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Objective: This study aims to develop models for predicting microvascular
invasion (MVI) in hepatocellular carcinoma (HCC) patients prior to surgery
using two-dimensional (2D) and three-dimensional (3D) radiomics features
from contrast-enhanced computed tomography (CT). The study compares the
predictive performance of various models and explores the potential of
radiomics to capture tumor spatial heterogeneity.

Materials and methods: A total of 150 hepatocellular carcinoma (HCC) patients
who underwent contrast-enhanced CT examination and curative resection were
included in this study. 2D features from the largest cross-sectional slice, as well
as 3D radiomic features, were extracted from the non-contrast (NC), arterial
phase (AP), portal venous phase (PVP), and balanced phase (BP) images. Feature
selection was performed using the least absolute shrinkage and selection
operator (LASSO) algorithm, and predictive models were constructed using
logistic regression and XGBoost machine learning algorithms. The predictive
performance of the models was evaluated using the area under the receiver
operating characteristic curve (AUC).

Results: The 2D BP model (AUC = 0.801) and 3D PVP model (AUC = 0.876)
showed superior performance among single-sequence models. The 2D multi-
sequence model (AUC = 0.851) outperformed the 3D combined model (AUC =
0.811). Radiomics-based models outperformed clinical feature-based models,
and combining radiomics scores with clinical features improved prediction
accuracy. However, 3D models did not significantly outperform 2D models.
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Conclusion: Both 2D and 3D radiomics models are effective for predicting MVI in
HCC patients preoperatively. While the 3D model captures spatial heterogeneity,
the 2D model excels at capturing local texture features. This study provides new
insights into radiomics in HCC, contributing to its clinical application

and standardization.

microvascular invasion, intratumoral heterogeneity, radiomics, two-dimensional and
three-dimensional models, machine learning

Introduction

Hepatocellular carcinoma (HCC) ranks as the sixth most
common malignancy and the third leading cause of cancer-
related mortality worldwide (1). The World Health Organization
predicts that there will be over 1 million new liver cancer cases by
2025 (2). Surgical resection remains the most effective treatment for
early-stage HCC; however, postoperative recurrence occurs in up to
70% of patients, significantly impacting long-term survival (3).
Predicting HCC recurrence preoperatively and implementing
targeted interventions are pressing and clinically significant.

Plenty of studies have demonstrated that microvascular
invasion (MVI) is an independent risk factor for postoperative
recurrence of HCC (4). As a highly vascularized tumor
characterized by dual blood supply, HCC is prone to MVI, which
represents the most critical pathological mechanism underlying
postoperative recurrence and metastasis. MVI is also one of the key
factors in predicting HCC recurrence (5). Furthermore, MVT is
associated with patient prognosis and serves as an independent risk
factor for both postoperative survival and extrahepatic metastasis in
HCC patients (6).

In recent years, with the deepening of research on MVI and
advances in radiomics, the precise preoperative prediction of MVI
has become feasible. Radiomics, an emerging field, was first
introduced in 2012 by Dutch scholar Lambin et al. (7). Over the
past decade, radiomics has rapidly developed to be a bridge between
medical imaging and precision medicine.

Enhanced computed tomography (CT) is one of the most
commonly employed diagnostic tools for preoperative evaluation
in HCC patients. Prediction models based on radiomic features
derived from enhanced CT images have been widely recognized for
their efficiency in preoperatively predicting MVI in HCC (8, 9).
However, there are discrepancies in specific methodologies and
detailed approaches in existing studies.

In radiomics-based region of interest (ROI) delineation, two
main methods are used: contouring all tumor-involved slices [three-
dimensional(3D)] and contouring only the single axial slice with the
largest tumor area [two-dimensional(2D)]. The advantage of 3D
ROl is evident, as it enables comprehensive analysis of all tumor cell
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populations, including spatial distribution within the tumor, which
has been the predominant method in most previous studies. In
contrast, 2D ROI provides clearer tumor boundaries and greater
reproducibility (10). Moreover, 2D ROI is easier to obtain and
requires significantly less workload and computational resources
compared to 3D ROL Given the extensive spatial heterogeneity
observed within HCC tumors (11), it remains unclear whether
single-layer images representing the largest tumor cross-sectional
area can adequately reflect the overall tumor characteristics in
radiomics studies. To date, no studies in the field of HCC have
reported performance differences between 2D and 3D feature-based
models, and further investigations are warranted.

The aim of this study was to develop radiomics-based predictive
models using 2D and 3D features derived from different phases of
enhanced CT imaging to preoperatively predict MVI in HCC
patients. Additionally, the study sought to compare the predictive
performance of these models and explore whether radiomics can
capture tumor spatial heterogeneity. This work aimed to
standardize the workflow of radiomics research in HCC and
address the methodological inconsistencies observed in prior
radiomics studies.

