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Objective: Ovarian cancer is the most deadly gynaecological malignancy. This

study aims to generate a predictive model for prognosis and therapeutic

responses in ovarian cancer using defined specific genes.

Methods: The cellular senescence-associated gene sets and the ovarian aging-

associated gene sets from the TCGA and GEO databases were analyzed using Cox

regression with LASSO approach and employed to construct a prognostic model

of Cellular Senescence andOvarian Aging-Related Genes (CSOARG). Immunology

analysis, functional enrichment, single-cell analysis, and therapeutic responses of

ovarian cancer were conducted using the data from public databases. A machine

learningmodel based on the expression levels of prognostic genes combined with

clinical features was developed to predict the five-year overall survival. Patients

with high- and low-risk scores were separated by the median risk score. Defined

genes were verified by qRT-PCR and Western blot. The cellular behavior was

evaluated by CCK-8, migration, and wound-healing assays.

Results: After a series of calculations, an 8-gene CSOARGmodel was generated.

CSOARG was correlated with genomic instability that harbored homologous

recombination deficiency. The area under the curve (AUC) for 5-year overall

survival was 0.68. Patients in the high-risk score group had a higher IC50 of

chemotherapeutic and targeted therapeutical agents, worse responses to

chemotherapy and immunotherapy, and exhibited a poor prognosis. A hub

gene WNK1 was validated and acted as an oncogene affecting ovarian cancer

cell viability and migration.

Conclusions: These findings demonstrate that a novel CSOARG model can

effectively predict the prognosis and therapeutical responses of patients with

ovarian cancer, which may assist clinicians in implementing better practices.
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Introduction

Ovarian cancer is the most lethal gynecological malignancy

because of recurrence and drug resistance that leads to a poorer

prognosis (1). Ovarian cancer is a highly heterogeneous disease. It is

of particular importance to have a predictive method to know the

potential treatment and prognosis. Cellular senescence is a state of

terminal growth arrest with no cell proliferation (2). Ovarian aging,

also known as ovarian failure, is caused by a decline in the number

and quality of oocytes and is a physiological process in the alteration

of endogenous estrogen hormones (3). Menopause, an important

risk factor of ovarian cancer, is closely related to ovarian aging.

Furthermore, the incidence of ovarian cancer continues to increase

after menopause even beyond a family history of ovarian cancer (4).

It has been shown that many factors influence the prognosis of

ovarian cancer patients. Among these, age is the most influential

factor that is correlated to clinical phenomena such as tumors.

Aging can make the body more susceptible to tumor growth by

decreasing immunocompetence and increasing the inflammatory

response (5, 6). Cellular senescence has been demonstrated to be

associated with antitumor drug resistance because chemotherapy

can trigger tumor cell senescence and growth suppression, e.g.,

adriamycin activates senescence pathways in lung cancer (7).

However, the process of cellular senescence may paradoxically

promote chemoresistance via the secretion of factors associated

with the senescence-associated secretory phenotype (SASP) in

colorectal cancer and melanoma (8). Furthermore, radiotherapy

has been shown to induce senescence through ionizing radiation-

activated pathways in hepatocellular carcinoma (9). The

combination of senescence inducers (e.g., PARP inhibitors in

breast cancer) with radiotherapy has been shown to amplify

therapeutic efficacy (10).

A multitude of prognostic models such as models related to

necroptosis, cellular pyroptosis, and cuproptosis have been

developed to predict the prognosis of ovarian cancer (11–13).

However, no predictive model exists for cellular senescence and

ovarian aging with ovarian cancer prognosis. In this study, we

developed a predictive model called a CSOARG (Cellular

Senescence and Ovarian Aging-Related Genes) for the prognosis

of ovarian cancer, which is related to cellular senescence and

ovarian aging associated with therapeutical responses, and

validated the effect of a hub gene WNK1 on ovarian cancer cell

viability and migration.
Materials and methods

Data sources

The Cancer Genome Atlas Ovarian Cancer (TCGA-OV)

dataset was downloaded from the UCSC Xena Browser (https://

xenabrowser.net/) (14). After samples without clinical information

about age, stage, or overall survival time of less than 30 days were

removed, 407 tumor samples were included for further analysis. The

single-cell RNA sequencing (scRNA-seq) dataset GSE165897 was
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collected from Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/) (15). For external validation, Bulk

RNA sequencing (Bulk RNA-seq) datasets GSE140082 and

GSE30161 were downloaded from GEO by the “GEOquery”

R package.
Prognostic cellular senescence and ovarian
aging-related genes

The workflow of this study is presented in Supplementary

Figure S1. Two datasets were selected to analyze and generate a

model. A total of 314 ovarian aging-related genes were selected

from a previous study (16) (Supplementary Table S1). A total of 125

genes referred to cellular senescence genes (SupplementaryTable

S2) were obtained from the SenMayo geneset (17). The ovarian

aging-related genes and the SenMayo geneset genes were merged to

generate a predictive model of Cellular Senescence and Ovarian

Aging-Related Genes (CSOARG). Prognosis-related genes were

screened for the construction of prognostic models. Bulk RNA-

seq and scRNA-seq analyses were performed on the predictive

function of the models. Clinical samples collected at the Jinshan

Hospital of Fudan University were used to analyze the relationship

between gene expression in the model and clinical characteristics.

