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Purpose: This study aimed to develop a novel predicting model based on deep

learning (DL) to predict sentinel lymph node (SLN) metastasis in breast cancer

(BC) patients using ultrasound (US) imaging.

Methods: A retrospective cohort consisting of 692 female BC patients from two

hospitals was analyzed, with data collected from January 2020 to October 2023.

Patients from Hospital A were randomly allocated to training (n = 405) and internal

validation (n = 174) sets (7:3 ratio), with Hospital B patients (n = 113) serving as the

external test set. A post-fusion model integrating the DeepLabV3, U-Net, and

U-Net++ segmentation algorithms, respectively, was utilized to automatically

delineate regions of interest (ROIs). Furthermore, three convolutional neural

networks (CNNs)—ResNet50, ResNet101, and DenseNet121, respectively—were

employed to analyze the cropped regions and concurrently construct a

predictive model. A composite model that incorporates the DL signature (DL Sig)

alongside clinical factors was developed by utilizing logistic regression (LR). A

database to compare human and machine performance was created to evaluate

the model’s effectiveness. A nomogram was ultimately constructed to forecast the

occurrence of SLN metastasis. The evaluation of model performance involved the

utilization of receiver operating characteristic (ROC) curves, calibration curves, and

decision curve analysis (DCA), respectively.

Results: The post-fusion model demonstrated a robust correlation with manual

delineation, yielding Dice coefficients of 0.893 and 0.855 in the internal validation

and external test sets, respectively. The ResNet50 model, recognized as the most

effective base model, demonstrated an area under the curve (AUC) of 0.773 (95%

CI: 0.706–0.840) and an accuracy of 68% in the internal validation set (VS). In the

external test set (TS), it achieved 0.765 AUC (95% CI: 0.674–0.856) with accuracy

of 74%. The integrated model, which combined the DL Sig with clinical factors,

exhibited the most effective performance in forecasting SLN metastasis,
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achieving 0.763 AUC (95% CI: 0.671–0.855) with accuracy of 69% in the TS. The

DCA demonstrated notable clinical utility in the integrated model, surpassing the

performance of both senior and junior radiologists.

Conclusion: Our novel predictive model exhibited superior performance

compared to both senior and junior radiologists in predicting SLN metastasis.

Its capability for automatic segmentation and prediction highlights its potential

for clinical applications.
KEYWORDS

automatic segmentation, deep learning, prediction model, sentinel lymph node
metastasis, breast cancer
Introduction

Breast cancer (BC) ranks as a prevalent malignancy among women

globally and stands as the foremost cause of cancer incidence

worldwide (1, 2). Axillary lymph node (ALN) metastasis crucially

affects prognostic evaluations, clinical staging, and the refinement of

therapeutic strategies for BC patients (3, 4). The status of the sentinel

lymph node (SLN) as initial metastatic gateway in BC lymphatic spread

could provide critical prognostic information that influences

therapeutic strategies (5). Currently, SLN biopsy (SLNB) has

increasingly supplanted ALN dissection (ALND) for staging ALNs in

node-negative BC patients, primarily due to its less invasive nature (6).

However, a substantial percentage of patients undergoing SLNB

demonstrate negative SLN results, implying that unnecessary SLNB

may lead to overtreatment (7, 8). Additionally, despite its less

invasiveness, SLNB carries potential risks and complications (9). To

address the limitations of SLNB, it is imperative to establish a non-

invasive and efficacious approach for predicting SLN metastasis.

Ultrasound (US), mammography, computed tomography (CT)

scans, and magnetic resonance imaging (MRI) serve as the principal

non-invasive imaging modalities for predicting SLN metastasis. US

serves as the preferred initial assessment method for the prediction

of SLN status by evaluating both the intratumoral and peritumoral

regions of BC, with achieved moderate AUCs from 0.73 to 0.835

(10–13). However, the diagnostic accuracy remains suboptimal,

primarily attributable to the limitations in ultrasonography, such as

its inability to provide functional features on breast tumors and its

reliance on morphological characteristics (14). Therefore,

developing a novel tool is imperative to enhance the precision of

US evaluations for SLN status in BC patients while providing

quantifiable and clinically interpretable predictive metrics.

