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Construction of a prediction
model for axillary lymph node
metastasis in breast cancer
patients based on a multimodal
fusion strategy of ultrasound
and pathological images
Lingli Peng1†, Lan Yu2†, Beibei Liu1, Feixiang Xiang1* and Yu Wu1*

1Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China, 2Department of Pathology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
Background: Accurate assessment of axillary lymph node status is essential for

the management of breast cancer. Recent advancements in deep learning (DL)

have shown promising results in medical image analysis. This study aims to

develop a multimodal DL model that integrates preoperative ultrasound images

and hematoxylin and eosin (H&E)-stained core needle biopsy pathology images

of primary breast cancer to predict axillary lymph node metastasis (ALNM).

Materials and methods: This study included 211 patients with histologically

confirmed breast cancer, conducted between February 2023 and March 2024.

For each patient, one ultrasound image and one histopathological image of the

primary breast cancer lesion were collected. Various DL architectures were

applied to extract tumor features from the ultrasound and histopathology

images, respectively. Multiple fusion strategies, combining features from both

ultrasound and pathology images, were developed to enhance the

comprehensiveness and accuracy of predictions. The performance of the

single-modality models, multi-modality models, and different fusion strategies

were compared. Evaluation metrics included precision, accuracy, recall, F1-

score, and area under the curve (AUC).

Results: PLNeT and ULNet were identified as the most effective feature

extractors for histopathological and ultrasound image analysis, respectively.

Overall, the multilayer fusion model outperformed single-modality models in

predicting ALNM, achieving an accuracy of 0.7353, precision of 0.7344, recall of

0.7576, F1-score of 0.7463, and AUC of 0.7019.

Conclusion:Our study provides a multilayer fusion strategy using ultrasound and

pathology images of the primary tumor to predict ALNM in breast cancer

patients. Although achieving suboptimal performance, this model has the

potential to determine appropriate axillary treatment options for patients with

breast cancer.
KEYWORDS

breast cancer, deep learning, axillary lymph node metastasis, ultrasound, core-
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1 Introduction

Breast cancer (BC) is the most common malignant tumor

among women globally and has become the second leading cause

of cancer-related mortality in this population, with a reported

mortality of approximately 15% (1). Axillary lymph node

metastasis (ALNM) is one of the most significant predictors of

overall recurrence and survival in breast cancer patients (2), with

each positive lymph node associated with an increased risk of death

by approximately 6% (3). Accurately assessing whether axillary

lymph nodes are metastatic is a critical step in the management of

breast cancer (4, 5). Misdiagnosis of axillary lymph nodes can lead

to missed surgical opportunities and may increase unnecessary

surgical trauma and complications (6). Consequently, precise

prediction of lymph node status in breast cancer patients is

essential for effective management of surgical strategies.

Currently, the assessment of axillary lymph nodes primarily relies

on imaging studies (such as ultrasound and MRI) and sentinel lymph

node biopsy (SLNB) (7, 8). While imaging can provide valuable

insights regarding metastasis, its accuracy is typically limited by

operator experience, ranging from 70% to 85%, which can lead to

misdiagnosis and delayed treatment (9). SLNB, as a minimally

invasive procedure, can enhance accuracy to over 90%, but it may

also overlook metastases in non-sentinel lymph nodes (6).

Additionally, there are potential side effects, including lymphedema

and upper limb numbness (10). Therefore, there is an urgent need to

identify a reliable and effective alternative method for accurately

assessing the axillary lymph node status in breast cancer patients,

facilitating informed decisions regarding axillary management.

Radiomics, through high-throughput extraction of numerous

features from medical images, has been applied in the prediction

of ALNM in breast cancer patients (11–13). Some studies have

constructed deep learning (DL) models based on clinicopathological

data, ultrasound or MRI images, aimed at improving the detection

accuracy of ALNM, with the area under the curve (AUC) ranging from

0.74 to 0.89 (14–16). However, as single-modal models, these methods

have certain limitations, including information constraints (which may

not comprehensively capture the biological characteristics of the

lesions), lack of diversity (where different patients may exhibit

similar imaging features despite significant differences in their

pathological status), and insufficient model validation (with a lack of

external validation data potentially affecting the generalizability of the

results). With the rapid development of deep learning technology,

pathological information has also gradually been integrated into high-

throughput analysis. Xu et al. studied a cohort of early breast cancer

patients who underwent preoperative core needle biopsy (CNB) and

found that DL models based on primary tumor biopsy slices could
Abbreviations: DL, deep learning; ALNM, axillary lymph node metastasis; AUC,

area under the curve; BC, breast cancer; SLNB, sentinel lymph node biopsy; CNB,

core needle biopsy; ER, estrogen receptor; PR, progesterone receptor; HER2,

human epidermal growth factor receptor 2; TNBC, triple-negative breast

carcinoma; ROI, regions of interest; SE, Squeeze-and-Excitation; BN, batch

normalization; SLND, sentinel lymph node dissection; ALND, axillary lymph

node dissection.
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effectively refine the prediction of ALNM, which achieved an AUC of

0.816 (17). This finding underscores the importance of pathological

slices in predicting ALNM. Multimodal fusion model contains more

comprehensive information than single-modal models. For instance,

Bove et al. developed a model that combined clinical and radiomic

features provided the best performances to predict the nodal status in

clinically negative breast cancer patients, achieving an AUC value of

0.886 (18). If radiomics, which focuses onmacro-level imaging features,

can be combined with histopathology, which addresses micro-level

characteristics, this multimodal approach will facilitate the integration

of diverse information, thereby further enhancing the accuracy

of predictions.