Then, a hub gene WNK1 was screened and validated in vitro at the

cellular level.
Establishment of CSOASRG signature in
ovarian cancer

Univariate Cox Regression analysis was applied to screen

prognostic genes from CSOARG in the TCGA-OV dataset. Then,

LASSO Cox Regression analysis was performed to construct a

prognostic CSOARG model through the “glmnet” R package. The

risk score for each cell in the single-cell data was calculated and the

formula that calculated the risk score was as follows: Risk

score=∑coef(gene i)*expression(gene i). The threshold used for

the separation between high- and low-risk groups was taken by

the median of all cell sub-risk scores. The coef is listed in

Supplementary Table S3. Time-dependent receiver operating

characteristic (ROC) analysis was performed to evaluate the

efficiency of the model by the “time ROC” R package.

Patients in the TCGA-OV dataset were then divided into two

groups by a mean risk score: high-risk group, and low-risk group. The

overall survival (OS) time between the two groups was compared by

Kaplan-Meier analysis and demonstrated by Kaplan-Meier plot using

the “survival” and “survminer” R packages. The “forestplot” package

was applied to draw the forestplot. A nomogram was constructed to

predict a 5-year OS probability and the calibration curve was

performed to test the precision of this nomogram using the “rms” R

package. Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Gene Ontology (GO) analyses were employed to demonstrate

functional classification and related pathways of prognostic

CSOARG using “org.Hs.eg.db” and “clusterProfiler” R packages (18).
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Immunologic function analysis

Single sample gene setenrichment analysis (ssGSEA) algorithmwas

applied to estimate the expression of model genes in 29 immune cell

subsets (19) by the”GSVA” R package (20). CIBERSORT (https://

cibersort.stanford.edu/) was devoted to profiling the relative

proportion of 22 subsets of immune cells between high- and low-

risk groups (21). Differential expression between two risk groups of

79 immune checkpoint genes from published papers (22–24) was

determined by the “limma” R package.
Immunotherapeutic responses prediction

The immunophenoscores (IPS) of ovarian cancer were

downloaded from The Cancer Immunome Atlas (TCIA) database

(https://tcia.at/) (25). IPS were compared between high- and low-

risk groups. Tumor Immune Dysfunction and Exclusion (TIDE)

scores were calculated by the TIDE database website (http://

tide.dfci.harvard.edu) (26).
Drug sensitivity prediction

The half-maximal inhibitory concentrations (IC50) which

represented drug sensitivity were predicted by the “pRRophetic”

package (27). Differences in predicted drug sensitivity were compared

between high- and low-risk groups in the TCGA-OV dataset.
Genomic instability analysis

The data on tumor mutation burden (TMB), homologous

recombination deficiency (HRD) scores, somatic alteration, and single

nucleotide variants (SNV) in ovarian cancer patients were downloaded

from the TCGAdatabase. TMB andHRD scores were compared between

high- and low-risk groups. The “maftools” R package was used to analyze

and visualize somatic alteration and SNV in two risk groups.
Single-cell RNA-seq analysis

TME was analyzed based on the dataset of GSE165897 (28). The

“Seurat” R package was applied to run cell quality control and normalize

the gene expression in each cell with default parameters (29). Each cell

was defined by cell definition in this dataset and cell clusters were

displayed by T-Distributed Stochastic Neighbor Embedding (t-SNE)

algorithms. The communication signaling network between tumor and

plasma cells was examined by the “NicheNETr” R package (30).
Machine learning

A prognostic model was constructed by Python software and

the “PyCaret” package in the method of machine learning in the
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TCGA-OV database. The model was developed by the features of

age, FIGO (International Federation of Gynecology and Obstetrics)

stage, and the expression of 8 prognostic genes. Stratified ten-fold

cross-validation was performed and 15 classification algorithms

were compared to find the best model for predicting the prognosis

of ovarian cancer patients using the “PyCaret” Python package

(https://pycaret.org/).
Clinical tissue sample collection

Ovarian cancer tissues (n=16) and non-cancerous ovarian

tissues (para-cancerous tissues or non-tumor tissues; n=24) were

collected from Jinshan Hospital of Fudan University after surgery

and stored with liquid nitrogen. Informed consent was obtained

from each patient and the ethical approval of the study for human

subjects was approved by the Ethics Committee of Jinshan Hospital

(approval no. JIEC-2023-S68). All methods were performed in

accordance with the relevant guidelines and regulations.
Cell culture

The human immortalized ovarian surface epithelial cell lines

IOSE-80 (derived from normal ovarian surface epithelium; OriGene

Technologies, Inc. Wuxi, Jiangsu, China), human ovarian cancer

cel l l ines A2780 (derived from ovarian endometrioid

adenocarcinoma) and SK-OV-3 (derived from ovarian

endometrioid adenocarcinoma in ascites) were obtained from

American Type Culture Collection (ATCC), VA, USA and

cultured in DMEM with 10% fetal bovine serum (FBS; Thermo

Fisher Scientific, Inc, MA, USA). The human ovarian cancer cell

line OVCAR-3 (derived from ovarian adenocarcinoma in ascites;

