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Personalized prediction of breast
cancer candidates for Anti-HER2
therapy using 18F-FDG PET/CT
parameters and machine
learning: a dual-center study
Zhenguo Sun1†, Jianxiong Gao1†, Wenji Yu1, Xiaoshuai Yuan2,
Peng Du2, Peng Chen2* and Yuetao Wang1*

1Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou,
Jiangsu, China, 2Department of Nuclear Medicine, The First People’s Hospital of Lianyungang/The
First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
Background: Accurately evaluating human epidermal growth factor receptor

(HER2) expression status in breast cancer enables clinicians to develop

individualized treatment plans and improve patient prognosis. The purpose of

this study was to assess the performance of a machine learning (ML) model that

was developed using 18F-FDG PET/CT parameters and clinicopathological

features in distinguishing different levels of HER2 expression in breast cancer.

Methods: This retrospective study enrolled breast cancer patients who

underwent 18F-FDG PET/CT scans prior to treatment at Lianyungang First

People’s Hospital (centre 1, n=157) and the Third Affiliated Hospital of

Soochow University (centre 2, n=84). Two classification tasks were analysed:

distinguishing HER2-zero expression fromHER2-low/positive expression (Task 1)

and distinguishing HER2-low expression from HER2-positive expression (Task 2).

For each task, patients from Centre 1 were randomly divided into training and

internal test sets at a 7:3 ratio, whereas patients from Centre 2 served as an

external test set. The prediction models included logistic regression (LR), support

vector machine (SVM), extreme gradient boosting (XGBoost) and multilayer

perceptron (MLP), and SHAP analysis provided model interpretability. Model

performance was evaluated via the area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive

value (PPV) and negative predictive value (NPV).

Results: XGBoost models exhibited the best predictive performance in both

tasks. For Task 1, recursive feature elimination (RFE) was used to select 8 features,

excluding pathological features, and the XGBoost model achieved AUCs of

0.888, 0.844 and 0.759 for the training, internal and external testing sets,

respectively. The top three features according to the SHAP values were the

tumour minimum diameter, mean standardized uptake value (SUVmean) and

CTmean. For Task 2, 9 features were selected, including progesterone receptor

(PR) status as a pathological feature. The XGBoost model achieved AUCs of

0.920, 0.814 and 0.693 for the training, internal and external testing sets,

respectively. The top three features according to the SHAP values were the PR

status, maximum tumour diameter and metabolic tumour volume (MTV).
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Conclusions: ML models that incorporate 18F-FDG PET/CT parameters and

clinicopathological features can aid in the prediction of different HER2

expression statuses in breast cancer.
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1 Introduction

In China, breast cancer is the second most commonly diagnosed

malignancy and the fifth leading cause of cancer-related death

among women (1). Human epidermal growth factor receptor 2

(HER2), which is a member of the tyrosine kinase receptor family,

plays a pivotal role in regulating cell growth, survival and metastatic

progression. HER2 overexpression is observed in approximately

20–30% of breast cancer cases (2, 3). According to the 2018

American Society of Clinical Oncology (ASCO) and College of

American Pathologists (CAP) guidelines, HER2 overexpression is

identified on the basis of immunohistochemistry (IHC) and in situ

hybridization (ISH) results. Specifically, positive HER2 expression

is defined as an IHC score of 3+ or an IHC score of 2+ with ISH

amplification, whereas negative HER2 expression is defined as an

IHC score of 0+ or 1+ or an IHC score of 2+ without ISH

amplification (4). Traditionally, the most reliable predictive factor

for determining the likelihood of patient response to anti-HER2

agents is HER2 overexpression or amplification. Consequently, only

patients with HER2-positive disease receive anti-HER2 drug

therapy (3, 5, 6). Currently, the National Comprehensive Cancer

Network (NCCN) and ASCO guidelines recommend chemotherapy

combined with trastuzumab as neoadjuvant therapy for early-stage

HER2-positive breast cancer, with the aim of reducing the tumour

burden and optimizing surgical outcomes (7, 8). Therefore,

preoperative determination of the HER2 expression status of

breast cancer has significant clinical value.

In 2023, the European Society for Medical Oncology (ESMO)

defined HER2-low breast cancer as tumours with a HER2 IHC score

of 1+ or 2+ without ISH amplification (9). HER2-low breast cancer

accounts for more than half of all traditional HER2-negative breast
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cancers. Compared with HER2-zero or HER2-positive breast

cancers, HER2-low breast cancer has distinct biological

characteristics and clinical prognoses (3, 10, 11). Recent clinical

trials have demonstrated that patients with HER2-positive breast

cancer as well as patients with HER2-low breast cancer exhibit high

response rates to HER2-targeted antibody drug conjugates, such

as trastuzumab (DS-8201) (12, 13). Notably, the phase III

DESTINY-Breast04 (DB-04) trial has shown that trastuzumab

deruxtecan significantly improves overall survival compared with

conventional chemotherapy in patients with pretreated HER2-low

metastatic breast cancer (14). Consequently, identifying this specific

subgroup of breast cancer may optimize the strategy for treating

traditional HER2-negative breast cancer.