Therefore, we hypothesize that the combination of breast

ultrasound and puncture pathology analysis may yield encouraging

results in preoperatively distinguishing and predicting ALNM. In this

research, we seek to establish a predictive model for ALNM in breast

cancer using a multimodal fusion strategy, incorporating pre-

treatment ultrasound images and hematoxylin and eosin (H&E)-

stained core needle biopsy pathology of primary lesion.
2 Materials and methods

2.1 Patients

A retrospective collection of imaging and clinical data was

conducted for patients diagnosed with breast cancer via CNB at

Union Hospital of Tongji Medical College of Huazhong University

of Science and Technology between February 2023 andMarch 2024.

The pathological diagnosis methods for axillary lymph nodes

included ultrasound-guided CNB, sentinel lymph node biopsy

(SLNB), and axillary lymph node dissection (SLND). The

inclusion criteria were: (1) availability of preoperative ultrasound

images of the breast and axillary lymph nodes from our hospital,

with complete imaging; (2) ultrasound-guided CNB performed

following breast ultrasound examination; (3) breast surgery

conducted 1–2 weeks after the biopsy. The exclusion criteria

were: (1) patients with a history of contralateral breast cancer or

who had undergone preoperative chemotherapy or radiotherapy;

(2) patients with bilateral breast cancer or multiple lesions that

made target delineation difficult; (3) tumors that were excessively

large, exceeding the measurable range of the ultrasound probe. For

each patient, one ultrasound image and one histopathological image

of the primary breast cancer lesion were obtained.

This study was approved by the Ethics Committee of Union

Hospital at Huazhong University of Science and Technology, and

the methods were applied in accordance with the approved

guidelines. Informed consent was obtained from all patients.
2.2 Data collection

2.2.1 Ultrasound examination
Breast ultrasound examinations were performed by one of ten

experienced radiologists following standard practice protocols.

Several ultrasound devices from manufacturers such as GE
frontiersin.org
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Healthcare, Mindray, and Philips were equipped with linear

transducers (frequency range of 10–18 MHz) to capture breast

and ultrasound images. Unlabeled two-dimensional images stored

in the maximum longitudinal plane of the breast lesions were

utilized for subsequent analysis. Additionally, axillary ultrasound

reports for each patient were recorded and categorized as either

suspicious or unsuspicious. Suspicious sonographic features of

axillary lymph node metastasis (ALNM) included irregular

morphology, absence of the fatty hilum, eccentric cortical

thickening (>3 mm), and microcalcifications (7, 8).

2.2.2 Biopsy and pathological image collection
Core biopsy samples were obtained using a 16-gauge hollow

needle under ultrasound guidance. Each lesion was punctured two to

three times, with harvested tissue immediately fixed in 10% neutral

buffered formalin for 6–72 hours. Surgical specimens were directly

sampled from cancerous lesions and fixed for 24–72 hours. All tissues

were subsequently embedded in paraffin, sectioned at 5 mm intervals,

and stained with hematoxylin and eosin (H&E). Following the

methodology described by Yang et al. for oral squamous cell

carcinoma analysis (19), two senior breast pathologists evaluated

the H&E slides and selected representative tumor regions for

microscopic imaging independently. Image acquisition was

performed at 10× objective (NA=0.30) and 10× eyepiece

magnification using Olympus BX53 and Nikon Eclipse Ni

microscopes equipped with DP27 digital cameras (2048 × 1536

pixel resolution). Spatial resolution was calibrated to 1.25 mm per

pixel using a NIST-traceable stage micrometer, with each image

covering a 2.0 × 1.5 mm tissue region. Representative region

selection followed established pathological protocols requiring ≥30%

tumor cellularity and avoidance of necrosis/artifact zones.

2.2.3 Clinicopathological characteristics
Clinical data recorded included patient age, menopausal status

and tumor location. Histological type and immunohistochemical

results for estrogen receptor (ER) status, progesterone receptor (PR)

status, human epidermal growth factor receptor 2 (HER2) status,

and Ki-67 levels were also documented based on the entire tumor

surgical specimen. Ki-67 positive was defined as proliferation index

at least 14% (20). All BC patients were categorized into three

molecular subtypes according to their immunohistochemical

results: Luminal (ER and/or PR-positive), HER2 overexpression

(ER and PR-negative, HER2-positive) and triple-negative breast

carcinoma (TNBC, ER, PR, and HER2-negative).
2.3 Image data processing

2.3.1 Manual annotation of ROI
This study required further processing of paired ultrasound

images for each lesion to ensure the model focused on critical

feature areas. Specifically, one ultrasound physician with over 10

years of clinical experience manually annotated the regions of

interest (ROIs) in the ultrasound images. Utilizing their extensive

clinical expertise, this physician accurately identified and localized
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the tumor areas, subsequently drawing the smallest bounding

rectangles that encompassed the tumor regions. Another

ultrasound physician, also with over 10 years of clinical

experience, was responsible for the review process. This manual

annotation procedure strictly adhered to a standardized annotation

protocol to ensure consistency and accuracy in the annotations.