Materials and methods
Patient selection

This retrospective study utilized clinical information and CT
images obtained from the electronic medical record system and
imaging data system of Shenzhen People’s Hospital. The study was
approved by the Institutional Review Board of Shenzhen People’s
Hospital, with a waiver of informed consent. Consecutive patients
who underwent contrast-enhanced CT scans at our hospital
between July 2015 and June 2022 were included. The sample size
was determined based on feasibility. All patients who met the
eligibility criteria were retrospectively collected. The inclusion
criteria required that all imaging data be uniformly reformatted
using a B-spline interpolation resampling algorithm (12)with a
voxel size of 1.0 mm x 1.0 mm x 1.0 mm. The exclusion criteria
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were as follows: (1) patients receiving preoperative antitumor
treatments; (2) patients with a history of recurrent HCC or
concurrent primary tumors; (3) patients with distant metastases
associated with HCGC; (4) poor image quality; and (5) incomplete
clinical or pathological information.

“Poor image quality” was defined as the presence of significant
motion artifacts, low signal-to-noise ratio, incomplete coverage of
the region of interest (ROI), or other technical issues that hindered
accurate segmentation and feature extraction. Image quality was
independently assessed by two experienced radiologists, and any
discrepancies were resolved via consensus.

After screening, a total of 150 HCC patients were included in
the study (120 males and 30 females, mean age: 57 years, range: 29—
84 years), comprising 46 MVI-positive cases and 104 MVI-negative
cases. Clinical characteristics, including gender, age,
carcinoembryonic antigen (CEA), alpha fetoprotein (AFP),
CA125, and 44 other variables, were extracted from the electronic
medical record system. Patients were randomized to the training
and validation cohorts in a 70:30 ratio. Demographic and clinical
characteristics of all patients are summarized in Table 1.

CT imaging and ROl segmentation

All CT examinations were performed using spiral CT scanners
from the Radiology Department of Shenzhen People’s Hospital,
with identical scanning parameters. The imaging protocol adhered
to the standards recommended by the LI-RADS guidelines (13). 3D
manual segmentation was conducted using 3D Slicer software by a
hepatobiliary surgeon with nine years of clinical experience. ROIs
were delineated along the visible boundaries of the lesions in all
non-contrast (NC), arterial phase (AP), portal venous phase (PVP),
and balanced phase (BP) images, encompassing the entire lesion
volume. Incorporating peritumoral regions into the ROIs has been
demonstrated in multiple studies to enhance the predictive
performance of radiomics models (8, 14). Accordingly, a 3-mm
margin was automatically expanded using 3D Slicer, with manual
removal of any regions extending beyond the liver volume to ensure
the final ROI encompassed the peritumoral area. The final
segmentation results were validated by a senior hepatobiliary
surgeon with 14 years of clinical experience. Subsequently, the
software automatically generated 2D images of the tumor’s largest
cross-sectional area. To assess intra-observer reproducibility, a
subset of ROIs was randomly re-annotated by the same
hepatobiliary surgeon on the imaging dataset. Intraclass
correlation coefficient (ICC) analysis demonstrated good
consistency between the two sets of annotations.

Radiomics feature extraction

Radiomics features were extracted using the Radiomics plugin
package in 3D Slicer 5.4.0 for each phase: NC, AP, PVP, and BP.
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The B-spline interpolation resampling algorithm (12) was applied
to standardize the image format, with a voxel spacing of 1.0 mm x
1.0 mm x 1.0 mm. The same extraction procedure was applied to
wavelet-transformed derivative images (15) to enhance the
dimensionality of the image data.

Each dataset comprised 1,130 features, with a one-to-one
correspondence established to ensure comparability. These
features included first-order shape features, first-order statistical
features, second-order texture features, higher-order features, and
wavelet-transformed features, quantitatively representing the
imaging information of the corresponding tumor regions. Prior to
further processing, the extracted features were dimensionless.
Before further processing, all extracted features were standardized
by non-dimensionalization. The Min-Max scaler function in
Python was applied to normalize the training dataset, and the
same scaling parameters were subsequently applied to the
validation set. This procedure was employed to accelerate model
training and to mitigate the potential impact of disproportionately
scaled features on model performance.

Radiomics feature selection: embedded
least absolute shrinkage and selection
operator

Most of the extracted radiomic features were not associated
with the outcome. LASSO was employed to select a small subset of
features most relevant to the outcome from the vast number of
extracted features. Additionally, among the outcome-associated
features, multiple highly correlated features might exist. By
introducing L1 regularization, LASSO reduces the regression
coefficients of some features to zero, thereby automatically
selecting key features and effectively preventing overfitting,
addressing the issues arising from multicollinearity (16).

2D and 3D features from NC, AP, PVP, and BP images in the
eight radiomic groups were selected via the LASSO algorithm. The
most predictive features were selected for model construction. In
addition, we combined all four imaging phases and separately
identified the optimal features from the hybrid ROIs across 2D
and 3D datasets. These selected features were then applied to the
validation cohort to confirm model generalizability.