ATCC) was cultured in RPMI-1640 medium (Thermo Fisher) with

20% FBS. All cells were maintained in a humidified incubator at 37°

C and 5% CO2, and their identity was confirmed by short tandem

repeat (STR) analysis. They were also routinely tested for the free of

pathogens and mycoplasma.
RNA extraction and quantitative real-time
reverse transcription-PCR

Total RNA from tissues and cells was extracted using an RNA-

Quick Purification Kit (Shanghai Yishan Biotechnology Co. Ltd,

Shanghai, China) and was reverse-transcribed to cDNA using a

qPCR RT kit (Roche Diagnostics, IN USA). cDNA was amplified by

BeyoFast SYBRGreen qPCRMix (2X; High ROX; Beyotime, Shanghai,

China). The primer sequences are listed in Supplementary Table S4.
Extraction of proteins and western blotting

The extraction of total proteins was conducted using the Minute™

SD-001 kit (Invent Biotechnologies, Inc, Beijing, China), supplemented
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with 1% phenylmethanesulfonyl fluoride (Beyotime) and 1%

phosphatase inhibitor (Nanjing KeyGen Biotech Co, Ltd, Nanjing,

Jiangsu, China). The 7.5% SDS-PAGE was used to separate proteins

which were then transferred to a 0.45 mm PVDF membrane. A

transfer buffer containing 10% methanol and 0.1% SDS was prepared

by diluting a 10X stock solution in distilled water. Proteins were

transferred under a constant current of 300 mA for 2 h. Primary

antibodies were rabbit anti-WNK1 (1:500 dilution, Cat No: 28357-1-

AP) and rabbit anti-Vinculin (1:5000 dilution, Cat No: 28357-1-AP)

purchased from Proteintech lnc. (Wuhan, Hubei, China). These

antibodies were incubated overnight at 40C. The secondary antibody

was horseradish peroxidase-conjugated goat anti-rabbit IgG (1:10000

dilution; Proteintech). Signals were detected using a BeyoECLMoon kit

(Beyotime), followed by quantification utilizing ImageJ software.
Detection of cell viability and migration

For cell viability, cells were transfected with WNK1-siRA (si-

WNK1) first and re-cultured in 96-well plates (6000 cells per well in

A2780 and 8000 cells per well in OVCAR-3). Non-specific siRNA

was used as a negative control (NC). Cell viability was assessed

using a Cell Counting Kit-8 kit (CCK-8; Yeasen Biotechnology,

Shanghai, China) at 0, 24, 48, and 72 h, respectively.

For the transwell assays, A2780 andOVCAR-3 cells were transfected

with si-WNK1 (sequence: 5’-GCGACGACUACGAGAUAAATT-3’) or

NC siRNA (sequence: 5’-UUCUCCGAACGUGUCACGUTT-3’) for 2

days. After harvest by centrifugation and resuspension with serum-free

medium, cells were plated into the upper chamber of Transwell plates

(Corning Incorporated, Corning, NY, USA). At the same time, a

complete medium supplemented with 20% FBS was added to the

lower chamber of the Transwell plate. After incubation for 48 h, cells

located on the bottom surface of Transwell were fixed with 4%

paraformaldehyde for 15 min and stained with crystal violet for 30

min. Migrating cells were photographed in three random fields of view

using an inverted microscope (Olympus, Tokyo, Japan) and counted

using ImageJ (National Institutes of Health, Bethesda, USA).

For the wound healing assays, siRNA-transfected A2780 and

OVCAR-3 cells were seeded in 6-well plates and scraped with a

200 mL pipette tip when 90% confluence was reached. The scratch

width was measured at 0 and 48 h after scratching. The percentage of

wound healing was calculated using the following formula: (original

scratch width after 48 h culture)/(original scratch width) × 100%.
Statistical analysis

All statistical analyses were conducted using R software

(v4.2.1, R Foundation for Statistical Computing, Vienna, Austria).