The preoperative HER2 status of breast cancer is primarily

determined via analysis of percutaneous biopsy samples by IHC and

ISH (15). However, owing to tumour heterogeneity, a single biopsy

sample may not always be representative of the entire tumour (16).

Moreover, the literature reports that incorporating the HER2-low

category into the assessment of HER2 status can decrease the

consistency of results obtained from core needle biopsy (CNB)

and surgical resection specimens (17). The phenomenon by which a

subset of tumours that were initially classified as HER2-zero via

CNB are reclassified as HER2-low via surgical resection samples can

be attributed to limitations that are inherent to the current

semiquantitative HER2 IHC scoring system. Notably, this scoring

system was originally designed to identify HER2-positive

populations, resulting in subjective distinctions between HER2

IHC 0 and 1+ scores that are susceptible to interobserver

variability (17, 18). In particular, achieving consistent

interpretation of IHC 0 versus 1+ scores remains a critical

challenge in the accurate diagnosis of HER2-low status (19).

Additionally, equivocal or critical IHC results, such as HER2

IHC 2+, are observed in approximately 15–20% of breast cancer

cases (20). Even with known IHC results, HER2 IHC 2+ patients

still require further ISH testing to identify HER2-low breast cancer.

However, ISH testing is costly and time-consuming, and it demands

stringent quality control. Therefore, there is an urgent need for new

tools to accurately evaluate the HER2 expression status of patients

with breast cancer in order to more quickly and accurately develop

individualized treatment plans and to improve the prognosis of

patients with breast cancer.

Plasma carcinoembryonic antigen (CEA), cancer antigen 125

(CA125) and cancer antigen 15-3 (CA15-3) are among the tumour
frontiersin.org
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markers that are most commonly used in the diagnosis of breast

cancer (21). Previous studies have indicated that the serum levels of

CEA and CA15-3 may vary across different molecular subtypes of

breast cancer, and the preoperative levels of CEA and CA15-3 have

been shown to significantly impact the prognosis of Chinese women

with breast cancer (22, 23). However, the role of these commonly

used serum tumour markers in predicting HER2 expression status

in breast cancer remains a subject of ongoing debate.
18F-FDG PET/CT is a noninvasive molecular imaging

technique that can provide comprehensive information about

tumour metabolism. Key metabolic parameters derived from

PET/CT, including the maximum standardized uptake value

(SUVmax) and metabolic tumour volume (MTV), enable a more

precise assessment of tumour heterogeneity and serve as valuable

biomarkers for tailoring therapeutic strategies (24, 25). Studies by

Gao et al. and Gui et al. have demonstrated that the SUVmax is

correlated with HER2 expression status, with HER2-positive

tumours exhibiting higher SUVmax values (26, 27). However,

previous studies have not integrated multiparameter PET/CT

features to develop predictive models.

Recent advances in artificial intelligence and machine learning

(ML) have revolutionized oncological imaging, particularly in the

areas of key feature extraction and model development (28–30).

Although ML models based on MR imaging features have been

validated for differentiating HER2 expression states (31, 32), the

potential of PET/CT multiparametric and clinicopathological

features remains unexplored. Therefore, this study aimed to

develop and validate multiple ML models using pretreatment 18F-

FDG PET/CT parameters and clinicopathological features to

evaluate the HER2 expression status of breast cancer patients.

Leveraging dual-centre datasets for robust validation, we further

employed SHAP analysis to provide both population-level feature

importance rankings and individualized prediction visualizations,

thus improving the clinical interpretability of multiparametric

decision-making processes.
2 Materials and methods

2.1 Study population

This retrospective study enrolled breast cancer patients who

underwent 18F-FDG PET/CT examinations before treatment at two

centres; patients were enrolled from Lianyungang First People’s

Hospital (Centre 1) between October 2017 and March 2024 and

from the Third Affiliated Hospital of Soochow University (Centre 2)

between January 2013 and March 2024. The inclusion criteria were

as follows: (1) pathologically confirmed unilateral primary breast

cancer, with pathological results derived from surgical resection or

biopsy; (2) no more than 30 days between the completion of the 18F-

FDG PET/CT examination and the surgery or biopsy; (3) no prior

treatments, such as surgery, endocrine therapy, radiotherapy, or

chemotherapy, before the 18F-FDG PET/CT examination; (4)

clearly defined HER2 test results; and (5) no history of other

malignant tumours. The exclusion criteria were as follows: (1) the
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presence of other breast diseases that could interfere with breast

cancer imaging concurrently; (2) poor quality of PET/CT images

due to artefacts or other factors; and (3) incomplete clinical data or

immunohistochemical information.

A total of 241 breast cancer patients (157 patients from Centre 1

and 84 patients from Centre 2) were enrolled on the basis of the

aforementioned criteria. All the patients were divided into three

groups on the basis of HER2 expression status: the HER2-zero,

HER2-low and HER2-positive groups. Clinical pathological

information was obtained through the retrieval of medical records

and included data about age, tumour marker levels, oestrogen

receptor (ER) status, progesterone receptor (PR) status, Ki67 index,

menopausal status, lymph node metastasis and distant metastasis.