2.3.2 Data preprocessing
The data preprocessing in this study involved the processing of

pathological images and ultrasound data, with the aim of providing

standardized data input for subsequent model training. Pathological

images underwent data cleaning and preprocessing. All pathological

images were uniformly resized to 224x224 pixels to meet the input

requirements of the deep learning model. Data augmentation

techniques were employed to increase image diversity, primarily

involving random resizing and cropping (RandomResizedCrop)

and random horizontal flipping (RandomHorizontalFlip) to

simulate different angles and positions of capture. Additionally,

the image data were standardized to a distribution with a mean of

0.5 and a standard deviation of 0.5 to enhance the stability and

generalization capability of model training.

In the preprocessing of ultrasound images, a similar pipeline

data augmentation was followed, including resizing all images to

224×224 pixels and applying random cropping and horizontal

flipping for data augmentation. Vertical flipping was intentionally

avoided due to anatomical orientation constraints. To address the

inherent heterogeneity caused by the use of ultrasound scanners

from different manufacturers—namely GE Healthcare, Mindray,

and Philips—we implemented additional harmonization techniques

aimed at reducing inter-scanner variability. Specifically, we applied

z-score normalization to standardize the intensity distribution of

each image, followed by histogram equalization to align contrast

and grayscale across different devices. These procedures were

intended to minimize variations stemming from differences in

hardware resolution and signal processing. Additionally, mask-

guided annotation was utilized to highlight tumor-specific

regions, enabling the model to concentrate on lesion-relevant

features while reducing the influence of peripheral artifacts and

device-specific noise. By combining normalization, histogram

alignment, and spatial focus through masking, the ultrasound

images were standardized to better support consistent feature

learning across multi-source inputs.
2.4 Construction of deep learning model

This study established a multimodal deep learning model to

perform feature extraction and fusion on ultrasound imaging data

and pathological image data, aiming to predict the likelihood of

axillary lymph node metastasis in breast cancer.

2.4.1 Construction of imaging model
The imaging model utilized classic convolutional neural network

(CNN) architectures, ResNet50 and DenseNet, to extract tumor

features from ultrasound images. After data preprocessing, the
frontiersin.org
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input ultrasound images were first processed through a series of

convolutional and pooling layers to extract embedding

representations containing high-level features. To prevent model

overfitting, a Dropout layer (with a value set to 0.5) was applied

before the fully connected layer of the network. During the model

training process, to accelerate convergence and improve accuracy,

transfer learning was employed using pretrained weights from

ResNet50 and DenseNet models. The learning rate was set to 0.001

and gradually decayed by half every 10 epochs. Model parameters

were optimized using the Adam optimizer, chosen for its adaptive

learning rate adjustment and stable convergence, especially when

training from pretrained backbones with moderate data sizes. We

designate the name ULNet to represent the best-performing standard

networks for ultrasound image analysis. ULNet corresponds to a

modified ResNet50 architecture with strategic adaptations for

ultrasound images analysis, selected due to its strong performance

in image-based classification tasks and proven ability to capture

spatial and edge-related features—especially suitable for

ultrasound’s texture and boundary information.

2.4.2 Construction of pathological model
Due to the high-resolution features of pathological images,

more detailed feature extraction methods are required. In this

study, the Vision Transformer (ViT) and PLNet models were

selected, as they are suitable for processing high-resolution

images. ViT segments the pathological images into 16x16 image

patches and feeds these patches into multiple layers of Transformer

encoders to obtain a more global feature representation. It should be

noted that PLNet is not a novel architecture, but rather a naming

convention adopted to represent the best-performing standard

networks for pathological images. PLNet is a lightweight CNN

architecture optimized for pathology images, featuring four

convolutional blocks with progressive filter expansion and global

pooling. It was selected over more complex architectures like ViT

due to its better balance between global context and convergence

stability on high-resolution image data. The input pathological

images were normalized and resized to 224x224 pixels, and

features were extracted using both the ViT and PLNet models,

resulting in embeddings that represent the pathological images.

During training, the learning rate for the ViT model was set at 3e-5,

while for PLNet it was set at 1e-4, with both utilizing the Adam

optimizer. Batch Normalization layers were incorporated during

feature extraction to eliminate channel discrepancies and enhance

the model’s robustness on pathological images.

2.4.3 The strengths and weaknesses of ULNet
and PLNet models

In terms of strengths, ULNet offers deep feature hierarchies and

residual learning that mitigate vanishing gradients, while PLNet

excels in efficient representation learning with fewer parameters,

particularly helpful under limited data conditions. A noted

limitation is that ULNet may be sensitive to image artifacts or

probe differences, and PLNet, as a simpler CNN, may underperform

on highly heterogeneous pathology data unless supported by proper

normalization and augmentation.
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2.4.4 Construction of multimodal fusion model
The multimodal fusion model combines features from both

ultrasound images and pathological images to enhance the

comprehensiveness and accuracy of model predictions. Initially,

feature embeddings are extracted separately through the imaging

and pathological models, followed by the fusion of information

from the two modalities at the feature level. Various fusion

strategies were explored, including concatenation, weighted

fusion, attention mechanisms, and multilayer fusion. In the

multilayer fusion strategy, the fusion module operates as follows:

First, each modality-specific feature vector is individually processed

through batch normalization layers to reduce scale discrepancies.