The Student’s t-test and Wilcoxon rank sum test were used to

analyze the differences between the two groups. One-way analysis of

variance (ANOVA), followed by Tukey’s multiple comparisons test,

was used for multiple group comparisons. Data were presented as the

mean ± standard deviation (SD). A P-value < 0.05 was defined as

statistical significance.
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Results

Construction of the predictive model of
prognosis in ovarian cancer

A total of 406 genes from datasets related to cellular senescence and

ovarian aging were obtained from the literature (16, 17). We name these

genes as cellular senescence and ovarian aging-related genes. Further, a

total of 2329 prognosis-related genes were screened from the TCGA

database by the Unicox regression with a threshold of P <0.05. A set of 22

prognostic senescence- and tumor senescence-related genes were

obtained (Figure 1A). These 22 genes were further integrated into the

LASSO regression analysis and validated by 10-fold cross-validation

(Figures 1B, C). Thus, an 8-gene model was obtained (see components

of the model in Supplementary Table S3). Time-dependent ROC curves

were used to evaluate the efficiency of themodel. The area under the curve

(AUC) of the model for 5-year overall survival was 0.68 (Figure 1D).
Clinical significance of prognostic
modeling

Based on the median risk score, samples of patients were separated

into two groups, high- and low-risk score groups (Figure 2A). Unicox

regression analysis was employed to analyze the association between risk

score, age, International Federation of Gynecology and Obstetrics

(FIGO) stages, and prognosis in patients with ovarian cancer. A

substantial body of research had identified a robust correlation

between the genes CXCL10, LYG1, and GMPR and patient prognosis

(Figure 2B). A forestplot showed that the correlation between the risk

score and prognosis, as well as between age and prognosis, was found to

be statistically significant within the prediction model. (Figure 2C). A

survival analysis revealed that patients in the high-risk score group

exhibited a worse prognosis (Figure 2D) and appeared with older age

(Figure 2E). A nomogram was constructed to predict a 5-year overall

survival probability, in which predictive factors included age, tumor

stage, and risk score (Figure 2F). The calibration curves were used to

validate the reliability of the line graph for predicting 5-year survival and

resulted in an effective prediction of the 5-year survival rate of ovarian

cancer patients (Figure 2G). The results of the Gene Ontology (GO)

term analysis in the categories of Biological Process, Cellular

Component, and Molecular Function indicated that the differential

genes between high- and low-risk groups were involved in extracellular

matrix organization, collagen-containing extracellular matrix, and

extracellular matrix structural constituent (Figure 2H). The result of

the KEGG enrichment analysis of differential genes in high- and low-

risk groups exposed several functional pathways such as neuroactive

ligand-receptor interaction, PI3K-Akt signaling pathway, etc (Figure 2I).

These functional enrichments suggest that the extracellular

microenvironment is the primary focus of interest.
Immune function analysis

Two algorithms, CIBERSORT and GSEA, were used to assess

immune infiltration status. The CIBERSORT algorithm was used to
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assess the difference in the proportion of immune cells composed

between high- and low-risk groups. The high-risk score group

exhibited higher counts of resting memory CD4 T cells (Figure 3A).

The GSEA algorithm was used to assess the expression levels of genes

in immune cells in the predictive model of prognosis. We found that

CXCL10 expression was significantly higher in various immune cells

(Figure 3B). Furthermore, there were 79 immune checkpoint-related

genes collected from the literature to be differentially expressed between

high- and low-risk score groups (Figure 3C). Most of the immune

checkpoint genes were down-regulated in the high-risk group,

especially the HLA molecular family. These data indicate that a

weaker immune function and less effective immunotherapy in the

high-risk score group may exist.
Prediction of effects of immunotherapy

To reflect the differential expression of the immune checkpoint

molecules PD-1 and CTL-4, IPS scores in high- and low-risk score

groups were compared. We found that patients in the low-risk score

group had higher levels of PD-1 and CTL-4 expression (Figures 4A–

D), suggesting better immune efficacy in low-risk models. Next,

TIDE scores were utilized to analyze variations in immune cell

function between high and low-risk score groups. We found that

TIDE scores, immune cell T-cell exclusion, and functional

dysfunction were higher in the high-risk score group compared to
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the low-risk score group (Figures 4E–D). Additionally, there were

no significant differences in microsatellite instability between these

2 groups. Furthermore, T-cell-associated cellular immunity was

lower in the high-risk score group. However, there was no

significant difference in the level of tumor cell-specific antigen

exposure due to microsatellite instability between the high- and

low-risk score groups.
Correlation between CSOARG and
genomic instability

Patients with low-risk scores of CSOARG had more mutation

burden and HRD than those with high-risk scores in the TCGA-OV

cohort (Supplementary Figures S2A, B). However, no difference in

gene mutations was found between the subtypes of the high- and

low-risk scores (Supplementary Figures S2C–F).
Drug sensitivity prediction

The relationship between prognostic modeling and the efficacy

of chemotherapy or targeted agents was further explored. For each

patient in the TCGA dataset, the pRRophetic package was used to

predict drug IC50 values. Patients in the high-risk score group had a

higher IC50 of chemotherapeutic agents such as cisplatin, 5-FU, and
FIGURE 1

Construction of a predictive model of CSOARG for prognosis in ovarian cancer. (A) Screening of genes related to the prognosis of cellular
senescence and ovarian aging. (B) Selection of the optimal candidate genes in the LASSO model. (C) LASSO coefficients of prognosis-associated
CSOARG. Each curve represents a gene. (D) The time-dependent ROC curve at 5-year OS in the TCGA-OV cohort.
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FIGURE 2