In recent years, DL has attracted considerable attention within

the medical imaging sector for its robust capabilities in processing

large datasets and images (15–17). Convolutional neural networks

(CNNs), a foundational architecture in DL, have demonstrated

exceptional proficiency in hierarchical feature extraction from

medical imaging data (18). Prior research (19) showed that deep-

learning-derived features extracted from US images achieved
02
promising accuracy in predicting SLN metastasis in BC, with an

AUC of 0.85 (training set). However, some existing studies (20, 21)

that rely on manual or semiautomated techniques have been

recognized as often being laborious and time-consuming, which

can compromise the consistency and reproducibility of the results.

Therefore, automatic segmentation is crucial to achieve more

accurate results in the era of precision medicine.

Image segmentation plays a pivotal role in analysis, incorporating

detection, feature extraction, classification, and treatment (22, 23).

Furthermore, many recent studies (24–27) have delved into

segmentation techniques for breast tumors in US images, yet

challenges persist owing to significant speckle noise and the diverse

morphology of tumors in US images. Additionally, contemporary

segmentation algorithms like DeepLabV3 (28) and U-Net (29)

require further advancements to enhance semantic segmentation

capabilities. In this study, we introduce an automated DL model

that harmoniously combines DeepLabV3, U-Net, and U-Net++ for

improved feature extraction and segmentation accuracy.

Subsequently, we validated an integrated model based on DL in US

images. Finally, we employed a nomogram, which holds promise as a

quantifiable, interpretable, and clinically accessible tool for

determining SLN status in BC patients.
Patients and methods

Patient population

From January 2020 to December 2023, a retrospective study was

conducted on 692 BC patients from two hospitals—The Linyi

People’s Hospital (A) and the First Affiliated Hospital of Wannan

Medical College (B). Patients from Hospital A were randomly

allocated to training (n = 405) and internal validation (n = 174)

sets (7:3 ratio), with Hospital B patients (n = 113) serving as the

external test set. The study protocol adhered strictly to the ethical

standards of the Declaration of Helsinki (2013). The ethics

committee approved this retrospective study and waived the need

for informed consent. Patients who underwent US-guided needle
frontiersin.org
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biopsy or surgery within the week of diagnosis were chosen. Further

detailed recruitment criteria include (I) histologically confirmed

malignant breast tumors, (II) known SLN metastasis status from

final histopathology, (III) known molecular subtypes, and (IV)

surgical or puncture pathological results for breast lesions. The

exclusion criteria included (I) incomplete clinical data,

immunohistochemistry, or pathology results, (II) male BC

patients, (III) prior biopsy intervention, chemotherapy, or

radiofrequency ablation, and (IV) poor image quality or absence

of SLNB or ALND. The workflow for constructing the model is

depicted in Figure 1, while the flow chart for recruiting new patients

is illustrated in Figure 2.
Data sets

Baseline clinical and histopathological data, including age, lesion

sizes, histological grade, histological type, immunohistochemistry

(IHC) results, and the SLN status, were obtained from the patient’s

medical records as detailed in Table 1. The status of estrogen receptors

(ER), progesterone receptors (PR), human epidermal growth factor

receptor 2 (HER2), and Ki-67, respectively, were used to evaluate by in

situ hybridization (IHC) and fluorescence in situ hybridization

(FISH). The diagnosis of breast lesions relied on pathology reports,

which were considered the gold standard.
US image acquisition

The equipment used to collect images in the US came from a

variety of manufacturers, including GE LOGIQ E9 (ML6–15 MHz),

Siemens Acuson S2000 (4–9MHz), EsaoteMylab Twice (4–13MHz),

and Philips EPIQ5 (5–12MHz) transducers. The top chest region was

completely exposed as patients were positioned either supine or

laterally. At the center was the lesion, which formed the focal zone.

The images were captured by an experienced sonographer
Frontiers in Oncology 03
specializing in breast imaging for over 5 years and deposited in the

Picture Archiving and Communication System (PACS).
ROI segmentation

In this study, an automated segmentation algorithm was used to

identify ROIs. Additionally, to enhance the accuracy of ROI

segmentation, a post-fusion algorithm was introduced to merge

various algorithms.

Images for segmentation and preprocessing
Manual ROI was conducted using ITK-SNAP (version 3.8.0),

with careful delineation of tumor boundaries performed on the

largest cross-sectional slice of each lesion. The tumor’s lobules and

burrs, as well as the lesion’s perimeter, were used to define the ROIs.

