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Thyroid cancer represents the most prevalent malignant neoplasm within the

endocrine system, exhibiting a steadily increasing global incidence. Non-coding

RNAs (ncRNAs) have emerged as a pivotal focus in thyroid cancer research,

demonstrating significant involvement in tumor progression through epigenetic

regulation. Contemporary studies reveal widespread dysregulation of ncRNA

expression profiles in thyroid malignancies, where differentially expressed

ncRNAs exert either tumor-suppressive or oncogenic functions by modulating

epithelial-mesenchymal transition (EMT) mechanisms. This review synthesizes

current knowledge on EMT-related ncRNA mechanisms driving thyroid

carcinogenesis and evaluates their diagnostic and therapeutic potential. By

elucidating these molecular interactions, we aim to catalyze discovery of novel

ncRNA-mediated pathways, advance targeted treatment strategies, and

ultimately enhance clinical outcomes for thyroid cancer patients.
KEYWORDS
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1 Introduction

Thyroid cancer, a malignancy arising from follicular epithelial or parafollicular C-cells of

the thyroid gland, constitutes the most prevalent endocrine malignancy in head and neck

oncology. Recent epidemiological data from the United States (2024) document 44,020

new thyroid cancer diagnoses (2.2% of total cancer incidence) with 2,170 mortality events
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(0.355% of cancer-related deaths) (1). Histopathological classification

delineates three principal subtypes: Differentiated Thyroid

Carcinoma [DTC; encompassing papillary (PTC), follicular (FTC),

and Hürthle cell variants], Medullary Thyroid Carcinoma (MTC),

and Anaplastic Thyroid Carcinoma (ATC). DTC predominates,

representing 84% of thyroid malignancies (2, 3). While most DTC

cases exhibit favorable prognoses, clinical challenges persist for

patients with advanced differentiation grades and those presenting

with poorly differentiated/undifferentiated histotypes, who

demonstrate elevated risks of recurrence and metastasis (4).

Emerging evidence identifies multifactorial etiology involving

ionizing radiation exposure, dietary iodine levels, metabolic

disorders (obesity/diabetes), environmental factors (food additives),

and tobacco use alongside diagnostic surveillance biases (5, 6).

Epithelial-Mesenchymal Transition (EMT), an evolutionarily

conserved biological process, serves as a critical driver of tumor cell

invasiveness and metastatic dissemination, substantially

complicating therapeutic interventions and prognostic

predictions. This multistep phenotypic plasticity is orchestrated

through synergistic molecular crosstalk among multiple signaling

pathways (7), enabling epithelial cells to adopt mesenchymal

characteristics. Characteristic transformations include loss of

apical-basal polarity, dissolution of adherens junctions, and

augmented migratory capacity. While physiologically essential

during embryogenesis, EMT becomes pathologically activated in

disease states, particularly facilitating cancer progression through

enhanced tissue invasion and distant metastasis (8).

Concurrently, non-coding RNAs (ncRNAs) have emerged as a

focus of intense investigation in oncological research, with

particular relevance to thyroid cancer pathogenesis and

therapeutic innovation. Defined as functionally active RNA

species lacking protein-coding potential, ncRNAs exert regulatory

control over gene expression networks, intracellular signaling

cascades, and oncogenic transformation (9). Mechanistic studies

demonstrate that EMT induction in thyroid malignancies is

critically modulated by specific ncRNA signatures, establishing

direct links between ncRNA dysregulation and metastatic

progression (10). Consequently, EMT-associated ncRNAs present

dual diagnostic and therapeutic potential. Elucidating the precise

molecular circuitry through which ncRNAs govern EMT dynamics

promises to reveal novel targets for metastasis suppression and

recurrence prevention. Such advancements hold translational

significance for optimizing clinical management strategies,

potentially elevating both survival outcomes and quality-of-life

metrics in thyroid cancer patients.
2 EMT

EMT describes a biological process wherein epithelial cells

progressively acquire mesenchymal characteristics through

coordinated loss of apical-basal polarity and intercellular adhesion

properties (11). Originally conceptualized by Greenberg and Hay in

1982 (12), this fundamental mechanism has subsequently been

shown to mediate both physiological processes (e.g., embryonic
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morphogenesis and wound healing) and pathological tumor

dissemination. EMT activation triggers dissolution of epithelial

tight junction complexes coupled with cytoskeletal reorganization

and upregulation of motility-associated proteins (13). These

molecular alterations induce characteristic morphological changes

from cuboidal to spindle-shaped cells with pseudopodia formation

and front-rear polarity establishment, enabling chemotaxis-driven

tumor cell migration that facilitates metastatic spread (14).
2.1 Characteristics of the EMT process

2.1.1 Progressivity
Studies demonstrate that EMT progresses through multiple

intermediate states, displaying gradations of epithelial and

mesenchymal markers between polarized epithelial and fully

mesenchymal phenotypes (11, 13, 15). Single-cell analyses reveal

that hybrid epithelial/mesenchymal states predominate in human

tissues, whereas complete mesenchymal conversion rarely occurs in

both physiological and neoplastic contexts (16). Notably, epithelial-

derived malignancies acquire migratory competence through

tumor-associated dedifferentiation mechanisms, directly

facilitating metastatic dissemination (17). The partial EMT state—

characterized by incomplete mesenchymal transformation—

confers three critical oncogenic properties: (i) enhanced motility,

(ii) bidirectional phenotypic plasticity, and (iii) lineage

reprogramming capacity (18). Intratumoral heterogeneity analyses

further suggest that epithelial-dominant subclones exhibit elevated

malignant potential and preferential metastatic tropism compared

to mesenchymal counterparts (19, 20).

2.1.2 Reversibility
Epithelial-mesenchymal transition demonstrates bidirectional

plasticity, wherein epithelial and mesenchymal phenotypes undergo

reciprocal conversion mediated by microenvironmental cues (13).

Notably, clinical evidence documents that circulating tumor cells in

distant metastases frequently retain epithelial markers (11),

contradicting the classical EMT paradigm predicting complete

mesenchymal transformation. This apparent paradox may be

reconciled through mesenchymal-epithelial transition (MET)

mechanisms, whereby metastasized mesenchymal-like cells regain

epithelial characteristics to facilitate metastatic niche formation.

While EMT activation is essential for initiating metastatic

dissemination, its maintenance proves dispensable during

subsequent colonization phases.
2.2 Mechanisms

The regulatory network governing epithelial-mesenchymal

transition involves a dynamic, hierarchical system driven by

coordinated integration of extracellular microenvironmental cues,

intracellular signaling pathway activation, transcription factor

cascades, and epigenetic modifications across multiple biological

scales (21–23).
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2.2.1 External stimuli and tumor
microenvironment

The precise temporal dynamics underlying metastatic initiation

in primary tumors remain incompletely understood. Notably, EMT

activation is primarily mediated through TME-derived stress

signaling, with key drivers encompassing hypoxia, TGF-b
pathway activation, pro-inflammatory cytokines (e.g., IL-6),

growth factors (e.g., EGF), and extracellular matrix remodeling

(24). These factors coordinately promote tumor cell dissociation

from primary sites and subsequent migration via interlinked

molecular cascades (25).