Model construction and evaluation

Eight predictive models were initially constructed using the 2D
and 3D features selected from NC, AP, PVP, and BP. Both
traditional logistic regression and XGBoost machine learning
algorithms were used. To optimize the hyperparameters of the
XGBoost model, a grid search strategy was employed. The
parameter set yielding the highest mean AUC on the validation
cohort was selected for the final model. The model’s predictive
performance for MVI was evaluated using the receiver operating
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TABLE 1 Baseline characteristics of patients (grouped by clinical relevance).

. Trainin Testin
Variables Total (n=150) cohort(gn=106) cohor?(n=44)
Demographics
m Gender, n (%) 0.226
Male 30 (20) 18 (17) 12 (27)
Female 120 (80) 88 (83) 32 (73)
m Age, Mean + SD 56.99 + 11.72 57.53 + 11.39 55.7 + 12.53 0.407
m BMI, Median (IQR) 23.27 (21.02-25.62) 23.2 (21.01-25.89) 23.55 (21.66-25.07) 0.828
Liver disease status
m Liver Cirrhosis, n (%) 1.000
No 72 (48) 51 (48) 21 (48)
Yes 78 (52) 55 (52) 23 (52)
= HBsAg, n (%) 0.687
Negative 43 (29) 32 (30) 11 (25)
Positive 106 (71) 73 (69) 33 (75)
Not tested 1(1) 1(1) 0 (0)
u HCVAD, n (%) 0.631
Negative 145 (97) 103 (97) 42 (95)
Positive 5(3) 3(3) 2 (5)
Tumor characteristics
u MV, n (%) 1.000
Absent 104 (69) 73 (69) 31 (70)
Present 46 (31) 33 (31) 13 (30)
m Tumor Size, mm, Median (IQR) 40.5 (25-62) 35.5 (24-61) 50.5 (28-66.25) 0.088
Hematological parameters
m Hemoglobin, Mean + SD 140.31 + 17.39 141.2 + 18.59 138.18 + 14.06 0.281
u Platelets, Median (IQR) 192 (138-233.25) 200.5 (152.25-242.75) 171.5 (126-197) 0.004
w Lymphocytes, Median (IQR) 1.67 (1.27-2.2) 1.69 (1.32-2.28) 1.66 (1.17-2.02) 0.638
u Neutrophils, Median (IQR) 3.15 (2.4-4.19) 3.32 (2.46-4.5) 2.82 (2.3-3.55) 0.030
= Monocytes, Median (IQR) 0.48 (0.37-0.64) 0.5 (0.38-0.64) 0.44 (0.32-0.62) 0.139
Liver function tests
w Albumin, Median (IQR) 41.75 (39.12-44.4) 42.25 (39.7-44.65) 40.65 (38.42-43.23) 0.077
w Total Protein, Median (IQR) 69.85 (66.82-73.4) 69.95 (67.25-73.88) 69.75 (66.75-72.03) 0.356
u Total Bilirubin, Median (IQR) 12.65 (9.12-16.48) 13.7 (9.5-16.48) 11.95 (8.9-15.98) 0.521
u Direct Bilirubin, Median (IQR) 4.56 (3.34-5.9) 4.94 (3.35-5.9) 4.06 (3.34-5.78) 0.234
u Indirect Bilirubin, Median (IQR) 7.96 (5.56-11.04) 7.88 (5.77-11.09) 8.1 (5.15-10.53) 0.740
m ALT, Median (IQR) 30 (23-40.75) 29 (23-40.75) 31.5 (22.75-40.25) 0.812
m AST, Median (IQR) 29 (23-39.5) 28.5 (23.25-37.75) 30 (22-41.75) 0.841
u GGT, Median (IQR) 36.5 (26-72.5) 36 (25-63.5) 37.5 (26.75-98) 0.300
u ALP, Median (IQR) 74 (61-94) 73 (61-94) 76 (63-96.25) 0.857
(Continued)
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TABLE 1 Continued

Variables

Total (n=150)

Training

cohort(n=106)

Testing
cohort (n=44)

