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Objective: This study aims to develop models for predicting microvascular

invasion (MVI) in hepatocellular carcinoma (HCC) patients prior to surgery

using two-dimensional (2D) and three-dimensional (3D) radiomics features

from contrast-enhanced computed tomography (CT). The study compares the

predictive performance of various models and explores the potential of

radiomics to capture tumor spatial heterogeneity.

Materials and methods: A total of 150 hepatocellular carcinoma (HCC) patients

who underwent contrast-enhanced CT examination and curative resection were

included in this study. 2D features from the largest cross-sectional slice, as well

as 3D radiomic features, were extracted from the non-contrast (NC), arterial

phase (AP), portal venous phase (PVP), and balanced phase (BP) images. Feature

selection was performed using the least absolute shrinkage and selection

operator (LASSO) algorithm, and predictive models were constructed using

logistic regression and XGBoost machine learning algorithms. The predictive

performance of the models was evaluated using the area under the receiver

operating characteristic curve (AUC).

Results: The 2D BP model (AUC = 0.801) and 3D PVP model (AUC = 0.876)

showed superior performance among single-sequence models. The 2D multi-

sequence model (AUC = 0.851) outperformed the 3D combined model (AUC =

0.811). Radiomics-based models outperformed clinical feature-based models,

and combining radiomics scores with clinical features improved prediction

accuracy. However, 3D models did not significantly outperform 2D models.
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Conclusion: Both 2D and 3D radiomics models are effective for predicting MVI in

HCC patients preoperatively. While the 3D model captures spatial heterogeneity,

the 2D model excels at capturing local texture features. This study provides new

insights into radiomics in HCC, contributing to its clinical application

and standardization.
KEYWORDS
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Introduction

Hepatocellular carcinoma (HCC) ranks as the sixth most

common malignancy and the third leading cause of cancer-

related mortality worldwide (1). The World Health Organization

predicts that there will be over 1 million new liver cancer cases by

2025 (2). Surgical resection remains the most effective treatment for

early-stage HCC; however, postoperative recurrence occurs in up to

70% of patients, significantly impacting long-term survival (3).

Predicting HCC recurrence preoperatively and implementing

targeted interventions are pressing and clinically significant.

Plenty of studies have demonstrated that microvascular

invasion (MVI) is an independent risk factor for postoperative

recurrence of HCC (4). As a highly vascularized tumor

characterized by dual blood supply, HCC is prone to MVI, which

represents the most critical pathological mechanism underlying

postoperative recurrence and metastasis. MVI is also one of the key

factors in predicting HCC recurrence (5). Furthermore, MVI is

associated with patient prognosis and serves as an independent risk

factor for both postoperative survival and extrahepatic metastasis in

HCC patients (6).

In recent years, with the deepening of research on MVI and

advances in radiomics, the precise preoperative prediction of MVI

has become feasible. Radiomics, an emerging field, was first

introduced in 2012 by Dutch scholar Lambin et al. (7). Over the

past decade, radiomics has rapidly developed to be a bridge between

medical imaging and precision medicine.

Enhanced computed tomography (CT) is one of the most

commonly employed diagnostic tools for preoperative evaluation

in HCC patients. Prediction models based on radiomic features

derived from enhanced CT images have been widely recognized for

their efficiency in preoperatively predicting MVI in HCC (8, 9).

However, there are discrepancies in specific methodologies and

detailed approaches in existing studies.

In radiomics-based region of interest (ROI) delineation, two

main methods are used: contouring all tumor-involved slices [three-

dimensional(3D)] and contouring only the single axial slice with the

largest tumor area [two-dimensional(2D)]. The advantage of 3D

ROI is evident, as it enables comprehensive analysis of all tumor cell
02
populations, including spatial distribution within the tumor, which

has been the predominant method in most previous studies. In

contrast, 2D ROI provides clearer tumor boundaries and greater

reproducibility (10). Moreover, 2D ROI is easier to obtain and

requires significantly less workload and computational resources

compared to 3D ROI. Given the extensive spatial heterogeneity

observed within HCC tumors (11), it remains unclear whether

single-layer images representing the largest tumor cross-sectional

area can adequately reflect the overall tumor characteristics in

radiomics studies. To date, no studies in the field of HCC have

reported performance differences between 2D and 3D feature-based

models, and further investigations are warranted.

The aim of this study was to develop radiomics-based predictive

models using 2D and 3D features derived from different phases of

enhanced CT imaging to preoperatively predict MVI in HCC

patients. Additionally, the study sought to compare the predictive

performance of these models and explore whether radiomics can

capture tumor spatial heterogeneity. This work aimed to

standardize the workflow of radiomics research in HCC and

address the methodological inconsistencies observed in prior

radiomics studies.
Materials and methods

Patient selection

This retrospective study utilized clinical information and CT

images obtained from the electronic medical record system and

imaging data system of Shenzhen People’s Hospital. The study was

approved by the Institutional Review Board of Shenzhen People’s

Hospital, with a waiver of informed consent. Consecutive patients

who underwent contrast-enhanced CT scans at our hospital

between July 2015 and June 2022 were included. The sample size

was determined based on feasibility. All patients who met the

eligibility criteria were retrospectively collected. The inclusion

criteria required that all imaging data be uniformly reformatted

using a B-spline interpolation resampling algorithm (12)with a

voxel size of 1.0 mm × 1.0 mm × 1.0 mm. The exclusion criteria
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were as follows: (1) patients receiving preoperative antitumor

treatments; (2) patients with a history of recurrent HCC or

concurrent primary tumors; (3) patients with distant metastases

associated with HCC; (4) poor image quality; and (5) incomplete

clinical or pathological information.