2.2.1.1 Hypoxia/hypoxia-inducible factor-1a
Hypoxia-Inducible Factor-1a (HIF-1a) is one of the key

microenvironmental factors that induce cancer metastasis. Under

hypoxic conditions, HIF-1a is up-regulated and regulates the

expression of EMT markers and a variety of EMT transcription

factors (26), including Snail, Twist1, ZEB1, ZEB2, and SIP1. HIF-1a
up-regulation is significantly associated with lymph node metastasis

and distant metastasis, and is involved in tumor growth,

metabolism, angiogenesis, and metastasis by regulating gene

expression (27). At the chromatin level, HIF-1a regulates the

expression of EMT markers through histone modifications. For

example, H3K4 acetylation (H3K4Ac) marks the promoters of

EMT-related genes or transcription factors and promotes the

repression of epithelial genes and activation of mesenchymal

genes, such as E-cadherin and poikilodulin. It has been

demonstrated that HIF-1a overexpression induces EMT, down-

regulates the epithelial marker E-cadherin and up-regulates the

mesenchymal marker waveform proteins, and correlates with a

highly aggressive and metastatic phenotype (28). In addition, IL-11

promotes hypoxia-induced EMT through HIF-1a induction and

enhances the invasive and migratory capacity of undifferentiated

thyroid cancer (ATC) cells (29). In the thyroid cancer cell line

FTC133, HIF-1a overexpression increased Twist gene expression,

whereas inhibition of HIF-1a activity abrogated the increase in

Twist gene expression under hypoxic conditions (30). In addition,

hypoxia mediates immunosuppression, and HIF-1a inhibits the

cGAS-STING pathway through activation of anti-apoptotic genes,

up-regulation of PD-L1, activation of the CD39/CD73 pathway, and

up-regulation of miR25/93, thereby conferring the ability of tumor

cells to evade immune surveillance (24).

2.2.1.2 TGF-b family proteins: inducers of EMT

Transforming growth factor-b1 (TGF-b1) serves as a master

regulator of EMT, orchestrating tumor invasion and metastasis

through three molecular tiers (1): transcriptional reprogramming, (2)

post-transcriptional modulation, and (3) translational control (31, 32).

Within Smad-dependent signaling, ligand-bound TGF-b
receptors phosphorylate Smad2/3 and Smad1/5/8, which

subsequently form heteromeric complexes with Smad4 that

undergo nuclear translocation. These nuclear complexes

coordinate with EMT master regulators (Snail1/2, ZEB1/2, Twist)

to suppress epithelial markers (e.g., E-cadherin) and drive cellular

plasticity. Notably, Smad3 specifically governs the Snail1/2-ZEB1/2-
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Twist transcriptional axis through promoter binding affinity

modulation, establishing an auto-amplification circuit for

sustained EMT activation.

Non-canonical pathways engage PI3K-Akt-mTOR and MAPK

cascades, executing chromatin topology reorganization, epigenetic

landscape reshaping, alternative mRNA splicing, and miRNA-

mediated gene silencing to fine-tune EMT progression (24, 33,

34). Exogenous TGF-b triggers exosome-mediated intercellular

communication, significantly suppressing papillary thyroid

carcinoma (TPC1) proliferation via EMT- and stemness-related

marker induction. Mechanistically, platelet-derived TGF-b
coordinates Smad/NF-kB crosstalk to potentiate EMT-driven

metastatic dissemination.

2.2.2 Core signaling networks
2.2.2.1 Wnt/b-catenin pathway

The Wnt protein family comprises evolutionarily conserved,

multidomain glycoproteins encoded by polycistronic genes,

forming intricate receptor-mediated signaling networks critical for

embryonic morphogenesis and tissue homeostasis (35). Central to

stem cell maintenance and regenerative processes, the Wnt/b-
catenin pathway operates through spatiotemporally coordinated

ligand-receptor interactions.

Nineteen identified Wnt ligands exhibit spatiotemporal-specific

expression patterns mediated by autocrine/paracrine mechanisms

(36). Their biogenesis initiates with endoplasmic reticulum (ER)-

lumenal palmitoylation catalyzed by membrane-bound O-

acyltransferase PORCN, enabling hydrophobic modification

essential for secretory trafficking. Mature Wnt proteins complex

with the cargo receptor Wntless (WLS), subsequently mediating

intercellular communication via vesicular transport systems and

regulated exocytosis.

The Wnt signaling network bifurcates into two principal

transduction cascades: (1) Canonical Pathway (b-catenin-dependent):
Ligand-receptor engagement inhibits b-catenin degradation

complexes, enabling cytoplasmic b-catenin stabilization and

subsequent nuclear import. Nuclear b-catenin forms transcriptional

complexes with T-cell factor/lymphoid enhancer factor (TCF/LEF) to

activate metastasis-associated gene programs (37); (2) Non-canonical

Pathway (b-catenin-independent): Frizzled (FZD) co-receptors with

LRP5/6 activate Dishevelled phosphoprotein clusters, orchestrating

planar cell polarity (PCP) signaling and mechanotransduction-

regulated migratory phenotypes.
2.2.2.2 PI3K/AKT/mTOR pathway

Phosphatidylinositol 3-kinase (PI3K), a lipid-modifying enzyme in

the phosphoinositide 3-kinase family, orchestrates oncogenic

progression through dual regulation of mitogenic signaling and

metabolic reprogramming. Receptor tyrosine kinase (RTK)-initiated

extracellular cues undergo RAS-mediated activation, facilitating

membrane recruitment of class IA PI3K catalytic subunit p110a.
This enzymatic subunit converts phosphatidylinositol-4,5-

bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate

(PIP3), thereby initiating AKT/mTOR signaling cascades critical for

tumor survival.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1592467
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1592467
The mammalian target of rapamycin (mTOR), a serine/

threonine kinase, functions as a metabolic gatekeeper by

integrating growth factor inputs, nutrient availability, and

bioenergetic states. Mechanistically, mTOR complex 2 (mTORC2)

phosphorylates AKT at Ser473 and protein kinase C (PKC)

isoforms, thereby coordinating cytoskeletal reorganization

essential for EMT-driven cell motility (38). TGF-b receptors

engage PI3K regulatory subunit p85 to activate AKT signaling,

which subsequently triggers mTORC1-dependent translational

control mechanisms that potentiate EMT progression (39, 40).

2.2.3 Transcription factor network
The EMT is coordinately regulated by core transcription

factors, primarily comprising the SNAIL, TWIST, and zinc-finger

E-box binding (ZEB) families (41). These transcriptional regulators

are activated through canonical signaling pathways including Wnt

and TGF-b, subsequently initiating signaling cascades that drive

EMT progression.

Key transcriptional regulators such as TWIST1/2, inhibitor of

differentiation (ID) proteins, and E12/E47 can induce EMT through

individual or synergistic mechanisms. TWIST1, a basic helix-loop-

helix (bHLH) transcription factor, mediates both embryonic

morphogenesis and pathological EMT by dual regulation of

cadherin switching: suppressing E-cadherin while promoting N-

cadherin expression (42).

The SNAIL zinc-finger family (SNAI1/SLUG) exerts

transcriptional repression of E-cadherin through specific binding

to E-box motifs in its promoter. During embryogenesis, SNAIL

signaling facilitates epithelial cell delamination and subsequent

mesenchymal differentiation. Clinically relevant, this pathway’s

dysregulation correlates with metastatic progression in

malignancies such as papillary thyroid carcinoma and melanoma.

Experimental models demonstrate that in BRAF-mutant thyroid

carcinomas undergoing dedifferentiation, SNAI1/ZEB1/ZEB2

overexpression induces: (1) marked suppression of tight junction/

desmosome-related genes; and (2) concurrent upregulation of

intermediate filament and basement membrane components - a

molecular signature validated across multiple studies (43–45).