Both radiologist A and radiologist B (8 and 12 years of breast US

practice, respectively) independently conducted ROI delineation on a

randomly selected sample of 50 patients. Reliability (both inter- and

intra-rater) was quantified via Intraclass Correlation Coefficient

(ICC) analysis, adopting the threshold of ICC ≥0.75 for substantial

consistency, while the Dice similarity coefficient (DSC) was employed

to quantify spatial overlap agreement between segmentations, with a

DSC value ≥0.84 considered indicative of good concordance. The

details are illustrated in Appendix 1. These initial manual

segmentations served as the ground truth dataset for constructing

the automated segmentation model. The intensity distribution across

RGB channels was standardized by Z-score normalization of the US

pictures to minimize variations caused by parameter inconsistency

between different machines and imaging modes. Our model was then

fed these standardized inputs.
Segmentation model training and postprocessing
We comprehensively evaluated the contemporary image

segmentation algorithms, including DeepLabV3, U-Net, and

U-Net++. All architectures were fine-tuned using transfer learning
FIGURE 1

Workflow of this study.
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approaches, with initial parameter optimization performed on the

Microsoft Common Objects in Context (MS COCO) dataset. U-Net is

noted for its simplicity and effectiveness with limited data, and

U-Net++ enhances accuracy with nested skip connections,

while DeepLabV3 is recognized for its excellence in semantic

segmentation tasks by capturing multi-scale contextual information.

To synthesize the outcomes of these algorithms, a post-fusion model

for segmentation was proposed. The detailed workflow is illustrated in

Supplementary Figure 1.

Random image patches were extracted and labeled as positive or

negative samples. The numbers of samples and their sizes were

defined. Online data augmentation methods, including random

cropping and spatial transformations, were implemented to

enhance the training dataset diversity. For this task, we turned to

the DiceCELoss function, which merges the Dice loss and cross-

entropy loss techniques. When the Adam optimizer was first

implemented, a learning rate of 1e-3 was utilized. The training

protocol consisted of 18,000 iterative updates (600 epochs), using 32

early halting rounds. Throughout the training procedure, an
Frontiers in Oncology 04
NVIDIA 4090 GPU was utilized, which was running MONAI

0.8.1 and PyTorch 1.8.1.

Evaluating the performance of the segmentation
mode

For the segmentation process, the ROI was compared with

radiologist ground truth annotations. The Dice was used to assess

the segmentation process by quantitatively assessing spatial overlap

between segmentation results and manual ground truth

annotations. The evaluation metric of our segmentation model

was Dice, precision, recall, as well as the intersection over

union (IoU).
Combined model construction

Despite the fact that manually delineating ROIs during data

annotation could have enhanced diagnostic precision, it was

avoided to enable full automation of the diagnostic procedure.
FIGURE 2

Dataset configuration of this study.
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Rather, all samples’ ROIs were automatically delineated using the

automated segmentation model and then used in the following

modeling processes.

DL model training
This investigation implemented transfer learning using pre-

trained ResNet50, ResNet101, and DenseNet121 models as the

fundamental frameworks for extracting DL features. These

models had undergone initializing with pretrained weights from

the ImageNet database. We selected the slice with the largest ROIs

for each patient as the representative image. To reduce background

noise, we retained solely the smallest rectangular boundary

containing the ROIs. Gray values were scaled to a range of 0 to 1

using min–max normalization. Furthermore, all cropped
Frontiers in Oncology 05
subregions were resampled to a uniform size of 224 × 224 pixels

through nearest-neighbor interpolation to preserve discrete

pixel values.

To improve model generalizability, we implemented a cosine

decay learning rate strategy, which is characterized as follows:

ht = hi
min +

1
2
(hi

max − hi
min) 1 + cos

Tcur

Ti
p

� �� �

where hi
min = 0 represents the minimum learning rate, hi

max =

0:01 denotes the maximum learning rate, and Ti = 90 defines the

total number of training epochs for the iterative optimization

procedure, respectively. The model was optimized using

stochastic gradient descent (SGD), with softmax cross-entropy

serving as the objective function for loss computation.
TABLE 1 Baseline characteristics of population.