“Poor image quality” was defined as the presence of significant

motion artifacts, low signal-to-noise ratio, incomplete coverage of

the region of interest (ROI), or other technical issues that hindered

accurate segmentation and feature extraction. Image quality was

independently assessed by two experienced radiologists, and any

discrepancies were resolved via consensus.

After screening, a total of 150 HCC patients were included in

the study (120 males and 30 females, mean age: 57 years, range: 29–

84 years), comprising 46 MVI-positive cases and 104 MVI-negative

cases. Clinical characterist ics , including gender, age,

carcinoembryonic antigen (CEA), alpha fetoprotein (AFP),

CA125, and 44 other variables, were extracted from the electronic

medical record system. Patients were randomized to the training

and validation cohorts in a 70:30 ratio. Demographic and clinical

characteristics of all patients are summarized in Table 1.
CT imaging and ROI segmentation

All CT examinations were performed using spiral CT scanners

from the Radiology Department of Shenzhen People’s Hospital,

with identical scanning parameters. The imaging protocol adhered

to the standards recommended by the LI-RADS guidelines (13). 3D

manual segmentation was conducted using 3D Slicer software by a

hepatobiliary surgeon with nine years of clinical experience. ROIs

were delineated along the visible boundaries of the lesions in all

non-contrast (NC), arterial phase (AP), portal venous phase (PVP),

and balanced phase (BP) images, encompassing the entire lesion

volume. Incorporating peritumoral regions into the ROIs has been

demonstrated in multiple studies to enhance the predictive

performance of radiomics models (8, 14). Accordingly, a 3-mm

margin was automatically expanded using 3D Slicer, with manual

removal of any regions extending beyond the liver volume to ensure

the final ROI encompassed the peritumoral area. The final

segmentation results were validated by a senior hepatobiliary

surgeon with 14 years of clinical experience. Subsequently, the

software automatically generated 2D images of the tumor’s largest

cross-sectional area. To assess intra-observer reproducibility, a

subset of ROIs was randomly re-annotated by the same

hepatobiliary surgeon on the imaging dataset. Intraclass

correlation coefficient (ICC) analysis demonstrated good

consistency between the two sets of annotations.
Radiomics feature extraction

Radiomics features were extracted using the Radiomics plugin

package in 3D Slicer 5.4.0 for each phase: NC, AP, PVP, and BP.
Frontiers in Oncology 03
The B-spline interpolation resampling algorithm (12) was applied

to standardize the image format, with a voxel spacing of 1.0 mm ×

1.0 mm × 1.0 mm. The same extraction procedure was applied to

wavelet-transformed derivative images (15) to enhance the

dimensionality of the image data.

Each dataset comprised 1,130 features, with a one-to-one

correspondence established to ensure comparability. These

features included first-order shape features, first-order statistical

features, second-order texture features, higher-order features, and

wavelet-transformed features, quantitatively representing the

imaging information of the corresponding tumor regions. Prior to

further processing, the extracted features were dimensionless.

Before further processing, all extracted features were standardized

by non-dimensionalization. The Min-Max scaler function in

Python was applied to normalize the training dataset, and the

same scaling parameters were subsequently applied to the

validation set. This procedure was employed to accelerate model

training and to mitigate the potential impact of disproportionately

scaled features on model performance.
Radiomics feature selection: embedded
least absolute shrinkage and selection
operator

Most of the extracted radiomic features were not associated

with the outcome. LASSO was employed to select a small subset of

features most relevant to the outcome from the vast number of

extracted features. Additionally, among the outcome-associated

features, multiple highly correlated features might exist. By

introducing L1 regularization, LASSO reduces the regression

coefficients of some features to zero, thereby automatically

selecting key features and effectively preventing overfitting,

addressing the issues arising from multicollinearity (16).

2D and 3D features from NC, AP, PVP, and BP images in the

eight radiomic groups were selected via the LASSO algorithm. The

most predictive features were selected for model construction. In

addition, we combined all four imaging phases and separately

identified the optimal features from the hybrid ROIs across 2D

and 3D datasets. These selected features were then applied to the

validation cohort to confirm model generalizability.
Model construction and evaluation

Eight predictive models were initially constructed using the 2D

and 3D features selected from NC, AP, PVP, and BP. Both

traditional logistic regression and XGBoost machine learning

algorithms were used. To optimize the hyperparameters of the

XGBoost model, a grid search strategy was employed. The

parameter set yielding the highest mean AUC on the validation

cohort was selected for the final model. The model’s predictive

performance for MVI was evaluated using the receiver operating
frontiersin.org
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TABLE 1 Baseline characteristics of patients (grouped by clinical relevance).