ZEB1 is a pleiotropic transcription factor belonging to a family

of zinc finger and homology frame transcription factors located on

chromosome 10p11.2.ZEB1 coordinates gene transcription through

the RAS/ERK, TGF-b, PI3K/Akt, and NF-kB signaling pathways,

regulates key developmental processes and drives tumorigenesis

and metastasis.

2.2.4 Epigenetic and post-transcriptional
regulation

Epigenetic modifications dynamically modulate access to EMT-

associated genes via multiple pathways, including DNA

methylation (e.g., hypermethylation of the E-cadherin promoter)

and histone acetylation/deacetylation (e.g., H3K4Ac). Many studies

have focused on investigating heritable molecular factors

independent of DNA sequence changes, including DNA

methylation, histone modifications, noncoding RNAs, and

chromatin remodeling (46). DNA methylation markers linked to
Frontiers in Oncology 04
colorectal cancer (CRC) (e.g., SFRP1, SFRP2, SDC2) can regulate

transcriptional elements and non-coding RNA production, playing

a key role in EMT (47). For example, deacetylated TWIST1 (K73/

76) interacts with the NuRD deacetylase complex, recruiting it to

repress epithelial gene transcription, while acetylated TWIST1

(acK73/76) interacts with BRD8 and the TIP60 complex to

activate MYC transcription (48). In metastatic cancers, GRHL1

expression is downregulated, which may reduce epithelial cell

adhesion and promote a migratory phenotype (49). The

epigenetic state of EMT intermediates is synergistically

maintained across multiple regulatory levels, exhibiting the typical

components and limitations of complex networks (50). For

instance, the miR-200 family inhibits EMT by targeting ZEB1/2,

and long noncoding RNAs (e.g., MUF) enhance EMT via Wnt/b-
catenin or TGF-b signaling. Additionally, epigenetic feedback in

ZEB1 loops and random biomolecule allocation during cell division

contribute to solid tumor cells’ EMT resistance (51).

2.2.5 Cellular phenotype remodeling
The activation of EMT induces profound morphological

alterations and molecular reprogramming in cancer cells. This

process is characterized by upregulated expression of

mesenchymal markers including N-cadherin, vimentin, fibroblast-

specific protein 1 (FSP1), and fibronectin, concomitant with

downregulation of epithelial markers such as E-cadherin and

occludin (11, 14, 52). E-cadherin, a transmembrane protein

localized at intercellular adherens junctions and basolateral

membranes, serves as a critical regulator for maintaining

epithelial integrity. Its downregulation disrupts adherens junction

assembly, while reduced occludin expression compromises tight

junction integrity, ultimately resulting in cell junction complex

disassembly. Notably, N-cadherin exhibits weaker homotypic

binding affinity compared to E-cadherin, conferring enhanced

cellular motility and invasive properties. Cytoskeletal

reorganization manifests through diminished cytokeratin

expression and elevated vimentin levels, which coordinately

regulate intracellular trafficking and membrane protein dynamics

(14). The dissolution of apical-basal polarity enables establishment

of front-rear polarity, facilitating integrin-mediated matrix

engagement during invasive progression. This polarity transition

promotes pseudopodia formation and directional migration

through Rho GTPase-dependent mechanisms. Collectively, these

coordinated molecular and architectural adaptations substantially

augment cancer cell metastatic competence.
3 EMT and TC

Thyroid surgery, radioactive iodine therapy, and thyroid-

stimulating hormone (TSH) suppression remain the primary

treatment modalities for thyroid cancer (53). Research indicates

that TC displays significant heterogeneity in EMT-related

regulatory factors and cell signaling pathways. This heterogeneity

is characterized by altered cell morphology, decreased cell adhesion,

and enhanced migratory capacity (54). These alterations facilitate
frontiersin.org

https://doi.org/10.3389/fonc.2025.1592467
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2025.1592467
tumor invasion and metastasis. The metastatic cascade involves

three key steps: invasion of surrounding tissues by tumor cells,

intravasation of tumor cells into the circulatory system through

endothelial cells, and colonization of distal tissues with subsequent

formation of metastatic foci.
3.1 EMT and the regulation of invasiveness
in TC

Tumor invasion represents a pathological progression wherein

malignant cells breach endothelial barriers through active migration

or passive dissemination, infiltrating adjacent normal tissues and

establishing distant metastases. This process is defined by cellular

polarity loss, architectural disorganization, and acquisition of

migratory/invasive capabilities (55). Significantly, within primary

tumor microenvironments, the epithelial-mesenchymal transition

program is preferentially activated in discrete neoplastic

subpopulations. Histopathological evaluations reveal pronounced

EMT phenotypes at tumor-stroma interfaces adjacent to

desmoplastic connective tissue. These regions exhibit
Frontiers in Oncology 05
characteristic molecular signatures including downregulation of

E-cadherin coupled with aberrant activation of transcriptional

repressors (Snail, Slug, ZEB1, ZEB2) and the Twist1 basic helix-

loop-helix transcription factor. Mechanistically, Twist1 drives

invasive pseudopod formation through coordinated induction of

platelet-derived growth factor receptor a (PDGFRa) expression

and Src kinase activation, thereby potentiating tumor cell invasion

(11) (Figure 1).

Emerging insights into thyroid carcinogenesis highlight pivotal

EMT regulatory networks. FOXE1 has been demonstrated to

directly bind the ZEB1 promoter, enhancing its transcriptional

activation to drive EMT-mediated migratory and invasive

phenotypes (56). This FOXE1-ZEB1 signaling axis constitutes a

critical regulatory pathway in thyroid cancer EMT. Conversely,

BRCA1 exerts tumor-suppressive effects via dual mechanisms: (1)

upregulating E-cadherin to preserve epithelial integrity, and (2)

concurrently suppressing mesenchymal markers (vimentin,

PDGFRb, p-PKCa, TWIST, ZEB1), effectively inhibiting

dedifferentiation and reducing invasive potential (57).

Recent investigations further elucidate microRNA-mediated

EMT modulation. miR-200c post-transcriptionally targets the 3’
FIGURE 1

Overview of EMT and Tumors. This figure demonstrates the role of biological processes of EMT in tumor progression in thyroid cancer. EMT affects
tumor progression through a variety of pathways and mechanisms, including the TGF-b signaling pathway, transcription factors (Snail, Twist, ZEB1/2),
etc., which drive the transformation of epithelial cells to a mesenchymal phenotype, and promote the formation of cellular pseudopods, proliferation
of tumor stem cells, angiogenesis, invasion and colonization.
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untranslated region (UTR) of parathyroid hormone-like hormone

(PTHLH) mRNA, attenuating proliferation, invasion, and EMT

progression in anaplastic thyroid carcinoma (ATC) models (58).
3.2 EMT and migration of TC

Tumor cell migration is the process by which cancer cells

disseminate from the primary tumor to other organs via the

vascular or lymphatic systems (55). Cancer stem cells (CSCs) and

metastatic cells possess the ability to promote angiogenesis, which

supports their tumorigenicity and metastatic potential. EMT-

mediated angiogenesis is considered a mechanism that facilitates

the entry of tumor cells into the systemic circulation. The

upregulation of vascular endothelial growth factor A (VEGF-A), a

protein that promotes neoangiogenesis, enhances tumor

angiogenesis, thereby providing additional nutrients and oxygen

to support tumor growth. EMT not only activates genes associated

with cell differentiation, motility, and adhesion but also induces the

expression of genes involved in angiogenesis regulation, including

VEGF-A. Additionally, ZEB1, through its zinc finger domain,

directly binds to E-box elements, thereby initiating the EMT

process, enhancing cancer cell stemness and migration, and

promoting chemoresistance (59) (Figure 1).