The normalized features are then concatenated into a single vector.

This combined vector is passed through a fully connected (dense)

layer with 256 neurons, followed by ReLU activation. A subsequent

Batch normalization layer and Squeeze-and-Excitation (SE) module

are applied to reweight channel-wise dependencies and enhance

feature importance adaptively. The output is then fed into a final

classification head consisting of a single neuron with sigmoid

activation for binary classification. All activation functions used

are standard ReLU (except for the final sigmoid), and dropout was

not applied within the fusion module to retain feature integrity. The

learning rate for the multimodal fusion model was set at 1e-4,

utilizing the AdamW optimizer, with the learning rate decayed

every 5 epochs to stabilize the fusion effect.

For the multimodal fusion model, we employed AdamW, an

improved variant that decouples weight decay from gradient

updates. This choice was based on the empirical observation that

AdamW offers more robust generalization in joint optimization

settings, where fused features from two distinct modalities may

introduce higher gradient variance and overfitting risks. AdamW’s

stronger regularization capability helped stabilize fusion training

and improve convergence without extensive fine-tuning. The

detailed DL flowchart is illustrated in Figure 1.
2.5 Experimental setup

In the experimental setup of this study, to ensure an effective

evaluation of model performance, the dataset was randomly divided

into training and testing sets at a ratio of 8:2. The model training

utilized the AdamW optimizer, and hyperparameter tuning was

performed through grid search, including parameters such as

learning rate and batch size, to ensure optimal model performance.

During training, the initial learning rate was set to 0.001, with a

reduction by half every 5 epochs to accommodate the convergence

requirements of the model. Model training and validation were

conducted on an NVIDIA RTX 3090 GPU cluster, with each GPU

equipped with 24GB of memory, utilizing a total of 5 GPUs, and the

PyTorch deep learning framework for model construction and

training. The programming language used was primarily Python

3.8, with the experimental environment comprising the Ubuntu

20.04 operating system, supporting CUDA 11.1 to accelerate GPU

computations. Key Python libraries required for the experiments

included torch, torchvision, numpy, pandas, and scikit-learn.
frontiersin.org
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Additionally, to ensure the reproducibility of the experiments, the

random seed was uniformly set during both data splitting and model

training processes.
2.6 Model evaluation

For model evaluation, we employed multiple metrics to

comprehensively assess model performance, including accuracy,

precision, recall, and F1-score, to evaluate the classification

effectiveness of the model in predicting axillary lymph node

metastasis. For the binary classification task (metastatic vs. non-

metastatic), a confusion matrix was used to analyze the model’s

classification capabilities and misclassification instances.

Furthermore, to further validate the model’s discriminative

ability, we plotted the ROC curve and calculated the AUC value,

with an AUC value closer to 1 indicating better discriminative

performance. To assess the enhancement effect of multimodal

fusion on the model, we compared the performance differences

between the unimodal (imaging or pathological) models and the

fusion model, focusing on improvements in recall and accuracy.

Statistical analysis of experimental results was conducted using

SPSS software (V.27.0). Continuous variables were compared using

either a student’s t-test or the Mann-Whitney U test, depending on the

normality of the distribution. These variables are presented as mean ±

standard deviation (SD) or median (interquartile range), as

appropriate. The chi-square test was used to assess differences

between categorical variables, which are presented as frequencies and

percentages. A p-value of < 0.05 was considered statistically significant.
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3 Results

3.1 Clinicopathological characteristics of
patients

This study enrolled a total of 211 female BC patients between

February 2023 and March 2024, with a mean age of 53.1 ± 11.7 years

(ranging from 23 to 85 years). All participants underwent axillary

lymph node biopsy and/or dissection, which identified ALNM in 107

patients, while the remaining 104 cases were node-negative. Patients

were categorized into two groups according to axillary lymph node

status. Table 1 summarizes the demographic and clinicopathological

characteristics of the study population. Univariate analysis showed no

significant differences between the two groups in terms of age,

menopausal status, tumor location, histological types, hormone

receptor status, or molecular subtypes (P > 0.05). However,

significant differences were observed in the Ki-67 index, HER2

status, and preoperative axillary ultrasound findings (P < 0.05).

Axillary ultrasound demonstrated a true positive rate of 52.3%

(56/107), a false negative rate of 47.7% (51/107), a true negative

rate of 90.4% (94/104), and a false positive rate of 9.6% (10/104).
3.2 Predictive performance of different DL
models

3.2.1 Pathological model
To assess the predictive performance of DL models using

histopathological images of primary breast cancer, we evaluated
FIGURE 1

Flowchart of deep learning model to predictive axillary lymph node metastasis in breast cancer.
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several architectures, including ResNet50, DenseNet, GoogLeNet,

SqueezeNet, ViT, and PLNet. The results, summarized in Table 2,

indicate that PLNet exceeds the other five architectures across

almost all metrics, except for a slightly lower recall value. The

confusion matrices and ROC curves for all six models in predicting

ALNM based on histopathological images are shown in Figure 2.