Variables Total (n=150)
Training
cohort(n=106)

Testing
cohort (n=44)

p-value

Demographics

▪ Gender, n (%) 0.226

Male 30 (20) 18 (17) 12 (27)

Female 120 (80) 88 (83) 32 (73)

▪ Age, Mean ± SD 56.99 ± 11.72 57.53 ± 11.39 55.7 ± 12.53 0.407

▪ BMI, Median (IQR) 23.27 (21.02-25.62) 23.2 (21.01-25.89) 23.55 (21.66-25.07) 0.828

Liver disease status

▪ Liver Cirrhosis, n (%) 1.000

No 72 (48) 51 (48) 21 (48)

Yes 78 (52) 55 (52) 23 (52)

▪ HBsAg, n (%) 0.687

Negative 43 (29) 32 (30) 11 (25)

Positive 106 (71) 73 (69) 33 (75)

Not tested 1 (1) 1 (1) 0 (0)

▪ HCVAb, n (%) 0.631

Negative 145 (97) 103 (97) 42 (95)

Positive 5 (3) 3 (3) 2 (5)

Tumor characteristics

▪ MVI, n (%) 1.000

Absent 104 (69) 73 (69) 31 (70)

Present 46 (31) 33 (31) 13 (30)

▪ Tumor Size, mm, Median (IQR) 40.5 (25-62) 35.5 (24-61) 50.5 (28-66.25) 0.088

Hematological parameters

▪ Hemoglobin, Mean ± SD 140.31 ± 17.39 141.2 ± 18.59 138.18 ± 14.06 0.281

▪ Platelets, Median (IQR) 192 (138-233.25) 200.5 (152.25-242.75) 171.5 (126-197) 0.004

▪ Lymphocytes, Median (IQR) 1.67 (1.27-2.2) 1.69 (1.32-2.28) 1.66 (1.17-2.02) 0.638

▪ Neutrophils, Median (IQR) 3.15 (2.4-4.19) 3.32 (2.46-4.5) 2.82 (2.3-3.55) 0.030

▪ Monocytes, Median (IQR) 0.48 (0.37-0.64) 0.5 (0.38-0.64) 0.44 (0.32-0.62) 0.139

Liver function tests

▪ Albumin, Median (IQR) 41.75 (39.12-44.4) 42.25 (39.7-44.65) 40.65 (38.42-43.23) 0.077

▪ Total Protein, Median (IQR) 69.85 (66.82-73.4) 69.95 (67.25-73.88) 69.75 (66.75-72.03) 0.356

▪ Total Bilirubin, Median (IQR) 12.65 (9.12-16.48) 13.7 (9.5-16.48) 11.95 (8.9-15.98) 0.521

▪ Direct Bilirubin, Median (IQR) 4.56 (3.34-5.9) 4.94 (3.35-5.9) 4.06 (3.34-5.78) 0.234

▪ Indirect Bilirubin, Median (IQR) 7.96 (5.56-11.04) 7.88 (5.77-11.09) 8.1 (5.15-10.53) 0.740

▪ ALT, Median (IQR) 30 (23-40.75) 29 (23-40.75) 31.5 (22.75-40.25) 0.812

▪ AST, Median (IQR) 29 (23-39.5) 28.5 (23.25-37.75) 30 (22-41.75) 0.841

▪ GGT, Median (IQR) 36.5 (26-72.5) 36 (25-63.5) 37.5 (26.75-98) 0.300

▪ ALP, Median (IQR) 74 (61-94) 73 (61-94) 76 (63-96.25) 0.857

(Continued)
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characteristic (ROC) curve and the area under the curve (AUC).

Subsequently, a combined radiomics model was constructed, which

incorporated the 2D and 3D features from all four phases.

Afterward, the optimal 2D and 3D radiomics-based models

were selected from all the models. Radiomics scores were

constructed using LASSO regression coefficients, and a combined

model based on radiomics clinical features was further developed by

combining the patient’s demographic and laboratory data, aiming

to explore the best preoperative prediction approach for MVI. After

the training phase, the model’s performance was evaluated in the

test cohort. Shapley values (17) were then utilized to rank features

and determine their contribution and importance. These results
Frontiers in Oncology 05
provided evidence for evaluating the intratumoral heterogeneity of

HCC (Figure 1).