Studies have shown that TGF-b transiently upregulates VEGF-A

expression (60). In thyroid cancer, the JAK2/STAT3 signaling pathway

not only directly induces the EMT process and enhances cancer cell

migration but also synergistically promotes VEGF-A secretion, thereby

regulating tumor metastasis and angiogenesis. Dong quai methylin

downregulates the JAK2/STAT3 signaling pathway, thereby inhibiting

VEGF-A expression to limit angiogenesis (61) and directly reversing

the EMT phenotype, which in turn suppresses thyroid cancer

migration. Conversely, REX1 significantly enhances EMT-dependent

migration by activating the JAK2/STAT3 signaling pathway and may

indirectly promote the formation of a pro-angiogenic

microenvironment (62), further confirming the synergistic role of

EMT and angiogenesis in thyroid cancer.

Follicular thyroid cancer (FTC) is associated with a poor

prognosis due to its high tumor proliferative activity. In FTC,

vimentin expression is low. Single-cell RNA sequencing of FTC

samples revealed that UBE2C is significantly upregulated,

paradoxically enhancing cell proliferation. UBE2C mediates K29-

linked ubiquitination, leading to vimentin degradation, but inhibits

cell migration and invasion through EMT regulation.
3.3 EMT and colonization of TC

Colonization refers to the process by which circulating tumor

cells (CTCs) reside and proliferate in a distal organ. Specifically,

after dislodging from the primary tumor and entering the

circulation, tumor cells adhere to the vascular endothelium of the

distal organ and subsequently extravasate into the parenchymal

tissues for dissemination (11). Through the reversal of epithelial-

mesenchymal transition, known as mesenchymal-epithelial
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transition (MET), tumor cells ultimately colonize the distal organ

and develop into metastatic foci. CTCs extravasate and migrate into

the organ parenchyma through cellular and molecular mechanisms,

a process that may involve EMT. For example, the expression of

Twist1 or Snail1 promotes tumor cell extravasation, suggesting that

EMT may facilitate both extravasation and initial colonization (63).

PRRX1, a paired homoeobox factor 1 transcription factor, acts as a

regulator of EMT and modulates migration and invasive properties

during EMT. During the reversal from EMT toMET, the expression

of Twist and PRRX1 decreases, while the expression of other

biomarkers (e.g., EGFR and cMET) increases, thereby regulating

cancer cell colonization (4) (Figure 1).

In the cascade of thyroid cancer metastasis, the distal colonization

capacity of tumor cells is closely associated with the dynamic

regulation of EMT. Notably, despite follicular thyroid cancer

exhibiting high proliferative activity and poor prognostic features, its

metastatic colonization ability is subject to specific regulation. Single-

cell RNA sequencing has revealed that aberrant upregulation of

UBE2C in FTC leads to vimentin degradation via K29-linked

ubiquitination. This unique molecular mechanism enhances tumor

cell proliferation while impairing cell migration and invasion by

inhibiting the EMT process (64). This finding indicates that

metastatic colonization in thyroid cancer depends not only on EMT

activation but also on a delicate balance between EMT and proliferative

activity: while strong EMT inhibition can limit initial invasion, it may

paradoxically promote the final colonization of metastatic foci by

maintaining the epithelial phenotype. This bidirectional role of EMT

regulation offers novel insights into understanding the organ-specific

colonization patterns of thyroid cancer metastasis.

In the cascade of tumor metastasis, ncRNAs are closely associated

with the EMT in thyroid cancer. MicroRNAs and long non-coding

RNAs have been identified as key regulators of the EMT process, and

some of these molecules are also implicated in the proliferation of

cancer stem cells (CSCs) (65). For instance, the downregulation of

LOC389641, a long non-coding RNA (lncRNA) located in the p21

region of chromosome 8, promotes proliferation, wound healing,

clonal formation, migration, and invasion of papillary thyroid

carcinoma (PTC) cells by modulating the EMT process (66).
4 Non-coding RNAs

Non-coding RNAs are RNA molecules that do not code for

proteins. They perform diverse functions in cells and play crucial

roles in various biological processes, including gene expression

regulation, cell signaling, and disease development. Based on their

size and function, ncRNAs can be classified into several categories,

such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs),

and circular RNAs (circRNAs).
4.1 MiRNAs and TC

MicroRNAs (miRNAs) are a class of highly conserved

endogenous small noncoding RNA molecules, typically comprising
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approximately 22 nucleotides (67, 68). miRNAs are transcribed from

DNA by RNA polymerase II or III to generate primary miRNAs (pri-

miRNAs) (69). In the nucleus, pri-miRNAs are processed by a

complex containing RNase III enzyme, forming precursor miRNAs

(pre-miRNAs) with a stem-loop hairpin structure (approximately

60–70 nucleotides). Subsequently, pre-miRNAs are transported to the

cytoplasm and further processed by another complex to form mature

miRNA duplexes (70). Mature miRNAs bind to target mRNAs

through the miRNA-induced silencing complex (miRISC),

inhibiting translation or promoting mRNA degradation, thereby

regulating gene expression. In malignant tumors, miRNA

expression dysregulation plays a critical role in cancer

development. For instance, overexpression of miR-221 and miR-

222 in gastrointestinal, hepatocellular, and thyroid cancers can target

and suppress tumor suppressor genes. Additionally, miRNAs are

widely involved in regulating various biological processes, including

the cell cycle, cell proliferation, differentiation, migration, apoptosis,

and immune response (71) (Figure 2).
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Increasing evidence indicates that miRNAs serve as key

biomarkers in the occurrence, progression, detection, and

prognosis of TC. miR-493-5p targets METTL3, whose expression

level correlates positively with the degree of thyroid cancer

differentiation and whose low expression is closely associated with

tumor progression and poor prognosis. METTL3 regulates PAX8

expression via m6A modification, thereby affecting the

differentiation and chemosensitivity of thyroid cancer cells (72).

miR-31-5p is significantly upregulated in papillary thyroid cancer

tissues and in K1 cells harboring the BRAF p.V600E mutation. This

miRNA promotes cell proliferation by inducing the expression of

EMT markers and upregulating the YAP/b-catenin signaling axis,

and is closely associated with cell adhesion, migration, and invasion

(73). miRNAs regulate key signaling pathways and target genes

(e.g., SNAI1, PSMD10) to exert dual roles (cancer-promoting or

cancer-suppressing) in thyroid cancer development (74). Abnormal

changes in their expression profiles provide potential markers for

the early diagnosis, prognostic assessment, and targeted therapy of
FIGURE 2

Overview of ncRNA biogenesis and function. This figure illustrates the molecular mechanisms underlying the biogenesis and function of non-coding
RNAs. Solid arrows indicate the biogenesis pathways of ncRNAs, while dashed arrows indicate the roles played by ncRNAs. (1) miRNA mechanism of
action: regulation of gene expression through miRISC. (2) CircRNA mechanism of action: act as miRNA sponges, regulate protein interactions or
signaling pathways. (3) lncRNA mechanism: interferes with upstream promoter transcription, histone modification, interferes with mRNA, binds
proteins and acts as miRNA sponge.
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thyroid cancer. For example, developing small molecule inhibitors

targeting SNAI1 or KIAA1199 based on the regulatory networks of

miR-199a-5p, miR-486-5p, and miR-654-3p may represent a novel

therapeutic strategy (75–77). These findings offer new targets for

thyroid cancer treatment.
4.2 CircRNA and TC

Circular RNAs (circRNAs) are covalently closed single-stranded

RNA molecules transcribed by RNA polymerase II (Pol II). These

non-coding RNAs originate from precursor mRNAs that undergo

exon/intron sequence rearrangement via spliceosome-mediated

reverse splicing, forming characteristic closed-loop structures (78,

79). CircRNAs exhibit pleiotropic regulatory functions within tumor

microenvironments, including modulation of cellular invasiveness,

angiogenesis, EMT, and chemoresistance (80, 81) (Figure 2).