10.3389/fonc.2025.1590655

Liver function tests

m LRF_15min, Median (IQR) 4.3 (2.82-6.38) 425 (2.5-6.7) 445 (2.9-6.1) 0.740
Coagulation profile
® PT, Median (IQR) 12.15 (11.53-13.07) 12.15 (11.5-13.07) 12.15 (11.67-12.95) 0.833
= APTT, Median (IQR) 31.95 (29.63-34.5) 31.8 (29.6-34.48) 32.15 (30.08-34.5) 0.825
» TT, Median (IQR) 162 (15-17.38) 16 (14.9-17.28) 16.5 (15.7-17.45) 0.072
m INR, Median (IQR) 1 (0.96-1.06) 0.99 (0.95-1.06) 1.02 (0.98-1.06) 0.126
m Fibrinogen, Median (IQR) 2.92 (2.53-3.51) 2.88 (2.48-3.54) 3.04 (2.64-3.43) 0.537
Metabolic parameters
m Blood Glucose, Median (IQR) 5.08 (4.89-5.64) 5.08 (4.91-5.73) 5.08 (4.82-5.33) 0.358
m BUN, Median (IQR) 4.94 (4.08-5.85) 5.06 (4.11-5.96) 4.39 (3.7-5.52) 0.056
u Creatinine, Median (IQR) 27 (24-30.23) 27 (24-30) 28.5 (24-32) 0.624
Tumor markers
m AFP, Median (IQR) 29.15 (3.48-297.15) 29.15 (3.4-316.8) 28.85 (3.59-267.85) 0.785
m CEA, Median (IQR) 2.02 (1.38-2.92) 2.02 (1.31-2.95) 2.12 (1.51-2.68) 0.964
m CA125, Median (IQR) 10.38 (6.56-15.48) 10.13 (6.56-14.83) 11.16 (7.07-17.45) 0.355
m CA199, Median (IQR) 16.74 (9.63-28.91) 17.06 (9.54-29.09) 16.3 (11.52-26.62) 0.964
Composite indices
m Lymphocyte/Monocyte Ratio, Mean + SD 3.7 £ 1.44 3.64 +1.47 3.83 +1.35 0.457
= NLR, Median (IQR) 1.89 (1.35-2.57) 1.98 (1.43-2.66) 1.7 (1.3-2.52) 0.326
m PLR, Median (IQR) 109.46 (81.82-141.52) | 113.5 (87.28-157.66) 92.49 (74.84-123.62) 0.031
u SII, Median (IQR) 33697 393.5 (252.71-611.15) 287.65 (168.45-424.92) 0.010
(192.94-552.94)
= APRI, Median (IQR) 0.36 (0.25-0.58) 0.34 (0.24-0.53) 0.42 (0.28-0.73) 0.096
®m PNI, Median (IQR) 51.17 (46.71-53.33) 51.65 (47.24-53.74) 49.95 (46.05-52.55) 0.121
m ALRI, Median (IQR) 17.93 (11.47-27.47) 16.95 (11.29-27.16) 19.04 (12.49-30.43) 0.450
m AST/Neutrophil Ratio, Median (IQR) 9.59 (6.38-15.19) 9.38 (6.15-15.02) 10.41 (6.68-15.67) 0.279
u LF Index, Median (IQR) 1.67 (1.07-2.78) 1.6 (1.05-2.63) 2.23 (1.24-2.95) 0.090

Group comparisons for continuous and categorical variables were performed using TableOne, with the automatic selection of appropriate descriptive methods (e.g., interquartile range,

frequency, and percentage, mean and standard deviation) and statistical tests (such as t-test, Mann-Whitney U test, Chi-square test, or Fisher’s exact test).

characteristic (ROC) curve and the area under the curve (AUC).
Subsequently, a combined radiomics model was constructed, which
incorporated the 2D and 3D features from all four phases.
Afterward, the optimal 2D and 3D radiomics-based models
were selected from all the models. Radiomics scores were
constructed using LASSO regression coefficients, and a combined
model based on radiomics clinical features was further developed by
combining the patient’s demographic and laboratory data, aiming
to explore the best preoperative prediction approach for MVI. After
the training phase, the model’s performance was evaluated in the
test cohort. Shapley values (17) were then utilized to rank features
and determine their contribution and importance. These results
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provided evidence for evaluating the intratumoral heterogeneity of
HCC (Figure 1).

In this study, all statistical analyses were performed using the R
language (version 4.4.1). Data preprocessing and descriptive statistics
were conducted using the tidyverse and CBCgrps packages. Feature
selection was performed through LASSO regression via the glmnet
package, while cross-validation was performed using the caret
package. The prediction models were constructed using xgboost,
while hyperparameter tuning and model evaluation were carried out
through caret. Model performance was assessed via AUC, and
internal validation and calibration analysis were performed using
the rms package. Model interpretation was facilitated through SHAP
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FIGURE 1

This flowchart illustrates the research process of predicting hepatocellular carcinoma (HCC) using CT radiomics. The study first collected
preoperative contrast-enhanced CT data from 150 patients and performed tumor segmentation using 3D Slicer to label 2D and 3D regions. Then,
shape, histogram, and texture features were extracted from both original and wavelet-filtered images. The most predictive features were selected
using the LASSO method, and models were constructed using XGBoost and logistic regression with both single-modality (radiomics and clinical
features) and multimodal models (combining 3D and 2D data). Finally, the model's predictive performance was evaluated using ROC curves,

heatmaps, and feature importance rankings.

values, while the models were visualized using pheatmap and ggplot2.
The 10-fold cross-validation was used for all analyses to ensure the
robustness and generalizability of the models.

Results
Patient characteristics

A total of 150 eligible patients were included in this study.
Table 1 presents the statistical data and clinical characteristics of the
106) and the testing cohort (n = 44).
Histopathological examination revealed that the MVI status was

training cohort (n

balanced across the training and testing cohorts (p = 1).