In this study, all statistical analyses were performed using the R

language (version 4.4.1). Data preprocessing and descriptive statistics

were conducted using the tidyverse and CBCgrps packages. Feature

selection was performed through LASSO regression via the glmnet

package, while cross-validation was performed using the caret

package. The prediction models were constructed using xgboost,

while hyperparameter tuning and model evaluation were carried out

through caret. Model performance was assessed via AUC, and

internal validation and calibration analysis were performed using

the rms package. Model interpretation was facilitated through SHAP
TABLE 1 Continued

Variables Total (n=150)
Training
cohort(n=106)

Testing
cohort (n=44)

p-value

Liver function tests

▪ LRF_15min, Median (IQR) 4.3 (2.82-6.38) 4.25 (2.5-6.7) 4.45 (2.9-6.1) 0.740

Coagulation profile

▪ PT, Median (IQR) 12.15 (11.53-13.07) 12.15 (11.5-13.07) 12.15 (11.67-12.95) 0.833

▪ APTT, Median (IQR) 31.95 (29.63-34.5) 31.8 (29.6-34.48) 32.15 (30.08-34.5) 0.825

▪ TT, Median (IQR) 16.2 (15-17.38) 16 (14.9-17.28) 16.5 (15.7-17.45) 0.072

▪ INR, Median (IQR) 1 (0.96-1.06) 0.99 (0.95-1.06) 1.02 (0.98-1.06) 0.126

▪ Fibrinogen, Median (IQR) 2.92 (2.53-3.51) 2.88 (2.48-3.54) 3.04 (2.64-3.43) 0.537

Metabolic parameters

▪ Blood Glucose, Median (IQR) 5.08 (4.89-5.64) 5.08 (4.91-5.73) 5.08 (4.82-5.33) 0.358

▪ BUN, Median (IQR) 4.94 (4.08-5.85) 5.06 (4.11-5.96) 4.39 (3.7-5.52) 0.056

▪ Creatinine, Median (IQR) 27 (24-30.23) 27 (24-30) 28.5 (24-32) 0.624

Tumor markers

▪ AFP, Median (IQR) 29.15 (3.48-297.15) 29.15 (3.4-316.8) 28.85 (3.59-267.85) 0.785

▪ CEA, Median (IQR) 2.02 (1.38-2.92) 2.02 (1.31-2.95) 2.12 (1.51-2.68) 0.964

▪ CA125, Median (IQR) 10.38 (6.56-15.48) 10.13 (6.56-14.83) 11.16 (7.07-17.45) 0.355

▪ CA199, Median (IQR) 16.74 (9.63-28.91) 17.06 (9.54-29.09) 16.3 (11.52-26.62) 0.964

Composite indices

▪ Lymphocyte/Monocyte Ratio, Mean ± SD 3.7 ± 1.44 3.64 ± 1.47 3.83 ± 1.35 0.457

▪ NLR, Median (IQR) 1.89 (1.35-2.57) 1.98 (1.43-2.66) 1.7 (1.3-2.52) 0.326

▪ PLR, Median (IQR) 109.46 (81.82-141.52) 113.5 (87.28-157.66) 92.49 (74.84-123.62) 0.031

▪ SII, Median (IQR)
356.97
(192.94-552.94)

393.5 (252.71-611.15) 287.65 (168.45-424.92) 0.010

▪ APRI, Median (IQR) 0.36 (0.25-0.58) 0.34 (0.24-0.53) 0.42 (0.28-0.73) 0.096

▪ PNI, Median (IQR) 51.17 (46.71-53.33) 51.65 (47.24-53.74) 49.95 (46.05-52.55) 0.121

▪ ALRI, Median (IQR) 17.93 (11.47-27.47) 16.95 (11.29-27.16) 19.04 (12.49-30.43) 0.450

▪ AST/Neutrophil Ratio, Median (IQR) 9.59 (6.38-15.19) 9.38 (6.15-15.02) 10.41 (6.68-15.67) 0.279

▪ LF Index, Median (IQR) 1.67 (1.07-2.78) 1.6 (1.05-2.63) 2.23 (1.24-2.95) 0.090
Group comparisons for continuous and categorical variables were performed using TableOne, with the automatic selection of appropriate descriptive methods (e.g., interquartile range,
frequency, and percentage, mean and standard deviation) and statistical tests (such as t-test, Mann-Whitney U test, Chi-square test, or Fisher’s exact test).
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values, while the models were visualized using pheatmap and ggplot2.

The 10-fold cross-validation was used for all analyses to ensure the

robustness and generalizability of the models.
Results

Patient characteristics

A total of 150 eligible patients were included in this study.

Table 1 presents the statistical data and clinical characteristics of the

training cohort (n = 106) and the testing cohort (n = 44).

Histopathological examination revealed that the MVI status was

balanced across the training and testing cohorts (p = 1).
Extracted radiomic features

A total of 1130 features were extracted from eight sets of ROIs

across four sequences in both 2D and 3D configurations. An

unsupervised clustering algorithm was employed to explore the
Frontiers in Oncology 06
potential correlations among these features. Heatmaps were

subsequently generated to visualize the correlations between 2D

and 3D regions, as shown in Figure 2.

Our results indicated that the overall correlation between 2D

and 3D features was weak; however, a small number of features

from all four sequences demonstrated strong correlations. The

correlation was strongest during the balance phase of 2D and 3D

features, whereas the correlation during the PVP was weakest.