Analysis of the clinical function of predictive models for prognosis. (A) Distribution of risk scores in the TCGA and patient distribution in the high- and low-
risk groups based on the overall survival (OS) status. The heatmap shows expression profiles of the 8 genes in the CSOARG mode. (B) Forest plots showing
results of univariate Cox regression analysis between the expression of 8 candidate genes and overall survival. (C) Forest plots showing results of univariate
Cox regression analysis between 8 genes in the CSOARG model. (D) Kaplan-Meier curves for the OS of patients in the high- and low-risk groups. (E) Kaplan-
Meier curves for the OS of patients in the order and younger groups. (F) The nomogram plot integrated CSOARG risk score, age, stage, and grade in the
TCGA-OV training cohort. (G) The calibration plot for the probability of 5-year OS in the TCGA-OV cohort. (H) A bar plot of the Gene Ontology (GO)
enrichment analysis of differential genes in high- and low-risk groups. (I) A bar plot of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of differential genes in high- and low-risk score groups. *p<0.05; **p<0.01; ***p<0.001.
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camptothecin (Figures 5A–C). Patients in the high-risk group also

had a higher IC50 for targeted therapeutics such as Gefitinib et al.

(Figures 5D–H) and an endocrine agent such as Temozolomide

(Figure 5I). These data suggest that high-risk scores are associated

with worse chemotherapy and targeted therapy.
Single-cell analysis

Based on the annotations in the published literature (28),

different cell types and sub-cell types, including epithelial ovarian
Frontiers in Oncology 07
cancer (EOC), stromal cells, and immune cells that were further

divided into sub-cell types such as CAF cells and NK cells, were

distinguished (Figures 6A, B). Additionally, the risk scores for each

cell were distributed (Figure 6C). Among the three cell types, tumor

cells had the highest risk score, followed by immune cells, whereas

stromal cells had the lowest risk score (Figure 6D). Differences in

the proportions of subcellular composition between high- and low-

risk score tissues were compared. The percentage of plasma cells

was significantly lower in patients with the high-risk score

(Figure 6E). Ligand/receptor analysis was used to analyze cellular

communication between tumor cells and plasma cells and their
FIGURE 3

The landscape of immune function and immune cell infiltration between the high- and low-risk groups in the TCGA cohort. (A) Boxplot showing
differences in immune functions between the high- and low-risk score groups. *P<0.05. (B) A heat map of prognostic genes in different types of
immune cells. (C) A bar plot demonstrating the differential expression of immune checkpoint genes in high- and low-risk score groups.
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tumor microenvironment. Firstly, tumor cells were analyzed using

receptors as markers. Tumor cells were regulated by secreted TGF-b
from the surrounding environment. Several molecules such as

CXCL8 were predicted target genes in tumor cells (Figures 7A,

B). Secondly, plasma cells were also analyzed using receptors as

markers. The plasma cells were found to be affected by CXCL8

secreted by the tumor cells, and the predicted target gene was CD24

(Figures 7C, D).
Machine learning to optimize predictive
models for prognosis

A machine learning model based on the expression levels of

eight prognostic genes combined with clinical features was

developed to predict the five-year overall survival of ovarian

cancer patients. To further improve prediction accuracy, we

compare 14 machine learning algorithms and filter out the

optimal prediction model: Extra Trees Classifier (Figure 8A). The

optimal prediction model showed that all 8 genes had higher

weights than tumor grade and FIGO stage (Figure 8B). The AUC

of our predictive model for prognosis was 0.82 after optimization

(Figure 8C). These data suggest that these 8 genes play an important

role in predicting ovarian cancer prognosis and provide more

prognostic value than traditional clinical information. The model

was also validated by 2 external datasets (GSE140082 and

GSE30161). The results showed that the model can effectively

predict the prognosis of ovarian cancer patients (Supplementary

Figure S3). A comparison between this model and other ovarian

cancer prognostic models that have been previously described in the

literature was conducted (Figure 8D). The models we developed

were more accurate because of a higher AUC.
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Analysis of experimental and clinical data
from clinical samples

Ovarian samples were collected and the differential mRNA

expression of CSOARG hub genes in ovarian non-malignant and

malignant tumor tissues was examined. Our findings indicate that

the majority of hub genes were overexpressed in malignant tumor

samples in which WNK1 was overexpressed most significantly

detected by qRT-PCR (Figure 9A). The expression levels of six

genes were found to be significantly elevated in ovarian cancer cells,

except for FANCB and IGF1, which were not statistically

significant. The data from the TCGA-OV cohort were divided

into two groups based on an age-related to menopause: a

premenopausal group (<45 years old) and a menopausal/

postmenopausal group (>=45 years old) (Figure 9B). Our findings

demonstrated a statistically significant overexpression of WNK1 in

the menopausal/postmenopausal group. Further, qPCR and

Western blot revealed that WNK1 was highly expressed in A2780

and OVCAR-3 ovarian cancer cells in comparison to IOSE-80 non-

cancerous cells (Figures 9C, D). Given the significant

overexpression of WNK1 in ovarian cancer, we proceeded to

investigate the impact of WNK1 on ovarian cancer cell biological

behavior. The WNK1 gene was then knocked down in tumor cells

using the siRNA transfection approach. The initial step was to

ascertain the efficacy of si-WNK1 in knockdown in both OVCAR-3

and A2780 cells at RNA (Figure 9E) and protein levels (Figure 9F)