The molecular mechanisms of circRNAs in thyroid carcinogenesis

are classified into four principal categories: miRNA Sponge Effect:

CircRNAs competitively sequester miRNAs through complementary

base pairing, thereby attenuating miRNA-mediated post-

transcriptional repression of target mRNAs and upregulating

oncogene expression. Key examples include: circPVT1 aberrantly

overexpressed in medullary thyroid carcinoma, circPVT1 promotes

tumor proliferation andmetastasis by sponging miR-455-5p to activate

the CXCL12 signaling axis (82).circ_0003747 demonstrates elevated

expression in thyroid carcinoma cells, functioning as a molecular

sponge for miR-338-3p. Mechanistically, miR-338-3p suppresses

tumor progression by directly targeting the 3’UTR of PLCD3 – an

oncogene validated in thyroid cancer cell lines (83). circFAT1(e2)

specifically upregulated in papillary thyroid carcinoma (PTC),

circFAT1(e2) enhances ZEB1 expression via miR-873 sequestration,

driving PTC cell proliferation, migration, and invasion (84); Protein

Trafficking Regulation:CircRNAs facilitate proper protein folding and

structural stabilization through spatial conformational modifications

while competitively inhibiting physiological protein-ligand

interactions.; RNA-Protein Complex Assembly:CircRNAs

dynamically interact with specific proteins to form functional

ribonucleoprotein complexes, critically modulating signaling

networks during thyroid oncogenesis.;Translational Control: Certain

circRNAs recruit translational machinery to regulate protein synthesis.

For instance, hsa_circ_0006943 binds CSNK2A1, enhancing its

interaction with Akt to activate the PI3K-Akt pathway and induce

EMT, thereby accelerating thyroid cancer progression (85).

Collectively, circRNAs orchestrate multidimensional regulatory

circuits governing thyroid cancer initiation, progression, and

microenvironmental adaptation. Their mechanistic diversity

highlights substantial potential as diagnostic biomarkers and

therapeutic targets.
4.3 LncRNAs and TC

Long noncoding RNAs (lncRNAs) are a class of noncoding

RNAs exceeding 200 nucleotides in length (86). The majority of
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lncRNAs are transcribed by RNA polymerase II from intergenic or

exonic regions (71). These transcripts typically undergo splicing

and are modified with a 7-methylguanosine cap at the 5’ end and

polyadenylation at the 3’ end (87). lncRNAs exert a pivotal role in

thyroid cancer development, progression, and microenvironmental

remodeling by modulating gene expression through multiple

mechanisms, including epigenetic modification, signaling pathway

regulation, and molecular sponge action (Figure 2).

Long non-coding RNAs orchestrate core cellular processes

including differentiation, autophagy, cell cycle regulation,

proliferation-apoptosis balance, invasion-migration capacity, and

stemness maintenance through epigenetic networks. In thyroid

carcinogenesis, lncRNAs drive malignancy via five principal

mechanisms: Cis-Regulatory Modulation: LncRNAs transcribed

from upstream promoter regions of protein-coding genes spatially

impede downstream transcriptional machinery. Notable examples:

LINC00891 activates the EZH2/SMAD2/3 axis to induce epithelial-

mesenchymal transition in thyroid carcinoma. Mechanistically, EZH2

overexpression rescues EMT suppression caused by LINC00891

knockdown (88). LINC02454 demonstrates oncogenic activity in

thyroid carcinoma through CREB1 phosphorylation-mediated

HMGA2 transcriptional activation (89); Chromatin Reprogramming:

LncRNAs mediate chromatin topology reorganization and histone

modification. Bisulfite sequencing revealed hypermethylation at

CpG islands within the MEG3 differentially methylated region

(DMR), correlating with its tumor-suppressive silencing in thyroid

malignancies (90); RNA Interference Cascade: LncRNA-mRNA

duplex formation disrupts canonical splicing. Aberrant splice

variants generate endogenous siRNAs via Dicer processing, triggering

RNA interference-mediated mRNA degradation. ZNF674-AS1

functions as a ceRNA to suppress thyroid cancer progression by

sequestering miR-181a and restoring SOCS4 expression (91); Protein

Interaction Networks: LncRNAs scaffold functional ribonucleoprotein

complexes. LINC00887 drives papillary thyroid carcinoma (PTC)

progression by inducing G1/S phase arrest to promote proliferative

advantage and apoptotic resistance; miRNA Sponge Activity: LncRNAs

competitively bind miRNAs to derepress oncogenic targets. lncRNA

n384546/TUG1 elevated in PTC, these lncRNAs adsorb miR-145-5p to

upregulate AKT3 and ZEB1, synergistically enhancing tumor

invasiveness (92, 93).

Collectively, lncRNA networks constitute promising diagnostic

biomarkers and therapeutic targets in thyroid cancer management.
5 Role of EMT-related ncRNAs in TC

5.1 EMT-related miRNAs and their
association with TC

Epithelial-mesenchymal transition is a critical process in TC

invasion and metastasis. miRNAs exert significant regulatory effects

by targeting EMT-associated transcription factors or signaling

pathway molecules. miR-204-5p is downregulated in TC and

directly targets the 3’-UTR of high-mobility group protein 2

(HMGA2), thereby inhibiting its expression and suppressing the
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MAPK signaling pathway. This action reduces the invasiveness of

TPC-1 and BCPAP cells (94). The silencing of HMGA2

significantly inhibits the EMT process, suggesting that miR-204-

5p may serve as a potential therapeutic target for TC. Additionally,

miR-200b/c targets Rap1b to inhibit the NF-kB/Twist1 signaling

pathway, thereby suppressing the proliferation, invasion, migration,

and EMT of papillary thyroid carcinoma (PTC) cells (95).

Overexpression of Rap1b is closely associated with the malignant

progression of TC The BRAFV600E mutation upregulates miR-

222-3p, which induces EMT by targeting Snail and is significantly

associated with lymph node metastasis in PTC patients (96). miR-

199a-5p is significantly downregulated in thyroid undifferentiated

carcinoma (ATC), and its overexpression inhibits EMT by targeting

Snail, thereby suppressing the migration and invasion of ATC cells

both in vitro and in vivo (97).

miRNAs can also affect EMT by modulating signaling

pathways. For example, miR-146b-5p enhances Wnt/b-catenin
signaling through downregulation of ZNRF3, inducing an EMT

phenotype that correlates with extra-thyroidal infiltration and

advanced staging in TC (98). In PTC, miR-874-3p is

downregulated, and overexpression of its target gene FAM84A

activates the Wnt/b-catenin pathway, driving the EMT phenotype

(99). miR-483 regulates TGF-b1/Smads signaling by targeting

Pard3 (100), and miR-539 activates the TGF-b1/Smads pathway

by targeting SLPI (101), thereby regulating EMT in TC. miRNAs

also regulate EMT-related markers (e.g., vimentin, E-cadherin)

through pathways such as JAK2/STAT3, PI3K/AKT, and Notch,

including miR-520a-3p, miR-630, miR-203, miR-101, miR-1271,

miR-599, miR-221/222, miR-149-5p, miR-21, etc. (102–108).