These findings provided further insight into the interpretation of

subsequent prediction model outcomes.
Feature dimensionality reduction and
selection

In the 2D ROI, seven, nine, six, and twelve MVI-related features

were identified for the NC, AP, PVP, and BP, respectively. For the

3D ROI, the MVI-related features identified across these four

phases were ten, six, six, and seven. Among the 63 features

selected from the eight sets of imaging data, 41 were

wavelet features.
FIGURE 1

This flowchart illustrates the research process of predicting hepatocellular carcinoma (HCC) using CT radiomics. The study first collected
preoperative contrast-enhanced CT data from 150 patients and performed tumor segmentation using 3D Slicer to label 2D and 3D regions. Then,
shape, histogram, and texture features were extracted from both original and wavelet-filtered images. The most predictive features were selected
using the LASSO method, and models were constructed using XGBoost and logistic regression with both single-modality (radiomics and clinical
features) and multimodal models (combining 3D and 2D data). Finally, the model’s predictive performance was evaluated using ROC curves,
heatmaps, and feature importance rankings.
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Performance and evaluation of predictive
models

Both logistic regression and machine learning methods were

applied to all models. The performance of all 24 predictive models is

summarized in Table 2, and the ROC curves of these models are

depicted in Figure 3. In the models utilizing features extracted from

single-sequence images in 16 cases, the 2D single-sequence model

achieved the best AUC in the test set at the BP (logistic regression,

AUC = 0.801, 95% CI: 0.663−0.94). The 3D single-sequence model

exhibited the best AUC for the PVP (logistic regression, AUC =

0.876, 95% CI: 0.753−0.999).

Logistic regression and XGBoost models were constructed using

features extracted from all four sequences in both 2D and 3D

imaging. The 2D combined model yielded an AUC of 0.851 (logistic

regression, 95% CI: 0.726−0.976) in the test set, while the 3D

combined model achieved an AUC of 0.811 (XGBoost, 95% CI:

0.648−0.975). These results indicated that both the 2D and 3D

models demonstrated strong predictive performance for MVI.

However, 3D radiomics did not provide a significant advantage

and, in some cases, performed worse than the 2D model,

particularly in the combined models.
Frontiers in Oncology 07
Among the 44 different clinical features, LASSO regression

identified four features (fibrinogen, CEA, AFP, and tumor

diameter) for constructing a predictive model. The model based

only on clinical features achieved an AUC of 0.71 in the test set

(XGBoost, 95% CI: 0.535−0.886).

Finally, the 3D PVP and 2D BP models exhibiting the best

performance were selected. These models were compressed into an

imaging score, R-score, based on the l coefficient. A predictive

model was constructed that incorporated the R-score along with

four clinical features identified. The clinical-radiomics combined

model achieved an AUC of 0.818 in the test set (logistic regression,

95% CI: 0.654−0.981). Our findings suggested that while clinical

features were able to predict MVI preoperatively, their predictive

performance was inferior to that of radiomics. Furthermore,

incorporating radiomics score and clinical features in models

improved the predictive power. However, the combined model

was not the most efficient.

Among the twelve groups of twenty-four models, eight logistic

regression models outperformed others, while four XGBoost

models demonstrated superior results. Overall, although XGBoost

showed better performance in the training set, it did not exhibit an

advantage over the logistic regression models in the validation.
FIGURE 2

Illustrates the correlation of features in NC, AP, PVP, and BP in both 2D and 3D imaging modalities, with red indicating strong correlations and blue
representing the inverse relationship. The features analyzed include Shape, First Order, GLCM (Gray Level Co-occurrence Matrix), GLDM (Gray Level
Dependence Matrix), GLRLM (Gray Level Run Length Matrix), GLSZM (Gray Level Size Zone Matrix), and NGTDM (Neighboring Gray Tone Difference
Matrix).
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Subsequently, Shapley analysis was performed on both the 2D

and 3D combined models. Figure 4 presents the key radiomic

features selected for constructing the models, along with their

classification and contribution rankings. The results showed that

the 2D combined model predominantly selected features from BP,

whereas the 3D model favored features from the PVP. In contrast,

among the single-sequence models, the performance for both 2D

and 3D models was the best. Furthermore, there was significant

feature overlap across different sequences, suggesting substantial

collinearity among the selected radiomic features from various

sequences. This indicated that the optimal features identified by

LASSO largely originated from a single sequence. This finding

contrasted with the results illustrated in the heatmap for the

overall feature correlations.

In the 2D combined model, the contributions of various

features were relatively balanced. However, in the 3D combined

model, a single feature, wavelet-LLH-glszm-Small-Area-Emphasis,

contributed over 60%. One of the dominant features in the model

was derived from wavelet decomposition and GLSZM, which

typically reflects the presence of numerous small and

homogeneous grayscale zones at specific scales and orientations.
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This radiomic feature represents subtle intratumoral texture

heterogeneity, which is closely associated with pathological

characteristics such as necrosis, fibrosis, and MVI. These factors

are generally indicative of tumor aggressiveness and poor prognosis.