The process of study population enrolment is shown in Figure 1.
2.2 Image acquisition and analysis

Image acquisition was performed using Siemens Biograph mCT

flow 64 PET/CT scanners at both hospitals. All the patients fasted

for 4–6 hours before the examination. Patient weight, height, and

fasting blood glucose levels were recorded on the day of

examination. Patients were intravenously injected with 18F-FDG,

with a radiochemical purity >95% and a standard dose of 3.70–5.55

MBq/kg. Imaging was conducted 60 minutes postinjection. Patients

were placed in the supine position for both the CT and PET scans.

The respiratory gating mode was used with a speed of 1.5 mm/s and

a matrix of 200×200. The PET/CT imaging range extended from the

skull base to the mid-thigh. Images were reconstructed using the

UltraHD iterative method, producing transverse, sagittal, and

coronal sections along with fusion images.

Two physicians with 3 years of experience in nuclear medicine

imaging diagnosis utilized 3D Slicer software (version 4.11.2, http://

www.slicer.org) to perform semiautomatic segmentation of regions

of interest (ROIs) on the PET images. For the CT images, the ROIs

were manually delineated layer by layer. All the completed ROIs

were reviewed and validated by a senior nuclear medicine physician

with over 20 years of PET/CT diagnostic experience. The

parameters that were analysed on the basis of the delineated ROIs

included the tumour max diameter, tumour min diameter,

SUVmax, mean standardized uptake value (SUVmean), peak

standardized uptake value (SUVpeak), MTV and total lesion

glycolysis (TLG, which is the product of the MTV and

SUVmean). The tumour max diameter refers to the longest

dimension measured on the maximum cross-sectional CT image

of the lesion, whereas the tumour min diameter is the maximum

perpendicular measurement taken within the same plane and

orthogonal to the long axis.
2.3 Feature selection and machine learning
modelling

First, models to differentiate between HER2-zero and HER2-low/

positive tumours (Task 1) were constructed. The complete dataset from
frontiersin.org
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Centre 1 was randomly stratified into a training set and an internal test

set at a 7:3 ratio, while the complete dataset from Centre 2 was used as

an external dataset. To avoid model overfitting, recursive feature

elimination (RFE) was applied to the standardized data to select the

optimal feature set. This method ensures the fairness of feature weight

evaluation by eliminating the differences in dimensions and

simultaneously selects the subset of features with the highest

discriminative power for the target variable. Standardization

preprocessing prevents high-variance features from dominating

model training and enhances the stability of the RFE feature ranking.

RFE, on the other hand, optimizes model complexity and

generalization ability by recursively eliminating redundant features.

The combined effect of these twomethods effectively reduces the risk of

overfitting and increases the interpretability of the model.

ML models were built using logistic regression (LR), support

vector machine (SVM), extreme gradient boosting (XGBoost) and

multilayer perceptron (MLP) algorithms from the Sklearn (version

1.3.2, https://scikit-learn.org/) module on the basis of the selected

optimal feature set. Grid search and 5-fold cross-validation were

used on the training set to find the best model parameters, and the

model was then refit to the training set. During the model training

process, the parameter class_weight was set to “balanced”, which

dynamically adjusts the class weights. This approach allows the

model to more effectively learn features from minority classes,

thereby to some extent mitigating prediction bias issues caused by

class imbalance in the data.

Additionally, a separate dataset of 202 HER2-low/positive

patients was extracted to build models to differentiate between

HER2-low and HER2-positive patients (Task 2). This group

included 70 HER2-low and 60 HER2-positive patients from
Frontiers in Oncology 04
Centre 1 and 35 HER2-low and 37 HER2-positive patients from

Centre 2. The extracted dataset from Centre 1 was again randomly

stratified into a training set and an internal test set at a 7:3 ratio,

while the extracted data from Centre 2 were used as an external

dataset. The same feature selection method and ML model

construction approach were applied to these data.
2.4 Statistical methods

R software (version 3.4.3, http://R-project.org/) was used to

perform the statistical analyses. Continuous variables are

presented as the means ± standard deviations for normally

distributed data or as the medians (Q1–Q3) for skewed

distributions. Categorical variables are presented as frequencies or

percentages. Chi-square tests (categorical variables), t tests (normal

distribution), or Mann–Whitney U tests (skewed distribution) were

used to detect differences in clinicopathological and PET/CT

imaging features among patients with different HER2 expression

statuses. We evaluated the model’s performance using the receiver

operating characteristic (ROC) curve and the area under the curve

(AUC), we calculated metrics such as accuracy, sensitivity,

specificity, positive predictive value (PPV) and negative predictive

value (NPV), and decision curve analysis (DCA) was applied to

assess the net clinical benefit of the models. The SHAP module was

used to interpret the best-performing model, providing a visual

representation of feature importance and facilitating personalized

predictions. Pairwise comparisons of the AUCs of the models were

conducted using DeLong’s test. A two-sided P<0.05 was considered

to indicate statistical significance.
FIGURE 1

Patient enrolment pathway at the two institutions.
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3 Results