Extracted radiomic features
A total of 1130 features were extracted from eight sets of ROIs

across four sequences in both 2D and 3D configurations. An
unsupervised clustering algorithm was employed to explore the
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potential correlations among these features. Heatmaps were
subsequently generated to visualize the correlations between 2D
and 3D regions, as shown in Figure 2.

Our results indicated that the overall correlation between 2D
and 3D features was weak; however, a small number of features
from all four sequences demonstrated strong correlations. The
correlation was strongest during the balance phase of 2D and 3D
features, whereas the correlation during the PVP was weakest.
These findings provided further insight into the interpretation of
subsequent prediction model outcomes.

Feature dimensionality reduction and
selection

In the 2D ROJ, seven, nine, six, and twelve MVI-related features
were identified for the NC, AP, PVP, and BP, respectively. For the
3D ROIL the MVI-related features identified across these four
phases were ten, six, six, and seven. Among the 63 features
selected from the eight sets of imaging data, 41 were
wavelet features.
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FIGURE 2

[llustrates the correlation of features in NC, AP, PVP, and BP in both 2D and 3D imaging modalities, with red indicating strong correlations and blue
representing the inverse relationship. The features analyzed include Shape, First Order, GLCM (Gray Level Co-occurrence Matrix), GLDM (Gray Level
Dependence Matrix), GLRLM (Gray Level Run Length Matrix), GLSZM (Gray Level Size Zone Matrix), and NGTDM (Neighboring Gray Tone Difference

Matrix).

Performance and evaluation of predictive
models

Both logistic regression and machine learning methods were
applied to all models. The performance of all 24 predictive models is
summarized in Table 2, and the ROC curves of these models are
depicted in Figure 3. In the models utilizing features extracted from
single-sequence images in 16 cases, the 2D single-sequence model
achieved the best AUC in the test set at the BP (logistic regression,
AUC = 0.801, 95% CI: 0.663-0.94). The 3D single-sequence model
exhibited the best AUC for the PVP (logistic regression, AUC =
0.876, 95% CI: 0.753-0.999).

Logistic regression and XGBoost models were constructed using
features extracted from all four sequences in both 2D and 3D
imaging. The 2D combined model yielded an AUC of 0.851 (logistic
regression, 95% CI: 0.726-0.976) in the test set, while the 3D
combined model achieved an AUC of 0.811 (XGBoost, 95% CI:
0.648-0.975). These results indicated that both the 2D and 3D
models demonstrated strong predictive performance for MVI.
However, 3D radiomics did not provide a significant advantage
and, in some cases, performed worse than the 2D model,
particularly in the combined models.

Frontiers in Oncology

Among the 44 different clinical features, LASSO regression
identified four features (fibrinogen, CEA, AFP, and tumor
diameter) for constructing a predictive model. The model based
only on clinical features achieved an AUC of 0.71 in the test set
(XGBoost, 95% CI: 0.535-0.886).

Finally, the 3D PVP and 2D BP models exhibiting the best
performance were selected. These models were compressed into an
imaging score, R-score, based on the A coefficient. A predictive
model was constructed that incorporated the R-score along with
four clinical features identified. The clinical-radiomics combined
model achieved an AUC of 0.818 in the test set (logistic regression,
95% CI: 0.654-0.981). Our findings suggested that while clinical
features were able to predict MVI preoperatively, their predictive
performance was inferior to that of radiomics. Furthermore,
incorporating radiomics score and clinical features in models
improved the predictive power. However, the combined model
was not the most efficient.

Among the twelve groups of twenty-four models, eight logistic
regression models outperformed others, while four XGBoost
models demonstrated superior results. Overall, although XGBoost
showed better performance in the training set, it did not exhibit an
advantage over the logistic regression models in the validation.
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TABLE 2 Presents the predictive performance of all the models constructed in this study.

3Dtest cohort

2D test cohort 3D train cohort

2D train cohort

Logistic regression

NC

0.813 (0.733-0.892)

0.777 (0.619-0.934)

0.8 (0.715-0.885)

0.721 (0.561-0.881)

AP

0.789 (0.694-0.883)

0.736 (0.565-0.913)

0.825 (0.74-0.91)

0.73 (0.573-0.886)

PVP

0.762 (0.671-0.853)

0.739 (0.545-0.934)

0.789 (0.715-0.881)

0.876 (0.753-0.999)

BP
R-R Hybrid
Xgboost

NC

0.87 (0.793-0.948)

0.836 (0.75-0.922)

0.807 (0.725-0.89)

0.801 (0.663-0.94)

0.851 (0.726-0.976)

0.623 (0.428-0.818)

0.738 (0.698-0.869)

0.812 (0.725-0.9)

0.823 (0.746-0.901)

0.72 (0.558-0.881)

0.799 (0.655-0.943)

0.736 (0.572-0.9)

AP

0.834 (0.748-0.921)

0.768 (0.597-0.939)

0.839 (0.757-0.92)

0.72 (0.555-0.885)

PVP

0.786 (0.697-0.875)