Additionally, miR-15a, miR-192-5p, miR-4319etc., inhibit EMT

by targeting elements such as the Hippo/JNK pathway, SH3RF3,

SMURF1, etc., while miR-221-3p and miR-34c-5ppromote

EMT and TC metastasis by targeting ZFAND5 and CRABP2

(109–113) (Figure 3).

In thyroid cancer, miR-146b-5p significantly affects tumor

progression by regulating the EMT process. Studies have shown

that miR-146b-5p is overexpressed in papillary thyroid carcinoma

(PTC) with lymph node metastasis and downregulates the protein

expression of zinc RING finger protein 3 (ZNRF3) by directly

targeting its 3′-UTR region (98). Bioinformatics analysis and

luciferase reporter assays confirmed that miR-146b-5p inhibits

ZNRF3 protein expression by directly binding to its 3′-UTR
region. The inhibition of ZNRF3 activates the Wnt/b-catenin
signaling pathway, as evidenced by the upregulation of Frizzled-6

and LRP6 receptor expression, which in turn promotes PTC cell

migration, invasion, and EMT characteristics (downregulation of

the epithelial marker E-cadherin and upregulation of the

mesenchymal markers N-cadherin and vimentin). Similarly, TGF-

b1 treatment results in altered PTC cell morphology,

downregulation of E-cadherin, and upregulation of mesenchymal

markers such as Slug, Snail, and Twist. Notably, overexpression of

ZNRF3 or the use of Wnt/b-catenin signaling pathway inhibitors

can reverse the pro-oncogenic effects of miR-146b-5p, suggesting its

potential as a therapeutic target. Although TGF-b1 transiently

upregulates miR-146b-5p, its long-term inhibition enhances the
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proliferation and invasiveness of PTC cells, indicating that miR-

146b-5p may balance tumor progression through dynamic

regulation (114).

These studies suggest that EMT-related miRNAs influence the

aggressiveness of thyroid cancer through a complex regulatory

network, providing an important basis for the development of

targeted therapies and prognostic markers. Future studies are

needed to further validate their clinical potential and explore

combination therapy strategies.
5.2 EMT-related lncRNAs and their
association with TC

During TC progression, lncRNAs)play a key role by regulating

EMT-related signaling pathways and target gene expression.

lncRNAs influence the EMT process by competitively binding

miRNAs or directly regulating signaling pathway molecules. For

example, lncRNA TUG1 is significantly upregulated in TC tissues

by competitively binding to miR-145 and deregulating its inhibition

of ZEB1, thereby promoting ZEB1-mediated EMT process and

enhancing the proliferation and migration of thyroid cancer cells

(92). DOCK9-AS2 is upregulated in papillary thyroid carcinoma

(PTC) by sponge adsorption of miR-1972 CTNNB1 (b-catenin),
activating the Wnt/b-catenin signaling pathway, which in turn

induces an EMT phenotype and promotes invasion and

metastasis of PTC cells (115). TYMSOS, as an oncogenic lncRNA,

up-regulates the expression of MARCKSL1 and activates the PI3K/

Akt pathway by binding to miR-130a-5p and accelerating the

proliferation and EMT process of TC cells (116). LINC00313

inhibits its expression by binding to the ALX4 promoter, activates

the AKT/mTOR signaling axis, and promotes TC proliferation,

migration, and EMT (117). In addition, oncogenic lncRNA UCA1

targets miR-15a through Hippo and JNK signaling pathways and

accelerates the EMT process of TC (113). LINC00460 upregulates

Raf1 through sponge adsorption of miR-485-5p, which significantly

enhances the EMT phenotype of PTC (118). LINCRNAs can also

affect EMT by regulating the expression of oncogenes, such as

HOXA-AS2 upregulates S100A4 and ZFAS1 deregulates its

repression of downstream oncogenes. HOXA-AS2 enhances

cancer cell proliferation, migration, and EMT through sponge

adsorption of miR-520c-3p (119). LncRNA ZFAS1 enhances

cancer cell proliferation, migration, and EMT by targeting miR-

302a-3p (120). LINC01816 is highly expressed in TC tissues and

may promote CRABP2 overexpression through sponge adsorption

of miR-34c-5p, inducing EMT and cancer cell metastasis

(112) (Figure 3).

Some long non-coding RNAs function to inhibit EMT. For

example, SLC26A4-AS1 is lowly expressed in papillary thyroid

carcinoma (PTC), and its overexpression inhibits the expression

of EMT-related genes by activating TP53 and inactivating the

MAPK pathway, thereby reducing cell migration and invasion

(121). Additionally, CATIP-AS1 inhibits TC metastasis by

reversing the expression of EMT markers (e.g., E-cadherin and

N-cadherin) through the upregulation of SMAD4 by inhibiting
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miR-515-5p (122). These studies suggest that lncRNAs have dual

regulatory roles in thyroid cancer, acting as both tumor suppressors

and oncogenic factors, and their clinical translational potential

needs to be further verified.

LncRNA RMST expression is significantly reduced in ATC and

only slightly reduced in DTC. RMST may inhibit the expression of

EMT markers (e.g., SLUG, TWIST1, NES1) by regulating the Wnt/

b-catenin, Notch, and Hedgehog signaling pathways and

significantly reduce the expression of stem cell markers (e.g.,

OCT4, SOX2, NANOG) (123), thereby suppressing the

aggressive phenotype of ATC cells. SOX2 is an important

transcription factor associated with stem cell properties and

tumor aggressiveness. RMST may function by directing

translational and post-translational modifications, including

DNA methylation and SUMOylation (124) and its expression is

negatively correlated with SOX2 and acts by helping Sox2

transcription factors bind to their target promoters (125).

LncRNAs play a key role in thyroid cancer development,

metastasis, and drug resistance through multidimensional

regulation of EMT-related pathways and target genes. Future

studies are needed to further validate their clinical potential and

develop precise lncRNA-based therapeutic strategies.
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5.3 EMT-related circRNAs and their
association with TC

In recent years, the regulatory role of circRNAs in the EMT of

TC has garnered increasing attention. circRNAs influence the EMT

process in TC by acting as molecular sponges for miRNAs,

modulating key signaling pathways (e.g., PI3K/AKT, HAS2/

ZEB1), or regulating EMT-related transcription factors (e.g.,

TWIST1, ZEB1). For instance, hsa_circ_0001681 is upregulated in

TC and functions as a sponge for miR-942-5p, thereby relieving the

inhibitory effect of miR-942-5p on TWIST1 (126). As a core

transcription factor of EMT, TWIST1 upregulation suppresses E-

cadherin expression and induces mesenchymal marker expression,

ultimately promoting the EMT process and tumor progression in

TC (25). Circ_102002 negatively regulates miR-488-3p expression

in papillary thyroid carcinoma (PTC) by acting as a sponge. The

target gene of miR-488-3p, HAS2, accelerates the EMT process by

synthesizing hyaluronic acid to activate ZEB1. Aberrant expression

of circ_102002 enhances HAS2/ZEB1 axis activity, thereby

promoting the migration and invasion of PTC cells (127).