Characteristic

Training set (n=405)

pvalue

Validation set (n = 174)

pvalue

Test set (n=113)

pvalueSLN-
(n = 216)

SLN+
(n = 189)

SLN-
(n = 88)

SLN+
(n = 86)

SLN-
(n = 57)

SLN+
(n = 56)

Age (mean ± SD), years 50.93±10.28 51.57±9.92 0.522 49.58±9.49 50.88±11.58 0.417 52.44±11.35 52.52±9.58 0.968

Size (mean ± SD), cm 22.90±12.32 24.01±11.01 0.099 20.06±8.56 24.01±10.49 0.005* 21.60±7.97 24.88±9.48 0.062

Histologic_type (%) <0.001* <0.001* 0.110

Invasive ductal 161(74.54) 182(96.30) 63(71.59) 81(94.19) 48(84.21) 46(82.14)

Invasive lobular 2(0.93) 4(2.12) 2(2.27) 3(3.49) null null

DCIS 44(20.37) 1(0.53) 21(23.86) 1(1.16) 2(3.51) 7(12.50)

Other pathology
types

9(4.17) 2(1.06) 2(2.27) 1(1.16) 7(12.28) 3(5.36)

Histologic_grade (%) 0.029* 0.437 0.978

I 14(6.48) 5(2.65) 6(6.82) 4(4.65) 9(15.79) 8(14.29)

II 153(70.83) 123(65.08) 55(62.50) 48(55.81) 35(61.40) 37(60.07)

III 49(22.69) 61(32.28) 27(30.68) 34(39.53) 13(22.81) 11(19.64)

ER status (%) 0.063 0.920 0.916

Negative 63(29.17) 39(20.63) 26(29.55) 27(31.40) 26(45.61) 24(42.86)

Positive 153(70.83) 150(79.37) 62(70.45) 59(68.60) 31(54.39) 32(57.14)

PR status (%) 0.027* 0.668 0.910

Negative 78(36.11) 48(25.40) 29(32.95) 32(37.21) 33(57.89) 34(60.71)

Positive 138(63.89) 141(74.60) 59(67.05) 54(62.79) 24(42.11) 22(39.29)

Her_2 status (%) 0.119 0.282 0.595

Negative 155(71.76) 121(64.02) 63(71.59) 54(62.79) 42(73.68) 41(73.21)

Positive 61(28.24) 68(35.98) 25(28.41) 32(37.21) 15(26.32) 15(26.79)

Ki_67 status (%) 0.413 0.424 0.441

Negative 92(42.59) 72(38.10) 39(44.32) 32(37.21) 10(17.54) 6(10.71)

Positive 124(57.41) 117(61.90) 49(55.68) 54(62.79) 47(82.46) 50(89.29)
fro
SLN-, sentinel lymph node negative; SLN+, sentinel lymph node positive; SD, standard deviation; DCIS, ductal carcinoma in situ; ER, estrogen receptor; PR, progesterone receptor; HER-2,
human epidermal growth factor receptor 2. *p < 0.05.
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DL signature building
We compared the AUCs of all DL models and selected the one

with the best performance. The predicted probabilities generated by

the best model were used as the DL Sig.

Combined model building
Clinical predictors were identified through both univariate and

multivariate analyses. Subsequently, various machine learning

models (RandomForest, XGBoost, LR) were employed to

construct the clinical signature. To enhance clinical applicability,

the clinical signature was integrated with predictions from the DL

model using a LR linear model, leading to the development of the

integrated model.
Radiologists’ prediction

A comparative analysis was conducted between the integrated

model and experienced radiologists. Four radiologists of varying

seniority (junior radiologists 1 and 2 with 4 and 5 years of post-

training experience and senior radiologists 3 and 4 with 8 and 12 years

of post-training experience, respectively) independently evaluated the

US images for all enrolled patients. They were unable to perceive the

pathological information. Model performance was evaluated through

ROC analysis, with AUC values and 95% confidence intervals (CIs)

computed. Comparative analyses of the AUCs were conducted by

utilizing the methodology established by DeLong et al.
Evaluation of the combined model

Histologic type and Her-2 serve as the clinical factors. These

elements were used for both multivariate and univariate analyses

with DL Sig. Multivariable analyses with backward stepwise

elimination (AIC minimization) was employed to identify

independent risk factors. Using the variance inflation factor, we

checked if the regression model had any multi-collinearity. We

constructed a nomogram using the selected variables. The

predictive capabilities of the integrated model and fundamental

DL models for SLN status were assessed through ROC curve

analysis and AUC quantification in the training, validation, and

test sets. Negative predictive value (NPV), positive predictive value

(PPV), sensitivity, accuracy, and specificity were among the

measures computed. We also ran DCA and calibration curves to

evaluate the integrated model’s clinical utility and calibration. The

Hosmer–Lemeshow test was used to assess the model’s calibration;

this test necessitates a Hosmer–Lemeshow statistic of ≥0.05.
Statistical analysis

Data were analyzed by utilizing SPSS (version 25.0, IBM),

Python (version 3.7.12), and R software (version 3.3.4).