by qRT-PCR and Western blot, respectively. The cell viability of

ovarian cancer cells after the knockdown of WNK1 was decreased

compared to the control group at 24, 48, and 72 h (Figures 9G, H).

Next, the effect of WNK1 on cell migration was verified using a

transwell migration assay and a wound-healing assay. The transwell

migration assay demonstrated that the knockdown of WNK1
FIGURE 4

Analysis of immunotherapy response in high and low-risk groups. (A–D) Comparison of immunophenoscores (IPS) between the low- and high-risk
score groups. (A) PD-1 and CTLA-4 were both negatively expressed. (B) only PD-1 was positively expressed. (C) only CTLA-4 was positively
expressed. (D) PD-1 and CTLA-4 were both positively expressed. (E–H) Comparison of tumor microenvironment scores calculated by TIDE between
the high- and low-risk score groups. (E) Total TIDE scores. (F) T-cell dysfunction scores. (G) T-cell excretion scores. (H) Microsatellite instability
scores. ns, not significance; **p<0.01; ****p<0.0001.
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significantly reduced A2780 and OVCAR-3 cell migratory capacity

compared to controls at 48 h (Figures 9I, J). The results of the

wound-healing assay also confirmed that the knockdown of WNK1

decreased cell viability at 48 h (Figures 9K–N).

A risk score was calculated for each patient based on qRT-PCR

values. This allowed for the classification of patients into high- and
Frontiers in Oncology 09
low-risk score groups. A comparative analysis of malignant tumors

revealed no significant differences between high- and low-risk

score groups concerning clinical characteristics (Supplementary

Table S5). Nevertheless, the P-values for the difference in age

between the high- and low-risk score groups were 0.08 and

0.15, respectively.
FIGURE 5

Analysis of the association between the risk model and chemotherapeutics, endocrine therapy, and targeted therapy. (A–C) The model predicts the
sensitivity to chemosensitivity. It was estimated that patients with low-risk scores had lower IC50 for chemotherapeutics of 5-fluorouracil,
Camptothecin, and Cisplatin. (D–H) The model predicts the sensitivity to targeted therapy. It was estimated that patients with low-risk scores had
lower IC50 of Gefitinib, Nilotinib, Bosutinib, selumetinib, and Dabrafenib. (I) The model predicts the sensitivity to endocrine therapy. It was estimated
that patients with low-risk scores had lower IC50 of Temozolomide. *p<0.05; **p<0.01; ****p<0.0001.
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Discussion

Ovarian cancer is the most lethal gynecologic malignancy,

which is influenced by numerous factors. Tumor size and

pathological grading are the most significant prognostic factors.

Other factors, such as age, also have a substantial predictive impact
Frontiers in Oncology 10
on the prognosis of ovarian cancer. However, to date, there is no

reliable method to predict the prognosis of ovarian cancer based on

cellular senescence and ovarian aging-related genes.

The current study developed a predictive model of CSOARG for

prognosis in ovarian cancer using eight key genes (WNK1,

ANGPTL4, AREG, IGF1, CXCL10, GMPR, FANCB, LYG1).
FIGURE 6

Single-cell RNA-seq Analysis. (A) T-distributed Stochastic Neighbor Embedding (t-SNE) representation of single cells color-coded by major cell type:
Malignant (EOC, Epithelial ovarian cancer), Stromal, and Immune. (B) t-SNE representation of single cells. (C) t-SNE plot showing the CSOARG risk
scores of whole tissue cells. (D) Bar plot showing differences in CSOARG risk scores by cell types. ****p<0.0001. (E) Bar plot showing differences
between high- and low-risk scores of CSOARG by subcell type. *p<0.05.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1592426
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1592426
Patients were stratified into high- and low-risk score groups for

analysis of the immune function and immunotherapy effects of 8

genes. The majority of these eight genes have been documented to

be associated with tumors. CXCL10 is linked to the therapeutic

effect of PD-1 and the inhibition of CXCL10 enhances the

therapeutic effect of anti-PD-1 (31). IGF-1 is known to promote

the invasive and EMT process of tumors as well as tumor resistance

(32). ANGPTL4 promotes the proliferation and metastasis of

tumors and the ability of angiogenesis (33). AREG hinders anti-

tumor immunity, which is associated with stemness and

chemoresistance in ovarian cancer (34). WNK1 promotes tumor

migration and invasion in breast cancer (35). Inhibition of the

WNK1-MEK5-ERK5 pathway can exert antiproliferative effects and

enhance trametinib responsiveness in ovarian cancer (36). LYG1,

FANCB, and GMPR are rarely reported in tumors and their

functions need to be further investigated.