0.742 (0.573-0.911)

0.82 (0.739-0.901)

0.816 (0.686-0.947)

BP

R-R Hybrid

Clinical logistic

0.848 (0.764-0.924)

0.831 (0.747-0.915)

0.774 (0.637-0.912)

0.806 (0.666-0.947)

Train cohort

0.726 (0.62-0.831)

0.818 (0.738-0.8969)

0.833 (0.75-0.916)

0.691 (0.524-0.858)

0.811 (0.648-0.975)

Train cohort

0.705 (0.537-0.874)

C-R Hybrid logistic

0.785 (0.635-0.934)

0.81 (0.722-0.898)

Clinical Xgboost

C-R Hybrid Xgboost

0.808 (0.72-0.897)

0.833 (0.75-0.917)

0.71 (0.535-0.886)

0.803 (0.636-0.969)

NC, Non-contrast model; AP, Arterial phase model; PVP, Portal venous phase model; BP, Balanced phase model; R-R Hybrid, Combined radiomics model utilizing two distinct imaging
sequences; Clinical, Model based solely on clinical indicators; C-R Hybrid, Clinical-radiomics hybrid model incorporating clinical variables (e.g., CEA, AFP, fibrinogen, tumor diameter)

alongside radiomic features from 3D PVP and 2D BP images.

Subsequently, Shapley analysis was performed on both the 2D
and 3D combined models. Figure 4 presents the key radiomic
features selected for constructing the models, along with their
classification and contribution rankings. The results showed that
the 2D combined model predominantly selected features from BP,
whereas the 3D model favored features from the PVP. In contrast,
among the single-sequence models, the performance for both 2D
and 3D models was the best. Furthermore, there was significant
feature overlap across different sequences, suggesting substantial
collinearity among the selected radiomic features from various
sequences. This indicated that the optimal features identified by
LASSO largely originated from a single sequence. This finding
contrasted with the results illustrated in the heatmap for the
overall feature correlations.

In the 2D combined model, the contributions of various
features were relatively balanced. However, in the 3D combined
model, a single feature, wavelet-LLH-glszm-Small-Area-Emphasis,
contributed over 60%. One of the dominant features in the model
was derived from wavelet decomposition and GLSZM, which
typically reflects the presence of numerous small and
homogeneous grayscale zones at specific scales and orientations.

Frontiers in Oncology

This radiomic feature represents subtle intratumoral texture
heterogeneity, which is closely associated with pathological
characteristics such as necrosis, fibrosis, and MVI. These factors
are generally indicative of tumor aggressiveness and poor prognosis.
Therefore, the predominance of this texture feature in the radiomics
model may be attributed to its capacity to capture the intricate
spatial heterogeneity within the tumor, thereby enhancing the
model’s ability to predict MVI accurately. However, over-reliance
on a single feature can undermine the model’s robustness. If this
feature is influenced by external conditions (e.g., image quality, data
acquisition errors, or patient condition variations), the model’s
performance may drastically decline. This could be one reason
why the performance of the combined model incorporating 3D
features did not meet expectations.

Discussion

In the single-sequence radiomics models, the overall
performance between 2D and 3D models was similar. A possible
reason for this is the overlapping data characteristics between 2D
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FIGURE 3

In all 12 groups of 24 logistic regression and XGBoost model test sets, the optimal modeling method was selected. Figures NC/AP/PVP/BP
demonstrate the discriminative ability of different single-sequence 2D and 3D models, while the 2D-3D figure presents the ROC curves of the 2D
and 3D combined radiomics models. The final figure shows the ROC curves for the C: Clinical Indicator Model and C-R: Clinical Indicator and

Radiomics Combined Model.

and 3D ROIs. In liver cancer radiomics, some features across
different slices of certain sequences may be quite similar.
Although the 3D model processes all slices, it does not capture
significantly different information. The imaging features of MVI
may already be adequately reflected in the local regions of the
tumor. Additionally, a large number of texture features and wavelet
transform features were extracted, and SHAP analysis also indicated
(Figure 3) that for some sequences, MVI prediction mainly relied on
texture features rather than spatial features, thereby reducing the
need for spatial information. As a result, the spatial information
contribution of the 3D model may be weakened.

In the field of liver cancer, no related research has discussed the
advantages and disadvantages of 2D and 3D ROIs. However, similar
conclusions have been reached in comparable studies in other
cancers. In lung cancer, Zhang et al. (18) reported that the
predictive performance of 2D and 3D models using the CT plain
scan phase did not differ across various tasks (such as
lymphovascular invasion (LVI), pleural invasion (VI), and pT
staging prediction) (19). Another study compared the
performance of 2D and 3D MRI features in meningioma grading
and found similar predictive performance between the two (20). A
multi-center study compared the performance of 2D and 3D CT
radiomics in gastric cancer characterization and concluded that 2D
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features were slightly superior in most tasks. These studies noted
common disadvantages of 3D models. 3D image annotation is
performed layer-by-layer, which is time-consuming, labor-
intensive, and noisy. Manual delineation of 3D tumors often
results in unclear boundaries, which can affect predictive
accuracy. Additionally, the Z-axis thickness in 3D ROI
delineation is typically coarser than the planar resolution along
the X and Y axes, leading to loss of detailed information due to
inconsistent spatial resolution, while 2D imaging can capture the
clearest information in a single maximal cross-section.