Continuous variables were summarized using mean ± standard
Frontiers in Oncology 06
deviation (SD) for normally distributed data, while categorical

variables were presented as absolute frequencies and percentages

(n, %). Categorical variables were analyzed using Pearson’s chi-

square test or Fisher’s exact test, Continuous variables were

compared using Mann–Whitney U-test. The variations in AUC

values were evaluated through the DeLong test, with p <0.05

deemed statistically significant.
Results

Baseline characteristics

The baseline clinicopathological features of the study cohort are

presented in Table 1. As shown in Figure 3 and Table 2, notable

variations in histologic type and Her2 expression were detected

between the cohorts exhibiting positive and negative SLNmetastasis

across all three datasets (P < 0.05). Univariable and multivariable

analyses were conducted on all clinical factors, estimating the

magnitude of association (OR) and its statistical significance (p-

value) for each variable. The histologic type (OR = 0.819; 95% CI:

0.785–0.855; p < 0.05) and Her2 (OR = 1.097; 95% CI: 1.019–1.179;

p < 0.05) have been identified as potential predictive factors

for SLNM.
Performance of the automatic ROI
segmentation model

Supplementary Figure 2 demonstrates the relative importance

of features in the XGBoost model, highlighting that the DeepLab

model’s predictions were the most significant. This correlates with

the superior prediction results of DeepLab in individual models.

Furthermore, Table 3 presents a comparative analysis of model

performance using various evaluation metrics. The post-fusion

model demonstrated reduced segmentation accuracy relative to

individual constituent models, yielding Dice scores of 0.889

(training set) and 0.893 (VS). However, an improvement was

noted in Dice scores of 0.855 (VS). The model also showed

improvement in recall as 0.988 (training set), 0.985 (VS), and

0.956 (TS), respectively. Based on these results, the post-fusion

model was selected for constructing image-level features.
Performance of the combined model

DL model selection
As indicated in Table 4 and Figure 4, the ResNet50 model

achieved superior performance in predicting SLNM, with accuracy,

sensitivity, and specificity in the TS of 74.30%, 64.3%, and 84.2%,

respectively. The DenseNet121 model achieved an AUC of 0.651,

and the DenseNet101 model recorded an AUC of 0.597. It is worth

noting that the ResNet50 model achieved a significantly higher

AUC of 0.765 (95%: CI 0.674–0.856) in the TS.
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Visual interpretation of the DL model
Model interpretability was assessed using gradient-weighted

class activation mapping (Grad-CAM) applied to two

representative clinical cases identified by the optimal ResNet50

architecture (Figure 5). The red areas in the Grad-CAM images

highlight the regions that contributed most significantly to the

network’s prediction process.

Comparison of different models
As shown in Table 5 and Figure 6, the model integrating clinical

factors and DL Sig achieved optimal diagnostic accuracy in both the

training and validation sets. However, in the TS, the combined

model did not demonstrate a significant improvement in AUC,

recording a value of 0.763 (95% CI: 0.836–0.855), slightly lower

than the DL model’s AUC of 0.765 (95% CI: 0.674–0.856). This

suggests that the clinical features did not perform as well as

expected on the TS, which is presented in Supplementary

Figures 3, 4, leading to a diminished impact of the fusion model.

The lack of improvement in the test set could be attributed to the

variability in the clinical features.

Comparison with radiologists
The efficacy of the integrated model was assessed in relation to

the evaluations provided by four radiologists, as shown in
Frontiers in Oncology 07
Supplementary Figure 5. The findings indicated that the

integrated model surpassed the assessments made by clinicians

throughout the training, validation, and test sets. Furthermore, the

DeLong test (p < 0.05) validated that the integrated models

significantly outperformed the capabilities of both junior and

senior radiologists. The ROC curves along with the DeLong test

results for each model are displayed in Supplementary Figures 6, 7.
Clinical use of the combined model

Nomogram construction
Multivariable regression analysis in the training cohort

identified histologic type, Her-2, and DL signatures, respectively,

as independent variables of SLN status. These variables were

incorporated into the nomogram which is shown in Figure 7.

Using the nomogram, we first determined each variable’s points.

The total score was then computed by summing the corresponding

points of all variables, which was subsequently converted to the

predicted probability—for example: we have shown a positive SLN

metastasis case (blue arrow in Figure 7). It was Her2 negative,

histologic type II, and with DL value 0.805. The total score was

45 + 0 + 80 = 125. The corresponding prediction was 62.5%. In

contrast, another negative SLN metastasis case is indicated by the
FIGURE 3

OR of clinical features in univariable and multivariable analysis. (A) Univariable analysis. (B) Multivariable analysis.
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TABLE 2 Univariable and Multivariable Analysis of clinical features.