Therefore, the predominance of this texture feature in the radiomics

model may be attributed to its capacity to capture the intricate

spatial heterogeneity within the tumor, thereby enhancing the

model’s ability to predict MVI accurately. However, over-reliance

on a single feature can undermine the model’s robustness. If this

feature is influenced by external conditions (e.g., image quality, data

acquisition errors, or patient condition variations), the model’s

performance may drastically decline. This could be one reason

why the performance of the combined model incorporating 3D

features did not meet expectations.
Discussion

In the single-sequence radiomics models, the overall

performance between 2D and 3D models was similar. A possible

reason for this is the overlapping data characteristics between 2D
TABLE 2 Presents the predictive performance of all the models constructed in this study.

(a)

2D train cohort 2D test cohort 3D train cohort 3Dtest cohort

Logistic regression

NC 0.813 (0.733-0.892) 0.777 (0.619-0.934) 0.8 (0.715-0.885) 0.721 (0.561-0.881)

AP 0.789 (0.694-0.883) 0.736 (0.565-0.913) 0.825 (0.74-0.91) 0.73 (0.573-0.886)

PVP 0.762 (0.671-0.853) 0.739 (0.545-0.934) 0.789 (0.715-0.881) 0.876 (0.753-0.999)

BP 0.87 (0.793-0.948) 0.801 (0.663-0.94) 0.738 (0.698-0.869) 0.72 (0.558-0.881)

R-R Hybrid 0.836 (0.75-0.922) 0.851 (0.726-0.976) 0.812 (0.725-0.9) 0.799 (0.655-0.943)

Xgboost

NC 0.807 (0.725-0.89) 0.623 (0.428-0.818) 0.823 (0.746-0.901) 0.736 (0.572-0.9)

AP 0.834 (0.748-0.921) 0.768 (0.597-0.939) 0.839 (0.757-0.92) 0.72 (0.555-0.885)

PVP 0.786 (0.697-0.875) 0.742 (0.573-0.911) 0.82 (0.739-0.901) 0.816 (0.686-0.947)

BP 0.848 (0.764-0.924) 0.774 (0.637-0.912) 0.818 (0.738-0.8969) 0.691 (0.524-0.858)

R-R Hybrid 0.831 (0.747-0.915) 0.806 (0.666-0.947) 0.833 (0.75-0.916) 0.811 (0.648-0.975)
(b)

Train cohort Train cohort

Clinical logistic 0.726 (0.62-0.831) 0.705 (0.537-0.874)

C-R Hybrid logistic 0.785 (0.635-0.934) 0.81 (0.722-0.898)

Clinical Xgboost 0.808 (0.72-0.897) 0.71 (0.535-0.886)

C-R Hybrid Xgboost 0.833 (0.75-0.917) 0.803 (0.636-0.969)
NC, Non-contrast model; AP, Arterial phase model; PVP, Portal venous phase model; BP, Balanced phase model; R-R Hybrid, Combined radiomics model utilizing two distinct imaging
sequences; Clinical, Model based solely on clinical indicators; C-R Hybrid, Clinical-radiomics hybrid model incorporating clinical variables (e.g., CEA, AFP, fibrinogen, tumor diameter)
alongside radiomic features from 3D PVP and 2D BP images.
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and 3D ROIs. In liver cancer radiomics, some features across

different slices of certain sequences may be quite similar.

Although the 3D model processes all slices, it does not capture

significantly different information. The imaging features of MVI

may already be adequately reflected in the local regions of the

tumor. Additionally, a large number of texture features and wavelet

transform features were extracted, and SHAP analysis also indicated

(Figure 3) that for some sequences, MVI prediction mainly relied on

texture features rather than spatial features, thereby reducing the

need for spatial information. As a result, the spatial information

contribution of the 3D model may be weakened.

In the field of liver cancer, no related research has discussed the

advantages and disadvantages of 2D and 3D ROIs. However, similar

conclusions have been reached in comparable studies in other

cancers. In lung cancer, Zhang et al. (18) reported that the

predictive performance of 2D and 3D models using the CT plain

scan phase did not differ across various tasks (such as

lymphovascular invasion (LVI), pleural invasion (VI), and pT

staging prediction) (19). Another study compared the

performance of 2D and 3D MRI features in meningioma grading

and found similar predictive performance between the two (20). A

multi-center study compared the performance of 2D and 3D CT

radiomics in gastric cancer characterization and concluded that 2D
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features were slightly superior in most tasks. These studies noted

common disadvantages of 3D models. 3D image annotation is

performed layer-by-layer, which is time-consuming, labor-

intensive, and noisy. Manual delineation of 3D tumors often

results in unclear boundaries, which can affect predictive

accuracy. Additionally, the Z-axis thickness in 3D ROI

delineation is typically coarser than the planar resolution along

the X and Y axes, leading to loss of detailed information due to

inconsistent spatial resolution, while 2D imaging can capture the

clearest information in a single maximal cross-section.