However, the aforementioned reasons cannot explain why the
2D ROI model demonstrates better predictive performance than the
3D model during BP, while the 3D ROI model outperforms the 2D
model during the PVP. A correlation analysis of both 2D and 3D
features was conducted, as shown in Figure 3. The correlation
between 2D and 3D features was strongest during the BP and
weakest during the PVP, which aligned with the results of the
predictive models. Based on this correlation analysis, it can be
speculated that the observed findings may be attributed to the
intrinsic characteristics of HCC. Compared to other tumors, HCC
may be more heterogeneous. Its growth pattern is typically irregular
and infiltrating, often extends beyond a single plane and tends to
invade surrounding tissues (1). Additionally, HCC is often highly
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Illustrates the effects of each feature value on the model output and the importance of the features that contribute most to predicting MVI, with the
total contribution scores of all features summing to 1. The combined 2D and 3D models are used to interpret the selected features for model
construction. The upper part of the figure shows the 2D combined model and the lower part shows the 3D combined model. The SHAP values
along the x-axis are color-coded, with high positive SHAP values (red) indicating a positive correlation with the prediction of MVI, and low negative
SHAP values (blue) indicating a negative correlation. The point cloud plot displays the SHAP values of each feature for every individual sample. The
horizontal axis represents the SHAP values, where positive values contribute to an increased prediction and negative values contribute to a
decreased prediction, and the vertical axis lists the features ranked by importance. The color of each point reflects the magnitude of the feature
value for the corresponding sample, with red indicating high feature values and blue suggesting low feature values. The numbers following the
features represent the sequence from which they are derived: none indicates BP, 1 indicates PVP, 2 indicates AP, and 3 indicates unenhanced phase.

vascularized (21), especially during the arterial and PVPs, where the
tumor shows significant enhancement in blood flow. These vascular
characteristics are expressed in a 3D distribution across different
layers. The PVP images better reflect the spatial structure, density
variations, microvascular distribution, and perfusion differences
inherent to HCC heterogeneity. The 3D ROI can provide more
comprehensive information than a single 2D plane.

During the BP, the 2D model outperformed the 3D model. This
may be due to the unique features of the BP in predicting MVTI: the
BP better reflects the tissue permeability characteristics associated
with MVI (22), where the contrast agent achieves relative balance
between the tumor and surrounding tissues. At this point, the tissue
permeability of the tumor and microvascular characteristics become
more prominent. In 2D images, these local texture and density
variations can be more clearly presented, effectively offering features
required for MVI prediction. Additionally, the potential
“information dilution” issue of 3D integration may be another
explanation. The 3D model combines features from multiple slices,
which may dilute the predictive power of local features during
the BP.

Regardless of the 2D or 3D model, wavelet transform features
played a crucial role. This suggests that both models rely on local
texture details from certain frequency sub-bands. The stronger
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results from the 2D model imply that these texture details may
not exclusively come from the local regions where MVI occurs;
texture details from other areas of the tumor can also reflect the
presence of MVI. From a radiomic perspective, this provides further
evidence for the heterogeneity of liver cancer.

In comparison, a model based on clinical features was developed
using the same method. The model also demonstrated predictive
ability for MVI preoperatively. Among 44 clinical indicators, tumor
size, and AFP had the most significant predictive power, which is
consistent with most prior studies (23, 24). However, the clinical
feature-based model did not outperform the radiomics-based models
from any sequence.

Next, the optimal radiomic features from the 2D BP and the 3D
PVP in the single-sequence models were combined with clinical
features to construct a multimodal radiomics-clinical combined
model. Our results indicate that incorporating radiomic scores and
clinical features in a model enhances the predictive ability. This
conclusion aligns with findings from several previous studies. Xia
et al. (25) constructed a clinical-radiomics semantic feature-
radiomic score prediction model, which predicted MVI status
with an AUC of 0.86 (95% CI: 0.79, 0.92), and the external test
set yielded an AUC of 0.84 (95% CI: 0.78, 0.91). Compared to the
pure radiomic model, the combined model provided a greater net

frontiersin.org


https://doi.org/10.3389/fonc.2025.1590655
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yin et al.

benefit within a reasonable threshold probability range. A
multicenter study by Xu et al. Xu (9) has suggested that the
accuracy of the radiomic model in predicting MVI outperforms
the clinical logistic regression model based on AST, tumor size, and
AFP (AUCs in the validation cohort were 0.750 and 0.648,
respectively). However, in this study, it was not the optimal
predictive approach, which may be attributed to various factors,
including sample size and the weaker noise resistance of the
3D model.