Univariable analyses Multivariable analyses

p_value
lower
CI

lower
%CI

OR upper
95%CI

9 0.86 <0.05*

1.006 0.143

9 1.172 <0.05*

5 1.107 0.314
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Characteristic OR
OR
95%

Histologic_type 0.819 0.785

age 1.002 0.999

size 1.004 1.001

Ki_67 1.056 0.985

ER 1.069 0.990

PR 1.072 0.997

Her_2 1.097 1.019

Histologic_grade 1.119 1.050

ER, estrogen receptor; PR, progesterone receptor; HER-2, human epide

TABLE 3 Comparison of different segmentation models

Model Name Dice

deeplabv3_resnet101 0.929

Nested UNet 0.890

UNet 0.908

Fusion 0.889

deeplabv3_resnet101 0.924

Nested UNet 0.895

UNet 0.909

Fusion 0.893

deeplabv3_resnet101 0.842

Nested UNet 0.758

UNet 0.753

Fusion 0.855

Dice, Dice coefficient or Dice similarity coefficient mlOU, mean Inters
e
p_value
OR upper
95%CI OR

OR
95

0.855 <0.05* 0.824 0.78

1.005 0.337

1.007 <0.05* 1.003 1.0

1.132 0.198

1.155 0.153

1.154 0.117

1.179 <0.05* 1.093 1.01

1.192 <0.05* 1.039 0.97

r receptor 2; OR, odds ratio; 95%CI, 95% confidence interval, *p < 0.05.

entation metrics.

mlOU Precision Rec

0.870 0.922 0.941

0.815 0.853 0.949

0.838 0.900 0.929

0.806 0.815 0.988

0.863 0.932 0.924

0.821 0.863 0.948

0.841 0.919 0.914

0.814 0.826 0.985

0.768 0.906 0.851

0.667 0.902 0.750

0.672 0.876 0.730

0.753 0.791 0.956

, and the bolded portion is the group with the best indicator.
to

m

n
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red arrow in Figure 7. It was Her2 negative, histologic type II, and

with DL value 0.105. The total score was 45 + 0 + 10 = 55. The

corresponding prediction was 7%.

Combined model validation
The integrated model significantly outperformed the deep

learning model on the TS (DeLong test, Net reclassification

improvement (NRI), and Integrated discrimination improvement

(IDI), p < 0.05 for all) (Figures 8, 9). Both the calibration plots and

Hosmer–Lemeshow test confirmed a high degree of concordance

between the model’s predictions and the true SLN status

(Supplementary Figure 8; Figures 10A–C). The decision curves

illustrated that the integrated model provides greater benefit to

patients than either the clinical or DL models alone (Figures 10D–F).
Discussion

SLN status represents a critical prognostic indicator for BC

progression and plays a pivotal role in guiding clinical therapeutic

decision-making (24). Thus, noninvasive and precise methods for

predicting SLN metastatic involvement have become the new
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research hotspot. Our research successfully presents a deep-

learning-based predictive model for SLN metastasis in BC

patients. This novel model significantly outperformed senior and

junior radiologists. Most notably, to get the full automation of the

model, we propose an accurate and robust segmentation model to

automatically delineate the ROIs. This novel predicting model was

subsequently converted into a nomogram, enabling a quantitative

assessment of SLN metastatic risk in BC patients.

US has become an indispensable modality for the

morphological evaluation of lymph node characteristics in BC

management—including irregular contours, indistinct margins or

fatty hilum loss—but its diagnostic efficacy remains constrained to

macroscopically detectable abnormalities (25). This inherent

limitation results in undetectable micrometastatic deposits within

the clinically negative lymph nodes. The precise and effective

detection of subclinical nodal metastases is essential for

prognostic evaluations, clinical staging, and the refinement of

therapeutic approaches. Previous studies (26, 27) demonstrated

that decreasing the distance between breast tumors and the skin/

nipple complex correlates positively with ALNmetastasis incidence.

Additionally, architectural distortion (30), lymphatic invasion (31),

and calcifications (32) detected on breast US demonstrated a
TABLE 4 Metric results for deep learning signature.