The present study found that CD4 memory T cell resting was

elevated in the high-risk score group, indicating that CD4 memory

T cell activation is diminished. It has been shown that resting CD4
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memory cells exhibit diminished anti-tumor immunity relative to

activated CD4 memory T cells (37). A focused analysis of immune

checkpoints revealed a general down-regulation of HLA molecules

in the high-risk score group, which may decrease the ability to

recognize and present antigens in tumors and increase immune

escape (38). Therefore, we conducted further analysis of the effect of

immune profiles. The IPS score demonstrated that the high-risk

score group expressed lower levels of immune checkpoint genes

PD-1 and CTL-4, which resulted in a weaker capacity for antigen

recognition. It has been shown that the IPS score is a superior

predictor of response to anti-PD-1 and anti-CTLA-4 antibodies

(25). Further analysis of the immune function of T cells was

conducted to predict the effect of immunotherapy. The high-risk

score group exhibited diminished T cell function, increased

exclusion, and diminished tumor killing by T cells. T cells are the

most common effector cells of immune checkpoint inhibitor

therapy, thus inferring that immunotherapy was less effective in

the high-risk score group. The recognition of antigens, the

presentation of antigens to T cells, and the effector function of T
FIGURE 7

Ligand−Receptor Analysis. (A) Heatmap shows the interactions of the prioritized ligand in plasma cells with the receptors expressed in epithelial
ovarian cancer (EOC) cells. (B) Heatmap shows the regulatory potential of the prioritized ligands in plasma cells that drive the cellular state of EOC
cells. (C) Heatmap showing the interactions of the prioritized ligand in EOC cells with the receptors expressed in plasma cells. (D) Heatmaps show
the regulatory potential of the prioritized ligands in EOC cells that drive the cellular state of plasma cells.
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cells are all diminished in the high-risk score group, indicating that

immunotherapy is ineffective. Furthermore, we predicted

differences in drug sensitivity between high- and low-risk score

groups. The high-risk cohort exhibited higher IC50 values for drugs

such as cisplatin, 5-FU, and camptothecin, which may result in a

worse prognosis. It has been shown that cisplatin can cause tumor

cell death by disrupting the DNA double-strand of the tumor (39).
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Our model predicts that the high-risk group has lower HRD and

higher genomic stability. Tumor cells in the high-risk group are less

likely to be killed by cisplatin. Additionally, some other drugs have

been used as potential drugs for ovarian cancer treatment in animal

models or clinical trials (40, 41).

Tumor cells exhibited the highest risk score, followed by

immune cells and stromal cells which exhibited the lowest score.
FIGURE 8

Machine learning to optimize predictive models for prognosis. (A) Heatmap comparison of multiple machine learning models using a TCGA-OV
cohort. The heatmap displays the accuracy, area under the curve (AUC) value, recall, precision, F1 score, Kappa, and Matthews correlation coefficient
(MCC) for each of the 14 classifiers tested. (B) Feature importance plots of the best model (Extra Trees Classifier) for predicting 5-year OS in TCGA-
OV. (C) ROC curves of the best model (Extra Trees Classifier) for predicting 5-year OS in TCGA-OV. (D) Comparison of predictive models for
prognosis in this paper and other literature.
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These data suggest that senescence-associated prognostic changes

are mainly related to tumor cells and the immune environment. In

the subgroup analysis, the proportion of plasma cells was

significantly decreased in patients in the high-risk score group.

Plasma cells may play an important role in tumor immunocytes. To

further elucidate the mechanism underlying the reduction in

plasma cells, we employed ligand/receptor analysis, which led to

the preliminary inference that TGF-b affects tumor cells. Secretion

of CXCL8 by tumor cells modulated the expression of plasma cell

CD24, which ultimately attenuated the activation of B cells into

plasma cells. These findings indicate that these molecules are
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associated with anti-tumor immunity. It has been hypothesized

that cancer cells utilize CD24 molecules to evade detection and

attack by the immune system. It has been reported that the

expression of CD24 in mesenchymal stromal cells of human bone

marrow is regulated by TGFb3. In addition, it has been

demonstrated that CD24 modulates the process of transforming

growth factor b-induced epithelial-to-mesenchymal transition.

The senescence microenvironment, which is dominated by IL-6

and IL-8, promotes immune escape and metastasis of tumors (2).