In this study, LASSO was employed to select 63 features from a
total of eight sets of imaging data, with a significant number of
wavelet transform features identified. Notably, some of these
wavelet features appeared repeatedly across different sequences of
2D and 3D images. This suggests that the prediction of radiomics-
based model for MVT is highly dependent on local texture features
and that there exists a strong collinearity between certain features
across different sequences of contrast-enhanced imaging. A
correlation analysis of the features was conducted, and a heatmap
was plotted to further substantiate this observation.

The findings by Ni et al. (26) indicate that the dimensionality
reduction and model construction methods employed for radiomic
features can impact the predictive performance of the resulting
radiomics-based models. LASSO dimensionality reduction
combined with gradient boosting decision trees (GBDT) yields
the highest prediction accuracy, and the LASSO + GBDT method
outperforms other approaches when the threshold probability
exceeds 0.22. Both GBDT and XGBoost are ensemble methods
that use multiple weak learners (typically decision trees) to enhance
model performance. XGBoost is an extension of GBDT that focuses
on improving performance and efficiency. It incorporates several
enhancements over the GBDT algorithm, including regularization
terms, more efficient node splitting, and learning rate decay, which
result in superior speed and performance compared to traditional
GBDT (27).

Based on Ni et al.’s conclusion, a LASSO + XGBoost predictive
model was constructed, with a logistic regression model used for
comparison. However, in this study, although XGBoost
demonstrated better performance on the training set, it did not
show an advantage over the logistic regression model in the
validation set. This result may be attributed to the complexity of
XGBoost’s tree model structure, which showed slight overfitting in
the validation set. If the relationship between CT imaging features
and liver cancer MVI is not highly nonlinear, the advantages of
XGBoost may not be fully realized, potentially even leading to
reduced predictive performance. Logistic regression might be more
suitable for this relatively simple feature representation. Notably, in
comparison with the logistic regression model, the XGBoost model
often performed better with the 3D models, likely due to the higher
complexity of the 3D datasets. On the other hand, XGBoost models
involve numerous parameters (such as learning rate, tree depth, and
regularization parameters), and achieving optimal performance
requires careful parameter tuning. Since the investigators in this
study were clinicians with limited experience in tuning complex
machine learning models, this may have contributed to the
suboptimal performance of the machine learning models.

Frontiers in Oncology

11

10.3389/fonc.2025.1590655

Overall, the radiomics models based on various sequences of
contrast-enhanced CT images demonstrated a certain degree of
predictive ability. The radiomics combined model outperformed
some single-sequence models, though it did not achieve the best
results. Among single-sequence models, the 3D PVP model exhibited
the highest accuracy, while the 2D BP model showed the highest
AUC. Ma et al. (28) conducted a study involving 157 patients with
histologically confirmed HCC, with or without MVT, and found that
radiomics features from AP, PVP, and BP of enhanced CT imaging
could all be used to construct predictive models for liver cancer MVI
They found that the PVP offered superior predictive performance
compared to AP and BP, as well as multi-sequence models. Our
findings are partially consistent with the conclusions by Ma et al;
however, in their study, the combined model directly combined
multi-sequence radiomic features, achieving high AUC in the
training set, but with suboptimal accuracy, specificity, sensitivity,
and AUC in the validation set. A preoperative radiomics model for
MVI prediction (29) was similarly constructed, but the training and
testing datasets showed considerable differences, which may have
been caused by a mismatch in the number of features and the sample
size of the training set, leading to model overfitting. Their conclusions
are not sufficiently rigorous.

This study has several limitations. The single-center retrospective
design inevitably leads to sample selection bias. Additionally, with a
relatively small sample size, the advantages of more complex
combined models are restricted due to the limited training data.
Furthermore, our predictive model did not incorporate semantic
features based on imaging interpretations by physicians. Moreover,
variations in clinical issues, as well as image acquisition and
reconstruction protocols, may influence the results. Therefore,
further validation is required to improve the generalizability of the
conclusions to other diseases and clinical contexts.

Conclusion

This study successfully developed preoperative predictive
models for MVI in HCC patients based on 2D and 3D radiomic
features from contrast-enhanced CT imaging. The performance of
different ROI delineation methods and imaging sequences was
systematically compared. The results indicate that the 2D PVP
model excels in capturing local texture features, while the 3D AP
model demonstrates greater advantages in reflecting tumor spatial
heterogeneity. Overall, the radiomic model outperforms traditional
clinical-based predictive models, although the 3D model did not
show a significantly better overall predictive performance than the
2D model.

The study further highlights the sensitivity of radiomic features
to tumor heterogeneity, particularly in the expression of texture and
spatial characteristics. Wavelet transform features are extensively
selected and significantly influence prediction results. This
underscores the pivotal role of radiomics in capturing the
complexity and heterogeneity within tumors. This research
provides robust evidence for radiomic studies in HCC, advancing
preoperative MVI prediction techniques and offering critical
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insights for personalized and precise diagnosis and treatment of
liver cancer.
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