ModelName Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

resnet50 0.783 0.851 0.8148-0 .8880 0.820 0.750 0.742 0.827 train

resnet50 0.684 0.773 0.7057-0.8404 0.558 0.807 0.738 0.651 val

resnet50 0.743 0.765 0.6739-0.8559 0.643 0.842 0.800 0.706 test

densenet121 0.802 0.883 0.8513-0.9156 0.825 0.782 0.768 0.837 train

densenet121 0.638 0.681 0.6025-0.7602 0.465 0.807 0.702 0.607 val

densenet121 0.637 0.651 0.5485-0.7526 0.714 0.561 0.615 0.667 test

resnetlOl 0.731 0.802 0.7600-0.8446 0.730 0.731 0.704 0.756 train

resnetlOl 0.690 0.704 0.6253-0.7827 0.581 0.795 0.735 0.660 val

resnetlOl 0.602 0.597 0.4914-0 .7028 0.357 0.842 0.690 0.571 test
AUC, area under the curve; 95%CI, 95% confidence interval; PPV, positive predictive values; NPV, negtive predictive values, and the bolded portion is the group with the best indicator.
FIGURE 4

ROC results for deep learning signature of different models. (A) ROC of ResNet50. (B) ROC of DenseNet121. (C) ROC of ResNet101.
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significant predictive value for lymph node metastasis.

Traditionally, this requires manual selection of diverse features

and their valuation by seasoned radiologists.

Recent studies (33, 34) have highlighted the potential of

quantitative US image features derived from primary breast to
Frontiers in Oncology 10
predict SLN status. Kuo YL et al. (35) developed a validated

nomogram predicting non-sentinel lymph node metastasis

(NSLNM) risk following positive SLN biopsy, achieving an AUC

of 0.738, while Xiu et al. (36) systematically evaluated and compared

the predictive performance of machine learning (ML) algorithms
FIGURE 5

Grad-CAM visualization of two typical samples. (A, C) Ultrasonic images. (B, D) Corresponding heat maps. The red areas indicate higher contributing,
and the blue areas indicate lower contributing for predicting SLN metastasis.
TABLE 5 Metrics on different signature.

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinical 0.719 0.793 0.7498 - 0.8354 0.825 0.625 0.658 0.804 Train

DeepLearning 0.780 0.851 0.8148 - 0.8880 0.725 0.829 0.787 0.775 Train

Combined 0.790 0.870 0.8363 - 0.9033 0.767 0.810 0.780 0.799 Train

Clinical 0.655 0.737 0.6630 - 0.8113 0.767 0.545 0.623 0.706 val

DeepLearning 0.672 0.773 0.7057 - 0.8404 0.744 0.602 0.646 0.707 val

Combined 0.695 0.804 0.7417 - 0.8668 0.721 0.670 0.681 0.711 val

Clinical 0.522 0.485 0.3773 - 0.5923 0.536 0.509 0.517 0.527 test

DeepLearning 0.619 0.765 0.6739 - 0.8559 0.821 0.421 0.582 0.706 test

Combined 0.690 0.763 0.6707 - 0.8553 0.750 0.632 0.667 0.720 test
AUC, area under the curve; 95%CI, 95% confidence interval; PPV, positive predictive values; NPV, negtive predictive values,and the bolded portion is the group with the best indicator.
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versus conventional nomograms for NSLNM detection. Their study

found that the XGBoost model achieved superior AUC values

compared to conventional nomograms. Additionally, Shahriarirad

et al. (37) developed a TabNet-based predictive model for SLN

status assessment in BC patients using preoperative clinical

variables. Their analysis demonstrated superior predictive

performance relative to logistic regression, achieving 75%

classification accuracy (versus 70%) and AUC of 0.74 (versus

0.70). Our integrated model, which combined DenseNet50-

derived features with clinical factors, demonstrated significant

predictive performance, achieving an AUC value of 0.763 and an

accuracy level of 69% in the TS. Notably, our model achieved

significantly higher predictive accuracy than the assessments by

experienced radiologists (AUC, 0.763 vs. 0.708; sensitivity, 75% vs.

70%), demonstrating its potential as an effective tool for

preoperative SLN metastasis evaluation.

A key innovation of our study is the development of a fully

automated DL model for early-stage ROI segmentation in the image

analysis pipeline. In contrast to prior studies dependent on manual

segmentation, which are labor-intensive and exhibit substantial
Frontiers in Oncology 11
inter-observer variability, our approach employs fully automated

segmentation, eliminating these limitations. This innovation may

optimize clinical workflows by improving radiologists’ efficiency in

in BC tumor detection and diagnosis.