3.1 General clinical characteristics of the
patients

A total of 241 patients were included in the study; 157 patients

were from Centre 1, and 84 patients were from Centre 2. Patients

were divided into three groups according to their HER2 expression

status: HER2-zero (39 patients, 16.18%), HER2-low (105 patients,

43.57%) and HER2-positive (97 patients, 40.25%). A comparison of

the clinical, pathological and PET/CT parameters of the patients in

these groups is detailed in Tables 1, 2. There were significant

differences (P < 0.05) in CA125 levels, maximum tumour

diameters, minimum tumour diameters, SUVmax, SUVmean,

SUVpeak, ER status and PR status across the different HER2

expression status groups.

A further comparison of the clinicopathological features, PET/

CT parameters and HER2 status of breast cancer patients from the

two centres was conducted (Table 3). The CEA, CA125, CA153,
Frontiers in Oncology 05
tumour max diameter, SUVmax, SUVmean, Ki67 index and distant

metastasis status were significantly different between patients from

the two centres (all P < 0.05). The patients from Centre 2 presented

higher CEA, CA125, and CA153 levels; tumour max diameters; and

SUVmax, SUVmean, and Ki67 index values; and these patients

exhibited a greater rate of distant metastasis. However, no

significant differences were observed between the patients from

Centre 1 and Centre 2 regarding age, CTmax, CTmean, short

tumour diameter, SUVpeak, MTV, TLG, menopausal status,

lymph node metastasis, ER status, PR status or HER2 status (all P

> 0.05).
3.2 Task 1: Differentiating HER2-Zero
Expression from HER2-Low/Positive
Expression

RFE identified 8 features that could be used to distinguish

HER2-zero expression from HER2-low/positive expression,
TABLE 1 Clinicopathological features of patients with different HER2 expression statuses.

Variables HER2-zero (n=39) HER2-low (n=105) HER2-positive (n=97) P P1 P2 P3

Age 59.82 ± 13.00 56.54 ± 12.50 55.77 ± 10.44 0.191 0.169 0.074 0.504

CEA (ng/ml) 2.26 (1.32-3.89) 1.88 (1.34-3.24) 2.21 (1.19-3.62) 0.788 0.659 0.597 0.766

CA125 (ng/ml) 13.90 (10.04-23.38) 12.10 (8.96-19.04) 12.40 (7.94-19.70) 0.015 0.042 0.241 0.553

CA153 (ng/ml) 12.63 (9.02-22.23) 14.60 (8.98-20.80) 11.62 (8.44-21.00) 0.489 0.527 0.501 0.274

Menopause 0.515 0.477 0.256 0.551

Negative 27 (69.23%) 66 (62.86%) 57 (58.76%)

Positive 12 (30.77%) 39 (37.14%) 40 (41.24%)

Lymph Node
Metastasis

0.072 0.625 0.043 0.052

Negative 12 (30.77%) 28 (26.67%) 15 (15.46%)

Positive 27 (69.23%) 77 (73.33%) 82 (84.54%)

Distant Metastasis 0.354 0.208 0.152 0.780

Negative 35 (89.74%) 85 (80.95%) 77 (79.38%)

Positive 4 (10.26%) 20 (19.05%) 20 (20.62%)

ER status <0.001 0.124 0.025 <0.001

Negative 13 (33.33%) 22 (20.95%) 53 (54.64%)

Positive 26 (66.67%) 83 (79.05%) 44 (45.36%)

PR status <0.001 0.028 0.051 <0.001

Negative 20 (51.28%) 33 (31.43%) 67 (69.07%)

Positive 19 (48.72%) 72 (68.57%) 30 (30.93%)

Ki67 index 0.315 0.480 0.671 0.131

Negative 16 (41.03%) 50 (47.62%) 36 (37.11%)

Positive 23 (58.97%) 55 (52.38%) 61 (62.89%)
fron
HER2, human epidermal receptor 2; ER, estrogen receptor; PR, progesterone receptor; p1, HER2-zero group vs. HER2-low group; p2, HER2-zero group vs. HER2-positive group; p3, HER2-low
group vs. HER2-positive group.
The bold values indicate that the P-values are less than 0.05, which means they are statistically significant.
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including 3 clinical features (age, CA125, CA153), 2 CT features

(CTmean and tumour min diameter) and 3 PET metabolic features

(SUVmax, SUVmean, and SUVpeak). Pathological features were

not included in the models.