However, the aforementioned reasons cannot explain why the

2D ROI model demonstrates better predictive performance than the

3D model during BP, while the 3D ROI model outperforms the 2D

model during the PVP. A correlation analysis of both 2D and 3D

features was conducted, as shown in Figure 3. The correlation

between 2D and 3D features was strongest during the BP and

weakest during the PVP, which aligned with the results of the

predictive models. Based on this correlation analysis, it can be

speculated that the observed findings may be attributed to the

intrinsic characteristics of HCC. Compared to other tumors, HCC

may be more heterogeneous. Its growth pattern is typically irregular

and infiltrating, often extends beyond a single plane and tends to

invade surrounding tissues (1). Additionally, HCC is often highly
FIGURE 3

In all 12 groups of 24 logistic regression and XGBoost model test sets, the optimal modeling method was selected. Figures NC/AP/PVP/BP
demonstrate the discriminative ability of different single-sequence 2D and 3D models, while the 2D-3D figure presents the ROC curves of the 2D
and 3D combined radiomics models. The final figure shows the ROC curves for the C: Clinical Indicator Model and C-R: Clinical Indicator and
Radiomics Combined Model.
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vascularized (21), especially during the arterial and PVPs, where the

tumor shows significant enhancement in blood flow. These vascular

characteristics are expressed in a 3D distribution across different

layers. The PVP images better reflect the spatial structure, density

variations, microvascular distribution, and perfusion differences

inherent to HCC heterogeneity. The 3D ROI can provide more

comprehensive information than a single 2D plane.

During the BP, the 2D model outperformed the 3D model. This

may be due to the unique features of the BP in predicting MVI: the

BP better reflects the tissue permeability characteristics associated

with MVI (22), where the contrast agent achieves relative balance

between the tumor and surrounding tissues. At this point, the tissue

permeability of the tumor and microvascular characteristics become

more prominent. In 2D images, these local texture and density

variations can be more clearly presented, effectively offering features

required for MVI prediction. Additionally, the potential

“information dilution” issue of 3D integration may be another

explanation. The 3D model combines features from multiple slices,

which may dilute the predictive power of local features during

the BP.

Regardless of the 2D or 3D model, wavelet transform features

played a crucial role. This suggests that both models rely on local

texture details from certain frequency sub-bands. The stronger
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results from the 2D model imply that these texture details may

not exclusively come from the local regions where MVI occurs;

texture details from other areas of the tumor can also reflect the

presence of MVI. From a radiomic perspective, this provides further

evidence for the heterogeneity of liver cancer.

In comparison, a model based on clinical features was developed

using the same method. The model also demonstrated predictive

ability for MVI preoperatively. Among 44 clinical indicators, tumor

size, and AFP had the most significant predictive power, which is

consistent with most prior studies (23, 24). However, the clinical

feature-based model did not outperform the radiomics-based models

from any sequence.

Next, the optimal radiomic features from the 2D BP and the 3D

PVP in the single-sequence models were combined with clinical

features to construct a multimodal radiomics-clinical combined

model. Our results indicate that incorporating radiomic scores and

clinical features in a model enhances the predictive ability. This

conclusion aligns with findings from several previous studies. Xia

et al. (25) constructed a clinical-radiomics semantic feature-

radiomic score prediction model, which predicted MVI status

with an AUC of 0.86 (95% CI: 0.79, 0.92), and the external test

set yielded an AUC of 0.84 (95% CI: 0.78, 0.91). Compared to the

pure radiomic model, the combined model provided a greater net
FIGURE 4

Illustrates the effects of each feature value on the model output and the importance of the features that contribute most to predicting MVI, with the
total contribution scores of all features summing to 1. The combined 2D and 3D models are used to interpret the selected features for model
construction. The upper part of the figure shows the 2D combined model and the lower part shows the 3D combined model. The SHAP values
along the x-axis are color-coded, with high positive SHAP values (red) indicating a positive correlation with the prediction of MVI, and low negative
SHAP values (blue) indicating a negative correlation. The point cloud plot displays the SHAP values of each feature for every individual sample. The
horizontal axis represents the SHAP values, where positive values contribute to an increased prediction and negative values contribute to a
decreased prediction, and the vertical axis lists the features ranked by importance. The color of each point reflects the magnitude of the feature
value for the corresponding sample, with red indicating high feature values and blue suggesting low feature values. The numbers following the
features represent the sequence from which they are derived: none indicates BP, 1 indicates PVP, 2 indicates AP, and 3 indicates unenhanced phase.
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benefit within a reasonable threshold probability range. A

multicenter study by Xu et al. Xu (9) has suggested that the

accuracy of the radiomic model in predicting MVI outperforms

the clinical logistic regression model based on AST, tumor size, and

AFP (AUCs in the validation cohort were 0.750 and 0.648,

respectively). However, in this study, it was not the optimal

predictive approach, which may be attributed to various factors,

including sample size and the weaker noise resistance of the

3D model.