Recent advancements in DL have yielded various classical

CNN architectures, including FCN, U-Net++, and DeepLabV3+

(29, 30, 38)—for instance, Hu et al. (39) developed an integrated

framework combining dilated convolutional networks with phase-

based active contour modeling for automated breast lesion

segmentation, achieving exceptional performance (Dice coefficient

= 88.97%). What is more, Zhao et al. (40) developed MPSegNet for

MR-image-based breast tumor segmentation, successfully

predicting SLN metastasis with a Dice coefficient of 80% and a

sensitivity level of 93.91%. Our study proposed a novel tumor

segmentation approach by combined Unet, Unet++, and

DeepLabv3, which demonstrated higher Dice of 0.855 and recall

of 0.956 in the TS. Our findings were consistent with prior research.

This demonstrates that the fusion strategy can compensate for the

suboptimal performance of individual models, thereby extending

their applicability to a broader range of US imaging scenarios.
FIGURE 6

ROC of different signatures on different cohort. (A) ROC of training set. (B) ROC of validation set. (C) ROC of test set.
FIGURE 7

Nomogram construction.
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Although DL exhibits significant potential, it remains unclear

whether incorporating attention mechanisms (e.g., CBAM) to

dynamically weight multi-model features would enhance

computational efficiency. Furthermore, the extensibility of our

approach to other imaging modalities, particularly MRI and PET-

CT, warrants systematic investigation. Therefore, subsequent

studies should further explore and expand this critical

research direction.

Multiple studies have identified clinicopathologic factors that can

serve as independent predictors of SLN metastasis. Ding et al. (41)
Frontiers in Oncology 12
highlighted tumor size, histological grade, and age as significant

predictors. Yao et al. (24) demonstrated that high tumor grade and

lymphovascular invasion (LVI) positivity independently predict SLN

metastasis. TheMemorial Sloan Kettering Cancer Center and theMD

Anderson Cancer Center nomogram (42) underscored the significant

predictive value of patient age and PR status in determining SLN

metastasis risk. Shahriarirad et al. (37) emphasized the importance of

ER and HER-2 as critical biomarkers in BC classification, which is

strongly correlated with SLN metastasis. Our results underscore that

histological type and HER-2 exhibit the strongest association with
FIGURE 8

DeLong test of different signatures on different cohorts. (A) DeLong test in the training set. (B) DeLong test in the validation set. (C) DeLong test in
the test set.
FIGURE 9

NRI and IDI of different signature on different cohort. (A) NRI in the training set. (B) NRI in the validation set. (C) NRI in the test set. (D) IDI in the
training set. (E) IDI in the validation set. (F) IDI in the test set.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1592521
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2025.1592521
SLN involvement (p < 0.05 in univariate analysis), echoing findings

from prior research (37, 42). Despite the unique characteristics of BC

histological types and the importance of HER-2 as a biomarker, the

clinicopathologic model incorporating these factors demonstrated

limited predictive power, yielding AUCs of 0.737 and 0.485 in the

validation and test sets, respectively. In response to this, we evaluated

the integrated model that combined clinical and pathological data,

revealing improved predictive accuracy as indicated by AUCs of

0.804 and 0.763 in the validation and test sets, respectively.

Although the current study demonstrated favorable results,

several limitations warrant consideration. First, retrospective data

collection and sample size constraints may compromise the model’s

robustness. Prospective multicenter validation is warranted before

clinical deployment. Second, this study did not investigate genomic

features associated with SLN metastasis, which could provide

valuable insights. Third, patients who underwent neoadjuvant

treatment were excluded from this study, potentially limiting the

model’s utility to this specific patient group. Fourth, the model’s

applicability to patients with non-mass lesions remains untested

due to the study’s exclusion criteria. Fifth, despite all US

examinations being supervised by experienced physicians,

variations in image quality were inevitable. Finally, the study

focused solely on image-based automated segmentation DL

models to enhance the precision of DL signatures in predicting

SLN status. Further research is necessary to determine whether

video-based automated segmentation DL models could provide a

more reliable preoperative prediction of SLN status.
Frontiers in Oncology 13
Conclusions

In summary, we have developed and validated automated DL

segmentation models that significantly enhance the predictive

accuracy of DL-derived signatures for SLN status assessment in

BC patients. This approach holds potential value in assessing

individuals’ risk of SLN metastasis and offering complementary

support for guiding personalized therapeutic strategies.
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