Based on these findings, we selected PLNet as the primary DL

architecture for histopathological images analysis in this study, with

an AUC of 0.7195, accuracy of 0.7186, precision of 0.7188, recall of

0.6667, and F1-score of 0.7091.

3.2.2 Imaging model
We trained six distinct models to extract DL features from

primary breast cancer ultrasound images for the prediction of

ALNM. As shown in Table 3, the ULNet model outperforms

other models in terms of AUC (0.6979), precision (0.6875), recall

(0.7488) and F1-score (0.7436). It achieved the best overall

performance and was therefore selected as the primary DL

architecture for ultrasound image analysis. Compared to the

PLNet model based on histopathological images, the ULNet

model, which is based on ultrasound images, demonstrated lower

AUC, accuracy, and precision. However, the ULNet model

improved the recall to 0.7488, demonstrating an improvement in

recall after incorporating mask information. The confusion

matrices and ROC curves for all six models are presented

in Figure 3.

It’s worth noting that the SqueezeNet model produced a recall and

F1-score of 0 in both the ultrasound-based and pathology-based tasks,

indicating that the model failed to correctly identify any breast cancer

patients with ALNM. We attribute this failure to three interdependent

factors: 1) Representational capacity deficit: The model’s extreme

parameter compression (1.24M parameters vs. ResNet50’s 25.6M)

critically limits its ability to capture histo-morphological

discriminators of metastasis (e.g., micrometastases in capsule-

distorted lymph nodes); 2) Feature space imbalance: Metastatic

manifestations occupy sparse regions in the feature space, requiring

specialized architectural components (e.g., attention mechanisms)

absent in SqueezeNet; 3) Gradient dissipation: Vanishing gradients
TABLE 1 The demographic and clinicopathological characteristics of
breast cancer patients.

Characteristics
ALN

(+) N=107
ALN

(–) N=104
P value

Mean age (y) 52.9 ± 11.3 53.4 ± 12.2 0.55

Menopause
status (%)

0.92

premenopausal 61 (57%) 60 (57.7%)

menopause 46 (43%) 44 (42.3%)

Tumor location (%) 0.98

upper outer quadrant 46 (43%) 45 (43.3%)

lower outer quadrant 27 (25.2%) 28 (26.9%)

lower inner quadrant 24 (22.4%) 21 (20.2%)

upper inner quadrant 10 (9.3%) 10 (9.6%)

Histological
type (%)

0.52

ductal 97 (90.7%) 89 (85.6%)

lobular 4 (3.7%) 6 (5.7%)

others 6 (5.6%) 9 (8.7%)

Estrogen
receptor (%)

0.577

negative 25 (23.4%) 21 (20.2%)

positive 82 (76.6%) 83 (79.8%)

Progesterone
receptor (%)

0.537

negative 34 (31.8%) 29 (27.9%)

positive 73 (68.2%) 75 (72.1%)

Ki-67 Group (%) 0.007

<14% 18 (16.8%) 34 (32.7%)

≥14% 89 (83.2%) 70 (67.3%)

HER2 (%) 0.046

negative 85 (79.4%) 93 (89.4%)

positive 22 (20.6%) 11 (10.6%)

Molecular
subtypes (%)

0.126

luminal 83 (77.6%) 84 (80.8%)

HER2 over expression 13 (12.1%) 5 (4.8%)

TNBC 11 (10.3%) 15 (14.4%)

Axillary
ultrasound (%)

<0.001

suspicious 56 (52.3%) 10 (9.6%)

unsuspicious 51 (47.7%) 94 (90.4%)
ALN, axillary lymph node; HER2, human epidermal growth factor receptor 2; TNBC, triple-
negative breast carcinoma.
TABLE 2 Predictive performance of deep learning models based on
histopathological images for predicting ALN metastasis.

Method Precision Recall
F1-

score
Accuracy AUC

ResNet50 0.6875 0.5455 0.6429 0.7126 0.7185

DenseNet 0.625 0.7879 0.6842 0.6047 0.6188

GoogLeNet 0.625 0.6364 0.6364 0.6364 0.6559

SqueezeNet 0.5077 0 0 0 0.5000

ViT 0.5469 0.5734 0.6947 0.5323 0.5728

PLNet 0.7188 0.6667 0.7097 0.7186 0.7195
frontie
Bold values indicates the best result in deep learning models based on histopathological
images. AUC, area under the curve.
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during backpropagation prevent effective weight updates. SqueezeNet,

being an extremely lightweight architecture originally designed for

resource-constrained environments, may lack sufficient capacity to

capture the complex and high-dimensional patterns in medical

imaging data-especially in the context of relatively subtle differences

between metastatic and non-metastatic lymph node profiles. We

intentionally chose to include SqueezeNet in our comparison to

illustrate the limitations of overly simplified networks when applied

to challenging clinical prediction tasks.
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3.2.3 Multimodal fusion model

We developed a multimodal approach that integrates features

from both ultrasound and histopathological images of primary breast

cancer to predict ALNM. The ULNet and PLNet were chosen as the

base DL models for analyzing ultrasound and histopathological

images, respectively. We experimented with multiple fusion

strategies, including concatenation, weighting, attention, voting,

and multilayer fusion. Among these, the multilayer-fusion model
FIGURE 2

Receiver operating characteristic curves and confusion matrix of six different models using histopathological images for predicting axillary lymph
node metastasis in breast cancer. 0: negative; 1: positive. (a–f) represent ResNet50, DenseNet, GoogLeNet, SqueezeNet, ViT, and PLNet model,
respectively.
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delivered the best performance, with an accuracy of 0.7353, precision

of 0.7344, recall of 0.7576, and an F1-score of 0.7463 (Table 4).