Additionally, tumor-associated macrophages (TAMs) can influence

the senescence-associated tumor microenvironment by deactivating
FIGURE 9

Expression level and function of WNK1 in ovarian cancer. (A) Validation of the differential expression of prognostic model genes at the RNA level by qRT-PCR
in clinical patient tissues. (B) Comparison of the expression of model genes in patients in the premenopausal group (<45 years old) and the menopausal/
postmenopausal group (>=45 years old) in the TCGA database. (C) Validation of the differential expression of WNK1 mRNA in IOSE-80, OVCAR-3, SK-OV-3,
and A2780 cells by qRT-PCR. (D) Validation of the differential expression of WNK1 protein by Western blot. Vinculin was used as an internal loading control.
(E) Measurement of the knockdown efficiency of WNK1 mRNA in ovarian cancer cells (A2780, OVCAR-3) by qRT-PCR. (F) Measurement of the knockdown
efficiency of WNK1 protein in ovarian cancer cells (A2780, OVCAR-3) by Western blot. (G) Detection of the effect of WNK1 knockdown on A2780 cell viability
using a CCK-8 assay. (H) Detection of the effect of WNK1 knockdown on OVCAR-3 cell viability using a CCK-8 assay. (I, J) Detection of the effect of WNK1
knockdown on ovarian cancer cell migration by Transwell migration assay (scale bar: 50 µm) (K, L). Detection of the effect of WNK1 knockdown on A2780
cell migratory by wound-healing assay (scale bar: 200 µm). (M, N). Detection of the effect of WNK1 knockdown on OVCAR-3 cell migratory by wound-
healing assay (scale bar: 200 µm). ns, not significance; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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the function of T cells through TGF-b, which can influence the

senescence-associated tumor microenvironment (42). It has been

shown that TGF-b can control differentiation and proliferation and

promote tumor progression, epithelial-mesenchymal transition

(EMT), tumor invasiveness, and metastasis (43). Additionally, it

has been demonstrated to weaken immune surveillance and

promote immune escape (44). Inhibiting TGF-b enhances the

efficacy of chemotherapy and synergistic immune checkpoint

therapy (45, 46). It has been reported that CXCL8 (IL8) promotes

tumor proliferation, migration, and invasion and is an important

component of senescent secretory proteins (47). High expression of

IL8 is associated with poor clinical prognosis and poor immune

checkpoint efficacy (48). CD24 promotes tumor migration and

inhibits anti-tumor responses associated with immune checkpoint

therapy (49). Meanwhile, CD24 expression is associated with B-cell

maturation (50).

Although numerous prognostic models exist for predicting the

prognosis of ovarian cancer, there are currently no prognostic

models derived from ovarian aging and senescence-related genes.

Other prediction models such as gene labeling utilize factors such as

necroptosis, cellular pyroptosis, and cuproptosis (11–13). However,

these models lack sufficient accuracy. The proposed prediction

model not only considers the tumor prognosis from the

perspective of aging but also employs a more effective

methodology to enhance the prediction accuracy. The AUC value

of 0.82 in our CSOARG model was superior to that of the general

prediction models. Our model can facilitate more precise

assessments of patient status and the implementation of more

precise treatments.

The current findings indicate that the majority of hub genes are

upregulated in malignant tumors. The detection of upregulated genes

in the clinical setting is a relatively straightforward process, and these

genes can be utilized as prognostic markers.WNK1 is the gene with the

highest coefficient among the 8 genes used to construct the prognostic

model. In addition, WNK1 expression was found to be the highest one

among 8 genes in clinical sample validation. Furthermore, our findings

demonstrated that WNK 1, the molecule that differs most markedly in

patients with non-malignant and malignant tumors, promoted cell

proliferation and migration and thus acts as an oncogene. WNK1 can

promote tumor proliferation through the WNT/b-Catenin signaling

pathway (51). We found that the knockdown of WNK1 inhibited

ovarian cancer cell migration. It has been shown that WNK1 activates

NFAT transcription factors and promotes cell migration in clear cell

renal cell carcinoma (ccRCC) (52). A recent study has revealed a

positive correlation between the activation of the WNK1-OSR1-

NKCC1 axis and the invasiveness of liver cancer cell lines (35). It

has been demonstrated that inhibition of WNK1 by a specific inhibitor

WNK463 effectively reduces the expression level of the senescence

marker b-galactosidase and affects an oncogeneMYC transcription, in

tumor cells (53, 54). In addition, age-related hearing loss is associated

with WNK1 (55). Furthermore, WNK1 has a pathophysiological role

and influences the efficacy of trametinib in ovarian cancer (36). It has

also been shown that WNK1 increased cisplatin resistance in ovarian

cancer cells (56). These findings suggest that WNK1 is closely
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associated with senescence and targeting WNK1 may be a viable

strategy to impede tumor senescence.

The limitations of this study still exist. First, more experiments are

needed to investigate specific molecular regulatory mechanisms in the

future. Second, all of the aforementioned data are retrospective analyses

from public databases. Third, the validation sample size is relatively

small. To verify the accuracy of the model and the clinical value of

precise treatment, prospective cohorts are needed.

In conclusion, the present findings demonstrate that a novel

CSOARG model can effectively predict the prognosis and

therapeutical responses of patients with ovarian cancer, which

may assist clinicians in implementing better practices.
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