-CAM) to generate

visual explanations for model decisions. Specifically, we average the

heatmap generated from the Local Dense CNN Blocks and the

Global Attention Blocks as the final feature attribution results. The

feature maps from the final convolution layer of the DenseNet-121

and the attention map from the last stage of the Swin Transformer.

This integrated approach allows for a more accurate and

interpretable understanding of how the model arrives at its

decisions, by combining the local and global features represented

by the respective blocks and their corresponding maps.
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C. Additional Experiments on the Kvasir Dataset.

We also tested different AI models and our EC-HAENet on the

Kvasir-v2 dataset to evaluate our summarized principles for AI

design for endoscopic image applications. The Kvasir-v2 dataset

provides pathological findings labels, including esophagitis, polyps,

and ulcerative colitis. It contains 3000 images for pathological

findings, and the number of each class is balanced. We random

sample 64% data for training, 16% data for validation, and 20% data

for testing. The data splits were fixed to compare different

models fairly.

We used the same model architecture and training pipeline for

developing models on the Kvasir dataset, except for reducing the

maximum number of training epochs to 50. The experimental

results for Kvasir-v2 are illustrated in Supplementary Figure 1. It

is worth mentioning that the classification of esophagitis, polyps,

and ulcerative colitis is relatively simple, so most existing models

can achieve high accuracy. However, EC-HAENet still achieved the

highest accuracy of 98.5%, which demonstrated the effectiveness of

our proposed design principles.
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