Performance was assessed using the ROC curve and a confusion

matrix (Figure 4). Compared to single-modality models (based on

either imaging or pathology), the multilayer-fusion model

demonstrated an AUC of 0.7019, which was comparable to or

slightly lower than that of the PLNet model (AUC = 0.7195). The

combination of ultrasound and histopathological images does not

improve the AUC, which may be due to factors such as architectural

constraints or label noise. However, the multilayer-fusion model

outperformed the single-modality models in terms of accuracy,

precision, recall, and F1-score. when all performance metrics were

considered, the multilayer-fusion model surpassed single-modality

models based solely on ultrasound or histopathological images,

demonstrating its effectiveness for predicting ALNM.
3.3 Modal visualization of ALNM prediction

We employed a heatmap visualization technique for the

multilayer-fusion model to assess the confidence of its

predictions, offering an intuitive view of model focus areas. The

heatmap highlights regions activated by the model that are most

indicative of lymph node metastasis, with blue and red areas

representing regions that received higher attention and carry the

greatest predictive significance. The deeper the color, the higher the

likelihood of predicting ALNM.

To pathologically validate our model’s attention mechanisms,

two senior breast pathologists (>10 years specialty experience)

conducted a blinded retrospective analysis of 50 randomly selected

cases. Following standardized diagnostic protocols, they

independently evaluated regions highlighted by the multilayer-

fusion heatmaps against established histopathological criteria.

High-attention areas were systematically assessed for correlation

with clinically significant features including invasive carcinoma

nests demonstrating aggressive morphological patterns (e.g.,

irregular infiltrative borders, desmoplastic stromal reactions) and

dense collagenous matrix formations associated with metastatic

propensity. The pathologists confirmed consistent spatial

correspondence between model attention foci and these high-risk
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histological characteristics, particularly noting alignment in zones

exhibiting lymphatic tumor emboli and peritumoral fibroblast

proliferation. This qualitative concordance substantiates that our

model prioritizes morphologically aggressive tumor phenotypes in

its decision-making process. To illustrate these findings, we have

incorporated representative pathological-thermal correlations with

annotation markers in Figure 5, demonstrating the clinical relevance

of attention mechanisms in identifying high-risk tumor regions.
4 Discussion

In recent years, DL has been applied to breast cancer diagnosis,

risk stratification, prognosis prediction, and treatment response

assessment (21–23). Common DL network architectures, including

CNN, recurrent neural network, and ViT, have been explored for

these tasks. Among them, ViT has demonstrated state-of-the-art

performance on several image classification datasets (24). To

address the insufficient diagnostic accuracy of single-modality

imaging in cancer, researchers have developed DL-based

multimodal fusion models that leverage multiple data types

commonly found in medical records. For instance, Ishak Pacal

et al. developed InceptionNeXt-Transformer, a novel hybrid DL

architecture combining CNNs and ViTs for multi-modal breast

cancer image analysis (25). A hybrid deep learning model that

integrated InceptionNeXt blocks, enhanced Swin Transformer

blocks, and a Residual Multi-Layer Perceptron for automated

colorectal cancer detection (26). Additionally, the same team

designed XtBrain, another novel hybrid architecture that

combined local and global feature learning for brain tumor

classification. XtBrain leverages the NeXt Convolutional Block

and the NeXt Transformer Block synergistically to enhance

feature learning (27). Suat Ince et al. proposed a novel U-Net

architecture enhanced with ConvNeXtV2 blocks and GRN-based

Multi-Layer for cerebral vascular occlusion segmentation (28).

In this study, we developed a multimodal fusion model

integrating ultrasound and histopathology images to predict

ALNM in breast cancer. HE-stained biopsy pathology images

provide micro-level information on tumor tissue and cellular

structures, though limited by sampling scope, while ultrasound

captures macro-level tissue characteristics. The complementary

integration of these data using a fusion model offers a more

comprehensive view of tumor biology. Huang et al. reported an

AUC of 0.900 (95% CI 0.819–0.953) for early breast cancer subtype

differentiation using a fusion model of preoperative ultrasound and

whole-slide images, highlighting the advantages of image fusion

over single-modality models (29). Our results showed that,

compared to single-modality models and other fusion strategies,

the multilayer fusion model achieved better predictive performance

(accuracy: 0.7353, precision: 0.7344, recall: 0.7576, F1-score: 0.7463,

AUC: 0.7019). Our findings further validate the benefits of

integrating preoperative ultrasound with biopsy pathology images.

Although the multimodal fusion model achieved an AUC of 0.7019,

indicating modest diagnostic performance. It serves as a

complementary tool for guiding personalized treatment decisions.
TABLE 3 Predictive performance of deep learning models based on
ultrasound images for predicting ALN metastasis.