Table 4 presents the predictive performance of ML models for

differentiating HER2-zero expression from HER2-low/positive

expression on the basis of the optimal feature set. In the training

set, the XGBoost model not only achieved the highest AUC of 0.888

but also attained the best PPV and NPV. This model significantly

outperformed both the LR model (AUC: 0.713) and the MLP model

(AUC: 0.654), with DeLong test p values of 0.027 and 0.020,

respectively. Moreover, the clinical benefit of the XGBoost model

was significantly greater than that of the other three models. In the

internal test set, the XGBoost model maintained its superior

predictive performance, with the highest specificity, accuracy and

PPV, achieving an AUC of 0.844. In the external test set, the

XGBoost model yielded the highest sensitivity, accuracy and

NPV, with an AUC of 0.759. Although the differences in the

internal and external test sets were not statistically significant

(DeLong test p values > 0.05), the XGBoost model demonstrated

greater clinical benefit than the other models, particularly within the

probability threshold range of 0.8–0.9 in the internal test set. The

ROC curves and DCA for the training, internal test and external test

sets are shown in Figure 2.
3.3 Task 2: Differentiating HER2-low
expression from HER2-positive expression

A total of 9 features were selected to differentiate between

HER2-low expression and HER2-positive expression, including 2

clinical features (CEA, CA153), 1 pathological feature (PR), 1 CT

feature (MaxDiam) and 5 PET metabolic features (SUVmax, MTV,

TLG, SUVmean, and SUVpeak).
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Table 5 shows the diagnostic performance of ML models for

differentiating HER2-low expression from HER2-positive expression.

In the training set, the XGBoost model not only achieved the highest

AUC of 0.920 but also attained the highest specificity, accuracy and

PPV. The XGBoost model significantly outperformed the LR model

(AUC: 0.778) and the SVM model (AUC: 0.781), with DeLong test p

values < 0.001. The clinical benefit of the XGBoost model was also

significantly greater than that of the other three models. In the

internal test set, the XGBoost model maintained superior

performance, with the highest specificity, accuracy and PPV,

achieving an AUC of 0.814, although the difference was not

statistically significant (DeLong test p values > 0.05). Additionally,

within the probability threshold ranges of 0.1–0.3 and 0.5–0.65, the

XGBoost model demonstrated greater clinical benefit than the other

models. In the external test set, the XGBoost model achieved an AUC

of 0.693 and yielded the highest specificity, accuracy, PPV and NPV,

significantly outperforming the MLP model (AUC: 0.555) and the

SVM model (AUC: 0.552), with DeLong test p values of 0.001 and

0.008, respectively. The clinical benefit of the XGBoost model was the

greatest, as shown in Figure 3. The ROC curves and DCA for these

sets are shown in Figure 3.
3.4 SHAP algorithm for the interpretation
of model decision-making processes

SHAP values were calculated for the features in the XGBoost

models for Task 1 and Task 2. The Y-axis represents the ranking of

features by importance, whereas the X-axis shows the relationship

between each feature value and its corresponding SHAP value. A

SHAP value greater than zero indicates a positive contribution to

the outcome (Figure 4).

Figure 5 shows the personalized prediction plots for (A) HER2-

zero, (B) HER2-low, and (C) HER2-positive tumours. SHAP values
TABLE 2 PET/CT parameters of patients with different HER2 expression statuses.

Variables
HER2-zero

(n=39)
HER2-low
(n=105)

HER2-positive
(n=97)

P P1 P2 P3

CTmax 72.00 (64.00-82.50) 74.00 (65.00-82.00) 74.00 (65.00-84.00) 0.277 0.781 0.352 0.721

CTmin 18.27 (7.87-25.05) 20.22 (12.42-26.12) 21.57 (13.30-26.17) 0.285 0.429 0.120 0.440

Tumour max
diameter (mm)

37.24 ± 18.49 30.44 ± 13.76 36.32 ± 15.75 0.005 0.018 0.990 0.001

Tumour min
diameter (mm)

25.16 ± 11.88 20.45 ± 8.04 23.21 ± 9.58 0.012 0.007 0.400 0.013

SUVmax 7.29 (5.61-11.42) 9.46 (6.32-13.25) 11.15 (7.06-15.33) 0.026 0.343 0.009 0.109

SUVmean 3.20 (2.16-4.01) 3.68 (2.54-4.62) 4.01 (3.07-5.31) 0.019 0.503 0.010 0.073

SUVpeak 6.11 (3.85-8.52) 6.92 (4.73-10.57) 8.27 (6.05-12.34) 0.023 0.580 0.010 0.076

MTV 16.92 (7.16-49.34) 11.20 (6.32-19.96) 15.28 (7.86-29.86) 0.053 0.085 0.646 0.037

TLG 47.99 (19.43-175.96) 34.74 (18.10-84.12) 52.49 (22.12-142.48) 0.095 0.610 0.823 0.031
fron
HER2, human epidermal receptor 2; SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value; SUVpeak, peak standardized uptake value; MTV, metabolic
tumour volume; TLG, total lesion glycolysis; p1, HER2-zero group vs. HER2-low group; p2, HER2-zero group vs. HER2-positive group; p3, HER2-low group vs. HER2-positive group.
The bold values indicate that the P-values are less than 0.05, which means they are statistically significant.
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quantify the contributions of features to predictions about HER2