Additionally, circ_0067934 is significantly overexpressed in

thyroid tumors and induces an EMT phenotype by activating the
FIGURE 3

Common regular pathways of ncRNAs. This figure depicts the cross-cutting regular pathways of miRNAs, circRNAs and lncRNAs in EMT transcription
factors, EMT signaling pathways, cellular phenotypes and epigenetics.
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PI3K/AKT signaling pathway. This action promotes cancer cell

proliferation, migration, and invasion while inhibiting apoptosis. Its

effects are closely related to EMT markers, such as upregulation of

N-cadherin and downregulation of E-cadherin (128). In contrast,

circGLIS3 expression is reduced in TC and upregulates AIF1L

expression by binding to miR-146b-3p, thereby reducing its

inhibition of AIF1L mRNA. AIF1L may affect cellular phenotypic

transition and inhibit the malignant progression of TC by

regulating EMT-related genes (129). Some circRNAs are

associated with treatment resistance. For example, circ007293,

delivered to PTC cells via exosomes, competitively binds miR-

653-5p and relieves the inhibition of PAX6 by miR-653-5p.

Activation of PAX6 promotes the EMT process and enhances cell

invasion and migration. Silencing circ007293 significantly inhibits

its pro-oncogenic effects (130). circPTPRM acts as a sponge for

miR-885-5p and significantly enhances the malignant phenotype of

TC (131) (Figure 3). These studies suggest that targeting circRNAs

may be a novel strategy to reverse TC resistance (Tables 1, 2).
6 Potential clinical applications of
ncRNA in thyroid cancer

Thyroid surgery, radioactive iodine therapy, and TSH

suppression remain the mainstay treatments for thyroid cancer

(42). Preliminary studies suggest that total thyroidectomy may be

more cost-effective and efficacious than hemithyroidectomy (93,

94). For patients with high-risk thyroid cancer, total thyroidectomy

combined with adjuvant radioactive iodine therapy is typically

required. In contrast, for low-risk thyroid cancers measuring 1–4

cm in diameter, hemithyroidectomy may be considered (132, 133).

Radioactive iodine (RAI) is the first-line treatment for metastatic

thyroid cancer. Although surgery and RAI therapy are effective for

most patients with DTC, approximately 60% of patients with

aggressive metastatic DTC are resistant to RAI therapy and have

a poor prognosis (134). Mechanisms of RAI resistance include

genetic mutations (e.g., BRAF V600E mutation, TERT promoter

mutation), dysfunction of iodine-transporting proteins (e.g., NIS),

and disturbances in the tumor microenvironment (TME).

Strategies to overcome RAI resistance include (1): tyrosine

kinase inhibitors (TKIs) that improve RAI uptake by inhibiting

multiple receptors (e.g., VEGFR, c-KIT, PDGFRa/b; (2) drugs that
restore RAI affinity (e.g., BRAF inhibitors, HDAC inhibitors, MEK

inhibitors (135); (3) drugs that induce redifferentiation of DTC cells

and restore NIS expression and iodine uptake capacity (e.g., retinoic

acid [RA], all-trans retinoic acid [ATRA]); and (4) the use of

nanoparticles as drug carriers to increase RAI concentration in

tumor tissues (136). Although TKI treatment improves

progression-free survival (PFS) in some patients, the complete

remission rate remains low, and patients may discontinue

treatment due to adverse effects. Therefore, further research into

the molecular mechanisms of RAI resistance and the development

of more effective therapeutic strategies, such as drugs targeting
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specific gene mutations or fusions and improved drug delivery

through nanotechnology, are needed.

ncRNAs play a significant role in the clinical management of

thyroid cancer patients and can serve as biomarkers for diagnosis,

prognosis, and treatment. For example, downregulation of PAR5

lncRNA in undifferentiated ATC serves as a marker of aggressiveness,

whereas overexpression of miR-146b in PTC is associated with a

poorer prognosis (137). Additionally, ncRNA assessment may help

predict therapeutic response and optimize treatment strategies.

Non-coding RNAs play a significant role as potential biomarkers

and therapeutic targets in TC therapy. For example, Yi et al. found

that miR-144-3p significantly inhibits the proliferation, migration,

invasion, and EMT of thyroid cancer cells by downregulating the

expression of E2F2 and TNIK, as detected by quantitative reverse

transcription-polymerase chain reaction (qRT-PCR) (138).

Additionally, overexpression of ciRS-7 promotes the progression of

papillary thyroid carcinoma (PTC) by regulating the miR-7/EGFR

axis and is closely associated with aggressive clinicopathological

features, such as tumor size and lymph node metastasis (139).

Orlandella FM et al. found, through real-time quantitative

polymerase chain reaction (qPCR) and immunohistochemistry

analyses, that restoring JAM-A expression can inhibit the

malignant features of thyroid undifferentiated carcinoma (ATC)

cell lines, including cell proliferation, motility, and trans-endothelial

migration, suggesting that JAM-A could be a potential therapeutic

target for thyroid cancer (140). JAM-A expression can be increased

and its function restored by modulating gene expression (e.g., via

transcription factors or miRNAs) or by activating the PI3K/Akt and

MAPK signaling pathways.

Moreover, ZEB1 plays a crucial role at the forefront of tumor

invasion, and CD73 is involved in regulating ZEB1 non-coding RNA

through its 3’UTR, which in turn affects the progression of PTC.

Studies have shown that siRNAmolecules targeting CD73 and ZEB1,

in combination with RGD-coupled chitosan lactate nanoparticles,

can effectively treat thyroid cancer and improve prognosis (141).

Metformin shows potential therapeutic value by inhibiting the

mTOR signaling pathway and targeting JAK2 in the JAK2/STAT3

signaling pathway, thereby effectively inhibiting the proliferation,

migration, and EMT of thyroid cancer cell lines (142, 143).

Meanwhile, Tnnt1 significantly promotes the proliferation, colony

formation, migration, invasion, and EMT of PTC cells by activating

the p38/JNK signaling pathway (144). Silymarin inhibits the

proliferation, metastasis, and invasion of PTC cells by modulating

the FN1/AKT signaling pathway and inhibiting the EMT process.

Additionally, researchers are exploring immunotherapies for thyroid

cancer; for example, silymarin reverses the immunosuppressive state

of thyroid cancer by regulating the expression levels of immune

checkpoint genes (145).