Method Precision Recall
F1-

score
Accuracy AUC

ResNet50 0.6562 0.697 0.6765 0.6571 0.6843

DenseNet 0.625 0.5152 0.5862 0.68 0.6882

GoogLeNet 0.6562 0.7276 0.6944 0.641 0.5982

SqueezeNet 0.5156 0 0 0 0.5000

ViT 0.5625 0.5471 0.541 0.6021 0.6559

ULNet 0.6875 0.7488 0.7436 0.6444 0.6979
Bold values indicates the best result in deep learning models based on ultrasound images.
AUC, area under the curve.
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Future work is needed to optimize the model. Complementary

to our multimodal imaging approach, Bove et al. demonstrated

that combining clinical parameters with radiomic features from

ultrasound images significantly improves nodal status prediction in

clinically negative patients (18). While their methodology leverages

handcrafted radiomic features and clinical integration, our deep

learning-based fusion of raw ultrasound and histopathology images

represents a distinct technical pathway toward the shared goal of

refining axillary management decisions. Both studies underscore

the critical value of multidimensional data integration in breast

cancer staging.
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Axillary lymph node involvement typically indicates a poorer

prognosis and higher recurrence risk in breast cancer patients (8).

Thus, preoperative accurate assessment of axillary lymph node status

helps clinicians devise appropriate axillary treatment strategies,

reducing postoperative complications and improving outcomes.

Axillary ultrasound is commonly recommended as part of the

standard diagnostic workup for patients with invasive breast cancer

(30). However, its diagnostic accuracy is limited by high operator

dependency. In our study, axillary ultrasound demonstrated a true

positive rate of 52.3% and a false negative rate of 47.7%. This false

negative rate is notably higher than that reported in previous studies,
FIGURE 3

Receiver operating characteristic curves and confusion matrix of six different models using ultrasound images for predicting axillary lymph node
metastasis in breast cancer. 0: negative; 1: positive. (a–f) represent ResNet50, DenseNet, GoogLeNet, SqueezeNet, ViT, and ULNet, respectively.
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which range from 23.4% to 25% (31, 32), potentially leading to the

underdiagnosis of patients with clinically significant nodal metastasis.

Our multilayer fusion model presents an alternative approach for

detecting ALNM in breast cancer patients, offering clinicians an

alternative tool to inform treatment decisions. For patients without

evidence of nodal involvement, axillary surgery could potentially be

avoided, whereas sentinel lymph node dissection (SLND) or axillary

lymph node dissection (ALND) is typically performed in cases with

confirmed ALNM (33). Although ALND remains the gold standard

for diagnosing axillary lymph node status and preventing axillary

recurrence, it is associated with significant complications, including

lymphedema, restricted mobility, and sensory abnormalities (33).

Over the past few decades, axillary management has become less

invasive, with SLND largely replacing ALND, thereby minimizing

physical harm. The Z0011 trial demonstrated that for patients with

one or two positive sentinel nodes, survival outcomes are comparable

between those undergoing SLND alone and those undergoing ALND

(34). As research increasingly emphasizes individualized and

minimally invasive treatments (35, 36), it is crucial to accurately

assess axillary lymph node status preoperatively, particularly in cases

where clinical and imaging examinations show no suspicious signs of

ALNM. SLND could be avoided if reliable preoperative evaluation of

ALN status were available.

In our study, the deep learning model based on ultrasound

achieved an AUC of 0.6979, while the histopathology-based model

achieved an AUC of 0.7195, both of which are lower than those

reported in previous studies (15, 17), likely due to the smaller

sample size. In clinical practice, multi-modal imaging offers more

complementary information compared to single-modal imaging.

The multimodal fusion model integrating ultrasound and

histopathological images achieved an AUC of 0.7019 -

comparable to, or slightly lower than that of the histopathology-

based model, suggesting no significant diagnostic improvement.

However, in medical imaging, evaluating model performance based

solely on the AUC value is insufficient. Other critical metrics, such

as precision, accuracy, recall, and F1-score, must also be considered.

When evaluating these comprehensive performance metrics, the

multilayer fusion model outperformed all single-modality models in
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our study, demonstrating improvements in precision, accuracy,

recall, and F1-score. Specifically, the multilayer fusion model

showed superior precision and accuracy, indicating that its

positive predictions were primarily true positives, and that it

achieved a higher overall correct prediction rate, with fewer false

positives and false negatives. In terms of recall, the multilayer fusion

model also exhibited superior performance, identifying more true

positive cases and thereby reducing the risk of missed diagnoses.

Importantly, the F1-score, which balances precision and recall, was

significantly higher for the multilayer fusion model, underscoring

its advantage in comprehensively evaluating positive cases and

minimizing missed diagnoses. These findings suggest that the

multilayer-fusion model is proposed not solely based on AUC,

but on its balanced and consistent advantage across multiple

performance dimensions, demonstrating its comprehensive

advantage in predicting ALNM. In our research, the multilayer-

fusion model based on ultrasound and histopathological images

does not improve the AUC, which may be due to factors such as

architectural constraints or label noise. Future work will employ

cross-modal attention mechanisms to better isolate complementary

features across modalities. This could include incorporating more

advanced models, such as EfficientNetV2 and Swin Transformer, to

validate performance improvements (37).