expression by decomposing model outputs into additive feature

effects. The baseline expectation E[f(x)] represents the model’s prior

probability without feature inputs, whereas f(x) reflects the adjusted

probability after feature integration. Red features increase positive

predictions, and blue features increase negative predictions. The

arrow length and the number of the arrows represent the impact on

the predictions; the longer the arrow and the larger the number are, the

greater the influence on the model’s prediction. In the XGBoost model

for Task 1, the three features with the highest weights are the tumour

min diameter, SUVmean and CTmean, and larger tumour min

diameters and lower SUVmean values are associated with HER2-

zero expression. In the XGBoost model for Task 2, the top three

features with the highest weights are the PR status, tumour max

diameter and MTV, and a negative PR status and longer tumour

max diameter are more likely to indicate HER2-positive expression.
4 Discussion

This study revealed that various ML models that were

constructed using 18F-FDG PET/CT imaging parameters

combined with clinicopathological features performed well in

identifying the HER2 expression status of patients with breast

cancer. Among these models, the XGBoost model, which showed

the best predictive performance, achieved AUC values ranging from

0.693 to 0.844 in both the internal and external test sets, indicating

good model robustness and providing valuable support for clinical

decision-making for patients with breast cancer.

Previous studies have confirmed the correlation between 18F-

FDG metabolic parameters and HER2 expression. Patients with

HER2-positive breast cancer have higher SUVmax values than

those with HER2-negative breast cancer (26, 27, 33–35). In this

study, we not only confirmed that metabolic parameters such as the

SUVmax and MTV are correlated with HER2 expression but also

developedMLmodels to predict different HER2 expression statuses.

Our results revealed that the SUVmax, SUVmean, and SUVpeak

consistently increased across the three groups of patients with

HER2-zero, HER2-low, and HER2-positive expression. As shown
TABLE 3 Comparison of breast cancer patients between the
two centres.

Variables
Centre

1 (n=157)
Centre
2 (n=84)

P
value

Age 57.00 (49.00-64.00)
57.00

(48.00-67.00)
0.608

CEA (ng/ml) 1.81 (1.25-3.13) 2.49 (1.36-5.83) 0.013

CA125 (ng/ml) 11.36 (7.94-18.59)
14.41

(10.29-23.18)
<0.001

CA153 (ng/ml) 11.55 (8.39-18.28) 18.34 (9.41-34.80) <0.001

CTmax 72.00 (65.00-81.00)
73.00

(65.00-89.00)
0.426

CTmin 20.69 (12.42-26.62) 19.71 (9.10-24.59) 0.140

Tumour max
diameter (mm)

31.75 ± 13.38 37.93 ± 18.61 0.013

Tumour min
diameter (mm)

21.39 ± 7.55 24.06 ± 12.22 0.403

SUVmax 8.81 (5.99-12.91) 11.37 (6.92-17.20) 0.002

SUVmean 3.50 (2.54-4.38) 4.15 (2.96-5.56) 0.010

SUVpeak 7.10 (4.74-10.45) 8.14 (5.29-12.89) 0.100

MTV 13.39 (7.27-25.88) 13.39 (4.96-35.52) 0.877

TLG
42.52

(22.05-103.25)
49.23

(18.79-175.60)
0.488

Menopause 0.300

Negative 94 (59.87%) 56 (66.67%)

Positive 63 (40.13%) 28 (33.33%)

Lymph Node
Metastasis

0.706

Negative 37 (23.57%) 18 (21.43%)

Positive 120 (76.43%) 66 (78.57%)

Distant Metastasis <0.001

Negative 138 (87.90%) 59 (70.24%)

Positive 19 (12.10%) 25 (29.76%)

ER status 0.111

Negative 63 (40.13%) 25 (29.76%)

Positive 94 (59.87%) 59 (70.24%)

PR status 0.115

Negative 84 (53.50%) 36 (42.86%)

Positive 73 (46.50%) 48 (57.14%)

Ki67 index 0.004

Negative 77 (49.04%) 25 (29.76%)

Positive 80 (50.96%) 59 (70.24%)

HER2 status 0.652

(Continued)
TABLE 3 Continued

Variables
Centre

1 (n=157)
Centre
2 (n=84)

P
value

HER2 status 0.652

Zero 27 (17.20%) 12 (14.29%)

Low 70 (44.59%) 35 (41.67%)

Positive 60 (38.22%) 37 (44.05%)
fron
HER2, human epidermal receptor 2; ER, oestrogen receptor; PR, progesterone receptor;
SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value;
SUVpeak, peak standardized uptake value; MTV, metabolic tumour volume; TLG, total
lesion glycolysis.
The bold values indicate that the P-values are less than 0.05, which means they are
statistically significant.
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TABLE 4 Predictive performance of machine learning models for Task 1.