An in-depth investigation of the regulatory mechanisms of

ncRNAs in the EMT process of thyroid cancer is expected to lead

to breakthroughs in the discovery of early screening biomarkers and

precise therapeutic targets, thereby improving the prognosis,

prevention, and treatment of thyroid cancer.
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TABLE 1 The functions of EMT-related ncRNAs in TC.

ncRNA Target or the Whole Pathway Functions in TC Reference

miR-204-5p HMGA2 Invasion (-)
EMT (-)

(94)

hsa_circ_0001681 TWIST1 EMT (-) (126)

miR-200b/c Rap1b Proliferation (+)
Invasion (+)
Metastasis (+)
Apoptosis (-)
EMT (+)

(95)

miR-222-3p Snail Metastasis (+)
Lymph node metastasis (+)
EMT (+)

(96)

miR-199a-5p Snail1 Invasion (-)
Metastasis (-)
EMT (-)

(97)

miR-145 ZEB1 Proliferation (+)
Metastasis (+)
EMT (+)

(92)

miR-488-3p HAS2 EMT (+) (127)

miR-146b-5p Wnt/b-catenin Invasion (+)
EMT (+)

(98)

miR-874-3p FAM84A EMT (+) (99)

lncRNA DOCK9-AS2 miR-1972 Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(115)

miR-483 Pard3 Invasion (+)
Metastasis (+)
EMT (+)

(100)

miR-539 TGF-b1/Smads Proliferation (-)
Apoptosis (+)
EMT (-)

(101)

miR-520a-3p JAK/STAT Invasion (-)
Metastasis (-)
EMT (-)

(102)

miR-630 JAK2/STAT3 Invasion (-)
Metastasis (-)
EMT (-)

(103)

miR-451a PSMB8 Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(148)

circ_0067934 PI3K/AKT Proliferation (+)
Invasion (+)
Metastasis (+)
Apoptosis (-)

(128)

miR-21 PI3K/AKT EMT (+) (149)

lncRNA TYMSOS PI3K/Akt EMT (+) (116)

miR-26a PI3K/AKT Proliferation (-)
Invasion (-)
Metastasis (-)
EMT (-)

(150)

(Continued)
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TABLE 1 Continued

ncRNA Target or the Whole Pathway Functions in TC Reference

miR-203 AKT3 Invasion (+)
Metastasis (+)
EMT (+)

(104)

LINC00313 AKT/mTOR Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(117)

miR-101 CXCL12 Proliferation (-)
Invasion (-)
Metastasis (-)
Apoptosis (+)
EMT (-)

(105)

miR-1271 IRS1 Proliferation (-)
Invasion (-)
Metastasis (-)
EMT (-)

(106)

miR-599 Notch Proliferation (+)
Invasion (+)
Metastasis (+)
Apoptosis (-)
EMT (+)

(107)

lncRNA UCA1 miR-15a Proliferation (+)
EMT (+)

(113)

circ_0062389 miR-1179 Proliferation (+)
Apoptosis (-)
EMT (+)

(151)

lncRNA SLC26A4-AS1 MAPK Apoptosis (+)
EMT (-)

(121)

miR-31 SOX11、ERK、Akt Proliferation (-)
Invasion (-)
Metastasis (-)
EMT (-)

(152)

miR-149-5p CCL18 Proliferation (-)
Metastasis (-)
E-cadherin (+)
N-cadherin (-)
vimentin (-)
EMT (-)

(108)

miR-181a KLF15 Proliferation (-)
Metastasis (-)
EMT (-)

(58)

miR-203 AKT3 E-cadherin (+)
vimentin (-)
EMT (-)

(104)

circGLIS3 miR-146b-3p EMT (+) (129)

lncRNA CATIP-AS1 miR-515-5p Proliferation (-)
Metastasis (-)
EMT (-)

(122)

miR-192-5p SH3RF3 Invasion (-)
Metastasis (-)
EMT (-)

(110)

lncRNA HOXA-AS2 miR-520c-3p Invasion (+)
Metastasis (+)
EMT (+)

(119)

circPTPRM miR-885-5p EMT (+) (131)

(Continued)
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7 Summary

TC is one of the major malignancies of the endocrine system. In

recent years, research has primarily focused on the effects of growth
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factors, transcription factors, non-coding RNA (ncRNA), DNA

methylation, and other regulatory factors on the EMT, as well as

the mechanisms underlying EMT in thyroid cancer invasion and

metastasis. In cancer therapy, targeting ncRNAs involved in the EMT
TABLE 1 Continued

ncRNA Target or the Whole Pathway Functions in TC Reference

LINC00460 Raf1 Proliferation (+)
Metastasis (+)
EMT (+)

(118)

miR-4319 SMURF1 Proliferation (-)
Metastasis (-)
EMT (-)

(111)

miR-144-3p E2F2 EMT (-) (138)

circ007293 miR-653-5p Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(130)

lncRNA ZFAS1 miR-302a-3p Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(120)

miR-221-3p ZFAND5 Proliferation (+)
Invasion (+)
Metastasis (+)
EMT (+)

(109)

LINC01816 CRABP2 Invasion (+)
Metastasis (+)
EMT (+)

(112)

INC00313 miR-422a EMT (+) (153)
+ means promoting, - means inhibiting.
TABLE 2 Key EMT-associated ncRNAs in thyroid cancer.

ncRNA Target or regulated
molecule

Signaling
Pathway

Functional Role in TC Reference

miR-146b-5p ZNRF3 Wnt/b-catenin Promotes invasion and EMT by enhancing Wnt signaling (154)

miR-200b/c EGFR Rho/ROCK signaling Activates EGFR, enhances proliferation, invasion, and EMT. (155)

miR-539 SLPI TGF-b1/Smads Inhibits EMT and cell proliferation via TGF-b1/Smads suppression. (101)

miR-630 JAK2/STAT3 JAK2/STAT3 Suppresses EMT and metastasis by inhibiting JAK2/STAT3 pathway. (103)

miR-204-5p HMGA2 MAPK Reduces invasion and EMT by targeting HMGA2 and inhibiting
MAPK signaling.

(94)

miR-21 PI3K/AKT PI3K/AKT Promotes EMT and cell proliferation via PI3K/AKT activation. (156)

miR-874-3p FAM84A Wnt/b-catenin Downregulated in PTC; FAM84A overexpression activates Wnt/b-
catenin and EMT.

(99)

circPVT1 miR-195 Wnt/b-catenin Drives PTC growth and metastasis via Wnt/b-catenin signaling. (157)

DOCK9-AS2 miR-1972/CTNNB1 Wnt/b-catenin Activates Wnt pathway by upregulating CTNNB1, promoting
PTC invasion.

(115)

LINC00313 miR-422a, miR-4429 AKT/mTOR Activates AKT/mTOR signaling to drive EMT and metastasis. (153, 158)

CATIP-AS1 miR-515-5p/SMAD4 TGF-b/Smads Inhibits EMT by upregulating SMAD4 and suppressing TGF-b signaling. (122)
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process has emerged as a promising intervention strategy, potentially

preventing or inhibiting the deleterious effects of tumors.

Targeting ncRNAs exerts a crucial regulatory role in cancer

progression and may represent a novel therapeutic strategy against

thyroid cancer in the future. There are two main approaches to

targeting ncRNAs: the first involves inhibiting tumor progression

by suppressing oncogene-associated overexpressed ncRNAs, while

the second involves inhibiting cancer development by activating or

upregulating tumor suppressor gene-associated ncRNAs. For

example, downregulation of miR-146b-5p or upregulation of

miR-874-3p inhibits the Wnt/b-catenin signaling pathway,

thereby blocking EMT activation and inhibiting thyroid cancer

progression (99). Additionally, miR-99a-3p is downregulated in

PTC tissues and cells, whereas upregulation of miR-99a-3p inhibits

EMT, resistance to anoikis, and the migratory and invasive

capabilities of PTC cells. ITGA2 has been identified as a

downstream effector of GRP94. Overexpression of miR-99a-3p

suppresses ITGA2 expression, while overexpression of GRP94

reverses the inhibitory effect of miR-99a-3p on PTC metastasis

(146). Different types of ncRNAs can inhibit the EMT process by

regulating various transcription factors, signaling pathways, or

cellular markers. Therapeutic strategies targeting EMT-associated

ncRNAs can be developed by designing specific small molecules or

drugs to target these ncRNAs, thereby inhibiting the EMT process

and reducing tumor invasion and metastasis (68, 147).
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