In this study, LASSO was employed to select 63 features from a

total of eight sets of imaging data, with a significant number of

wavelet transform features identified. Notably, some of these

wavelet features appeared repeatedly across different sequences of

2D and 3D images. This suggests that the prediction of radiomics-

based model for MVI is highly dependent on local texture features

and that there exists a strong collinearity between certain features

across different sequences of contrast-enhanced imaging. A

correlation analysis of the features was conducted, and a heatmap

was plotted to further substantiate this observation.

The findings by Ni et al. (26) indicate that the dimensionality

reduction and model construction methods employed for radiomic

features can impact the predictive performance of the resulting

radiomics-based models. LASSO dimensionality reduction

combined with gradient boosting decision trees (GBDT) yields

the highest prediction accuracy, and the LASSO + GBDT method

outperforms other approaches when the threshold probability

exceeds 0.22. Both GBDT and XGBoost are ensemble methods

that use multiple weak learners (typically decision trees) to enhance

model performance. XGBoost is an extension of GBDT that focuses

on improving performance and efficiency. It incorporates several

enhancements over the GBDT algorithm, including regularization

terms, more efficient node splitting, and learning rate decay, which

result in superior speed and performance compared to traditional

GBDT (27).

Based on Ni et al.’s conclusion, a LASSO + XGBoost predictive

model was constructed, with a logistic regression model used for

comparison. However, in this study, although XGBoost

demonstrated better performance on the training set, it did not

show an advantage over the logistic regression model in the

validation set. This result may be attributed to the complexity of

XGBoost’s tree model structure, which showed slight overfitting in

the validation set. If the relationship between CT imaging features

and liver cancer MVI is not highly nonlinear, the advantages of

XGBoost may not be fully realized, potentially even leading to

reduced predictive performance. Logistic regression might be more

suitable for this relatively simple feature representation. Notably, in

comparison with the logistic regression model, the XGBoost model

often performed better with the 3D models, likely due to the higher

complexity of the 3D datasets. On the other hand, XGBoost models

involve numerous parameters (such as learning rate, tree depth, and

regularization parameters), and achieving optimal performance

requires careful parameter tuning. Since the investigators in this

study were clinicians with limited experience in tuning complex

machine learning models, this may have contributed to the

suboptimal performance of the machine learning models.
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Overall, the radiomics models based on various sequences of

contrast-enhanced CT images demonstrated a certain degree of

predictive ability. The radiomics combined model outperformed

some single-sequence models, though it did not achieve the best

results. Among single-sequence models, the 3D PVP model exhibited

the highest accuracy, while the 2D BP model showed the highest

AUC. Ma et al. (28) conducted a study involving 157 patients with

histologically confirmed HCC, with or without MVI, and found that

radiomics features from AP, PVP, and BP of enhanced CT imaging

could all be used to construct predictive models for liver cancer MVI

They found that the PVP offered superior predictive performance

compared to AP and BP, as well as multi-sequence models. Our

findings are partially consistent with the conclusions by Ma et al.;

however, in their study, the combined model directly combined

multi-sequence radiomic features, achieving high AUC in the

training set, but with suboptimal accuracy, specificity, sensitivity,

and AUC in the validation set. A preoperative radiomics model for

MVI prediction (29) was similarly constructed, but the training and

testing datasets showed considerable differences, which may have

been caused by a mismatch in the number of features and the sample

size of the training set, leading tomodel overfitting. Their conclusions

are not sufficiently rigorous.

This study has several limitations. The single-center retrospective

design inevitably leads to sample selection bias. Additionally, with a

relatively small sample size, the advantages of more complex

combined models are restricted due to the limited training data.

Furthermore, our predictive model did not incorporate semantic

features based on imaging interpretations by physicians. Moreover,

variations in clinical issues, as well as image acquisition and

reconstruction protocols, may influence the results. Therefore,

further validation is required to improve the generalizability of the

conclusions to other diseases and clinical contexts.
Conclusion

This study successfully developed preoperative predictive

models for MVI in HCC patients based on 2D and 3D radiomic

features from contrast-enhanced CT imaging. The performance of

different ROI delineation methods and imaging sequences was

systematically compared. The results indicate that the 2D PVP

model excels in capturing local texture features, while the 3D AP

model demonstrates greater advantages in reflecting tumor spatial

heterogeneity. Overall, the radiomic model outperforms traditional

clinical-based predictive models, although the 3D model did not

show a significantly better overall predictive performance than the

2D model.

The study further highlights the sensitivity of radiomic features

to tumor heterogeneity, particularly in the expression of texture and

spatial characteristics. Wavelet transform features are extensively

selected and significantly influence prediction results. This

underscores the pivotal role of radiomics in capturing the

complexity and heterogeneity within tumors. This research

provides robust evidence for radiomic studies in HCC, advancing

preoperative MVI prediction techniques and offering critical
frontiersin.org

https://doi.org/10.3389/fonc.2025.1590655
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yin et al. 10.3389/fonc.2025.1590655
insights for personalized and precise diagnosis and treatment of

liver cancer.
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