Model AUC (95% CI) Specificity Sensitivity Accuracy PPV NPV

Train set

LR 0.713 (0.590~0.836) 0.842 0.500 0.560 0.938 0.262

SVM 0.792 (0.674~0.910) 0.526 0.956 0.881 0.905 0.714

XGBoost 0.888 (0.779~0.997) 0.737 0.989 0.945 0.947 0.933

MLP 0.654 (0.525~0.783) 0.684 0.589 0.606 0.898 0.260

Internal test set

LR 0.719 (0.510~0.927) 0.500 0.925 0.854 0.902 0.571

SVM 0.653 (0.388~0.918) 0.750 0.625 0.646 0.926 0.286

XGBoost 0.844 (0.726~0.962) 0.875 0.850 0.854 0.971 0.539

MLP 0.678 (0.403~0.954) 0.500 0.975 0.896 0.907 0.800

External test set

LR 0.659 (0.489~0.828) 0.833 0.625 0.655 0.957 0.270

SVM 0.696 (0.528~0.863) 0.917 0.514 0.571 0.974 0.239

XGBoost 0.759 (0.625~0.893) 0.667 0.833 0.810 0.938 0.400

MLP 0.679 (0.497~0.862) 0.583 0.819 0.786 0.922 0.350
F
rontiers in Oncology
 08
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; XGBoost, extreme
gradient boosting; MLP, multilayer perceptron.
FIGURE 2

ROC and DCA curves of the machine learning models for Task 1 in the training set (A, D), internal test set (B, E), and external test set (C, F). ROC
curves are shown in (A–C); DCA curves are shown in (D–F). ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence
interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; XGBoost, extreme
gradient boosting; MLP, multilayer perceptron.
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TABLE 5 Predictive performance of machine learning models for Task 2.

Model AUC (95% CI) Specificity Sensitivity Accuracy PPV NPV

Train set

LR 0.778 (0.680~0.876) 0.776 0.762 0.769 0.744 0.792

SVM 0.781 (0.684~0.878) 0.776 0.738 0.758 0.738 0.776

XGBoost 0.920 (0.868~0.972) 0.898 0.786 0.846 0.868 0.830

MLP 0.866 (0.792~0.940) 0.674 0.905 0.780 0.704 0.892

Internal test set

LR 0.783 (0.617~0.949) 0.810 0.778 0.795 0.778 0.810

SVM 0.709 (0.531~0.887) 0.667 0.833 0.744 0.682 0.824

XGBoost 0.814 (0.673~0.954) 0.810 0.778 0.795 0.778 0.810

MLP 0.746 (0.580~0.913) 0.714 0.833 0.769 0.714 0.833

External test set

LR 0.649 (0.521~0.778) 0.571 0.730 0.653 0.643 0.667

SVM 0.552 (0.417~0.687) 0.657 0.541 0.597 0.625 0.575

XGBoost 0.693 (0.571~0.816) 0.657 0.703 0.681 0.684 0.677

MLP 0.555 (0.416~0.694) 0.629 0.595 0.611 0.629 0.595
F
rontiers in Oncology
 09
AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; XGBoost, extreme
gradient boosting; MLP, multilayer perceptron.
FIGURE 3

ROC curves and DCA curves of the machine learning models for Task 2 in the training set (A, D), internal test set (B, E), and external test set (C, F).
ROC curves are shown in (A–C); DCA curves are shown in (D–F). ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence
interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; XGBoost, extreme
gradient boosting; MLP, multilayer perceptron.
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in Table 2, significant differences were found only between the

HER2-zero and HER2-positive groups, indicating that HER2-

positive tumours have higher metabolic indicators than HER2-

zero tumours, suggesting greater invasiveness. Additionally, we

observed differences in tumour size (max and min diameters) and

ER/PR status across groups with different HER2 expression

statuses. This finding is consistent with previous findings that

HER2-positive tumours tend to be larger and more likely to be

ER-/PR-negative (25, 30). Furthermore, our study uniquely

leveraged SHAP analysis to provide population-level feature

importance rankings and personalized prediction visualizations,

thereby significantly enhancing the clinical interpretability of the

decision-making process involving multiple parameters.

Furthermore, a variety of ML models were developed using 18F-

FDG PET/CT parameters and clinicopathological features to

differentiate between HER2-zero expression and HER2-low/

positive expression. As shown in Figure 2; Table 4, among these

models, the XGBoost model demonstrated superior predictive

performance and clinical benefit. RFE identified a total of 8

features from among the clinical features and 18F-FDG PET/CT

parameters. Notably, pathological features were not included in the

model, as shown in Figure 4. Therefore, we can achieve noninvasive

prediction of HER2-zero expression using only clinical indicators

combined with 18F-FDG PET/CT parameters without the need for

IHC results. This approach facilitates faster treatment planning and

prognosis assessment and reduces the need for invasive biopsies in
Frontiers in Oncology 10
certain patients, improving patient comfort and lowering the risk of

surgical complications. As shown in Figures 4, 5, the three features

with the highest weights in the XGBoost model were the tumour

min diameter, SUVmean and CTmean. Moreover, as shown in

Figure 4, a higher tumour min diameter, lower SUVmean, and

lower CTmean were associated with HER2-zero expression, which

has not been clearly reported in previous studies. As shown in

Table 4, although the XGBoost model demonstrated strong overall

performance in differentiating HER2 expression statuses (AUC:

0.759-0.844), its NPV in the external test set was relatively low. One

potential reason for this finding is the relatively small number of

HER2-zero patients in the dataset, which may have affected the

model’s ability to identify these cases accurately. Future research

could help improve the model’s NPV by increasing the sample size

of HER2-zero patients, especially with multicentre, large-sample

datasets. This would likely increase the model’s performance and

clinical value. Furthermore, future studies could consider

introducing more features or optimizing training methods to

further improve the model’s performance, particularly with

respect to improving the NPV.