In our multilayer fusion model strategy, a Squeeze-and-

Excitation (SE) attention mechanism was incorporated to

adaptively recalibrate feature channel weights, thereby enhancing

the representation of critical features while suppressing irrelevant or

noisy features. This mechanism increases the model’s sensitivity to

key features, thus improving classification accuracy (38). After

feature scaling, individual model features were concatenated,

ensuring a more uniform feature value distribution and reducing

instability during training due to large feature value discrepancies.

To address significant feature differences across modalities, batch

normalization (BN) layers were applied to both models before

feature fusion. Given the substantial variation in the distributions

of ultrasound and histopathology features, BN layers effectively

standardize the features, making the fusion process smoother and

more stable (39). After integration, the recall and accuracy of the

fusion model were improved compared to the unimodal (imaging

or pathological) models. The improvements in recall (likewise

recognized as sensitivity) with our fusion model suggest it may

minimize missed diagnoses of lymph node metastasis, proving

particularly valuable for identifying high-risk patients. By

providing reliable risk assessments, the fusion model can support

clinical decisions on further invasive evaluation or personalized

treatment planning, underscoring its potential as a clinical decision

support tool.

To enhance the interpretability of our multilayer fusion model,

we employed heatmap visualization to highlight the region’s most

influential in the model’s predictions. For ultrasound images, the

key regions for distinguishing ALNM in breast cancer were found to

be the tumor boundary and the low-echo areas within the tumor. In

histopathological slides, the regions exhibiting prominent invasive

cancer cells and dense collagen stroma were identified as the most

predictive features. These findings are consistent with previous
TABLE 4 Predictive performance of an integrated deep learning model
based on ultrasound and histopathological images for predicting
ALN metastasis.

Method Precision Recall
F1-

score
Accuracy AUC

concatenation 0.6875 0.6667 0.6875 0.7079 0.6246

weighting 0.7031 0.7273 0.7164 0.7059 0.6774

attention 0.5625 0.1818 0.3 0.5571 0.5660

voting 0.7031 0.697 0.7077 0.7188 0.6706

group1 0.7188 0.6667 0.7097 0.7186 0.7195

group2 0.6875 0.7488 0.7436 0.6444 0.6979

Multilayer-
fusion

0.7344 0.7576 0.7463 0.7353 0.7019
Bold values indicates the best result in all deep learning models. AUC, area under the curve.
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studies that have linked ultrasonographic characteristics—such as

tumor size, echogenicity, and lesion boundary—as well as

histological features like grading and lymphatic vascular invasion,

to axillary lymph node involvement in primary breast cancer (40–

44). Additionally, our study highlighted that high Ki-67 expression

and positive HER2 status may also serve as potential risk factors for

ALNM, aligning with prior research (45–47). High Ki-67
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expression, which reflects the proliferation activity of cancer cells,

has been established as a significant predictor of ALNM (48, 49).

Collectively, these findings further support the clinical reliability of

our model’s predictions, providing a framework for predicting

ALNM in breast cancer patients.

This study has some limitations. First, the small sample size

increases the risk of overfitting and may affect the model’s
FIGURE 4

Receiver operating characteristic curves and confusion matrix of 5 different models using ultrasound and histopathological images for predicting
axillary lymph node metastasis in breast cancer. 0: negative; 1: positive. (a–e) represent concatenation, weighting, attention, voting, and multilayer
fusion, respectively.
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generalizability. The model’s performance may not hold up in a

larger, more diverse patient cohort. Future research should involve

larger and more diverse cohorts to enhance the model’s robustness

across different patient demographics, tumor types, and
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pathological stages. Second, selection bias is an inherent

limitation of this retrospective research. The stability,

generalizability, and clinical utility of the model requires further

validation through prospective, multi-center studies. Additionally,
FIGURE 5

Representative original histopathological images and heatmaps. Histopathological images of primary breast with annotation markers (left column)
and their corresponding attention heatmaps (right column), the darker the feature color, the higher the attention of the model. (a) The marked
regions on the H&E slides represent the tumor-stroma interface, containing both apparently invasive carcinoma and abundant collagenous stroma
(left column); corresponding heatmaps are shown in the right column. (b) The marked regions on the H&E slides represents invasive carcinoma
nests (left column), with their corresponding heatmaps shown in the right column. (c) The image in the left column represents H&E slides from a
breast cancer patient without axillary lymph node metastasis, corresponding heatmaps are shown in the right column.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1591858
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Peng et al. 10.3389/fonc.2025.1591858
while the multilayer fusion model outperformed other models, its

specificity can be further improved to reduce false positives.

Enhancing specificity may require more complex model

structures or higher-resolution imaging, potentially achieving a

better balance between sensitivity and precision.
5 Conclusion

Overall, this study developed a multimodal fusion model that

integrates ultrasound images and pathology slides of the primary

tumor to preoperatively predict ALNM in breast cancer patients.

The model demonstrated a moderate diagnostic performance,

outperforming models based solely on single-modality images. This

approach has the potential to assist clinicians in lymph node

staging and personalized treatment decisions. Future improvements

could focus on enhancing predictive accuracy by incorporating larger

datasets, leveraging more advanced architectures, and comprehensively

integrating clinical features with multiple image data.
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