As shown in Figure 3; Table 5, among the various models that

distinguish between HER2-low expression and HER2-positive

expression, the XGBoost model achieved the best predictive

performance and clinical benefit. Among the 9 features that were

used for modelling, as shown in Figure 4, the pathological

characteristic PR status had the highest feature importance,
FIGURE 4

Interpretability SHAP value analysis of the XGBoost models for Task 1 (A, B) and Task 2 (C, D). (A, C) Feature importance ranking based on SHAP
values. The position on the Y-axis represents the importance ranking, and the X-axis reflects the association between each value of a feature and the
corresponding SHAP value. (B, D) Importance rankings of the included features according to the mean (|SHAP value|). PR, progesterone receptor;
SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value; SUVpeak, peak standardized uptake value; MTV,
metabolic tumour volume; TLG, total lesion glycolysis.
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followed by the tumour max diameter and MTV. Additionally, the

personalized SHAP prediction plots in Figure 5 show that the MTV

has greater predictive value for HER2-positive breast cancer

patients than for HER2-low breast cancer patients. Therefore, for

cases with equivocal IHC results, the XGBoost model, which

incorporates pathological features, optimizes diagnostic workflows

by reducing reliance on ISH testing, thereby shortening clinical

decision-making timelines and lowering healthcare costs.

Mao et al. conducted a multivariate logistic regression analysis

utilizing four MRI diffusion model parameters to differentiate

between HER2-low and HER2-positive breast cancer. By

incorporating tumour size and ER/PR status into the model, they

achieved an AUC of 0.877 (31). However, that study had a relatively

small sample size, with only 158 cases. Huang et al. developed four

ML models based on MRI parameters to identify HER2-zero and

HER2-low breast cancer, with AUC values of 0.783 and 0.787 in the

training and validation sets, respectively (32). These studies were all

single-centre studies and lacked external validation. In contrast, our

study is a dual-centre study and categorized the patients into three

groups according to HER2 expression status (HER2-zero, HER2-low,

and HER2-positive) for comparison, providing a more

comprehensive analysis. Additionally, the model still demonstrated

good diagnostic performance in the external validation cohort,

increasing the reliability of the results. These findings provide new
Frontiers in Oncology 11
insights into the relationships among HER2 expression status,

tumour clinicopathological features, and 18F-FDG PET/CT imaging

parameters in breast cancer. The established prediction models may

contribute to personalized treatment plans and prognosis assessment

for breast cancer patients.

This study has the following limitations. First, it was a

retrospective study, which may introduce bias in the inclusion of

the study population, and the results are representative only of the

Chinese population. Second, although this study implemented

stratified sampling and class weight adjustment to mitigate data

imbalance, the limited sample size of HER2-zero breast cancer

patients still impacted model robustness, as evidenced by the

relatively low NPV in the external validation set of the XGBoost

model in Task 1. Future investigations should focus on constructing

larger multicentre datasets while exploring advanced data

augmentation techniques, such as integrating synthetic minority

oversampling (SMOTE) with GAN-based PET/CT image

generation coupled with cross-modal transfer learning frameworks,

to simultaneously increase model performance in terms of class

balance and imaging feature generalizability. Third, PET/CT

involves nonnegligible radiation exposure, particularly in scenarios

that require repetitive imaging. Future studies could explore

multimodal imaging strategies (e.g., PET/MRI) to optimize the

trade-off between diagnostic accuracy and radiation safety.
FIGURE 5

SHAP waterfall plot for predicting (A) HER2-zero, (B) HER2-low, and (C) HER2-positive tumours. PR, progesterone receptor; SUVmax, maximum
standardized uptake value; SUVmean, mean standardized uptake value; SUVpeak, peak standardized uptake value; MTV, metabolic tumour volume;
TLG, total lesion glycolysis.
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Additionally, recent studies have shown that radiomics based on

ultrasound and MRI has the potential to predict different HER2

expression statuses in patients with breast cancer, including patients

with HER2-low expression (36–38). This study used 18F-FDG PET/

CT imaging parameters and clinicopathological features rather than

radiomics features, and future work will involve related

radiomics research.
5 Conclusions

In conclusion, ML models developed on the basis of preoperative
18F-FDG PET/CT parameters and clinicopathological features can

help distinguish different HER2 expression statuses in patients with

breast cancer. Furthermore, noninvasive prediction of HER2-zero

expression can be achieved solely by combining clinical indicators

with PET/CT parameters. In cases where the immunohistochemistry

results are ambiguous or borderline, predicting HER2-low expression

using PET/CT parameters combined with clinicopathological

features still has significant clinical value.
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