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Background: Photoacoustic spectral analysis has been demonstrated to be

efficacious in the diagnosis of prostate cancer (PCa). With the incorporation of

deep learning, its discrimination accuracy is progressively enhancing.

Nevertheless, individual heterogeneity persists as a significant factor that

impacts discrimination performance.

Objective: Extracting more reliable features from intricate biological tissue and

augmenting discrimination accuracy of the prostate cancer.

Methods: Supervised contrastive learning is introduced to explore its

performance in photoacoustic spectral feature extraction. Three distinct

models, namely the CNN-based model, the supervised contrastive (SC) model,

and the supervised contrastive loss adjust (SCL-adjust) model, have been

compared, along with traditional feature extraction and machine learning-

based methods.

Results: The outcomes have indicated that the SCL-adjust model exhibits the

optimal performance, its accuracy rate has increased by more than 10%

compared with the traditional method. Besides, the features extracted from

this model are more resilient, regardless of the presence of uniform or Gaussian

noise and model transfer. Compared with CNN model, the transfer performance

of the proposed model has improved by approximately 5%.

Conclusions: Supervised contrast learning is integrated into photoacoustic

spectrum analysis and its effectiveness is verified. A comprehensive analysis is

conducted on the performance improvement of the proposed SCL-adjust model

in photoacoustic prostate cancer diagnosis, its resistance to noise, and its

adaptability to the data heterogeneity of different systems.
KEYWORDS

supervised contrastive learning, photoacoustic spectral analysis, prostate cancer,
robust feature, CNN
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1 Introduction

According to the 2023 cancer statistics, PCa alone accounts for

29% of all incident cases, signifying that it has the highest number of

diagnoses and incurs the largest number of deaths among men (1).

In spite of the existence of numerous diagnostic modalities such as

tissue biopsy, digital rectal examination (DRE), prostate-specific

antigen (PSA) detection, transrectal ultrasound imaging (TRUS),

and magnetic resonance imaging (MRI), the rates of false positives

and false negatives remain relatively high (Table 1) (2–4). To meet

the escalating demand for diagnostic techniques that are more

accurate and less invasive, recent years have witnessed remarkable

progress in novel detecting methods.

Photoacoustics combines the capacity of light absorption

spectroscopy to distinctly identify biomolecules with the

proficiency of ultrasound detection to withstand scattering by

biological tissues. Its applications within the realm of biomedicine

have been comprehensively investigated and substantiated (5, 6), as

well as in the context of prostate cancer (7–9). Nevertheless, the

majority of current experiments are founded on imaging intensity,

which hinges on the absorption of tissues at particular optical

wavelengths, thereby constricting the volume of acquired

information (10–13). Additionally, imaging intensity is highly

susceptible to individual variances, rendering the attainment of a

more accurate quantitative assessment arduous.

Studies have demonstrated that mult i-wavelength

photoacoustic spectroscopy facilitates the enhanced detection of

alterations in tissue chemical constituents and the progression of

heterogeneity (14–17). Our prior research also established that

multi-wavelength photoacoustic spectroscopy is efficacious in

identifying the prostate, whether in punctured tissue strips or

intact ex vivo tissues (18, 19). However, the high dimensionality

of multi-wavelength photoacoustic spectroscopy poses a challenge

in feature extraction. Fortunately, the swift advancement of deep

learning has opened up novel prospects for this method. Although

the majority of artificial intelligence (AI)-assisted endeavors

primarily concentrate on the optimization of photoacoustic

imaging (11, 20), in recent years, it has been progressively applied

to photoacoustic spectrum analysis, especially for feature extraction

and classification as summarized in Table 2 (14, 18, 21–27). It is

evident that machine learning, inclusive of deep learning, is still in a

rather nascent stage in photoacoustic spectrum analysis. The

majority of work still depends on hand-crafted features and

traditional machine learning. One of the principal factors could

be the paucity of data sets, which restricts the utilization of more

intricate and advanced deep learning models.

Consequently, we selected a classical deep learning model to

validate its effectiveness in photoacoustic spectrum analysis and

prostate cancer diagnosis. In addition, contrastive learning was

incorporated to mitigate the impact of inter- and intra-

patient variability.

Contrastive learning approaches have exhibited remarkable

potential in extracting robust features, particularly in the

unsupervised domain (28–31). The central tenet of contrastive

learning is to augment the robustness of extracted samples by
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constructing positive and negative sample pairs. This

methodology strives to reduce the intra-class distance among

positive pairs and expand the inter-class distance between

negative pairs. Nevertheless, the performance of unsupervised

contrastive learning models remains inferior to that of supervised

learning. Therefore, our focus turns to supervised contrastive

learning methods. This approach capitalizes on label information

from known samples (training samples) to preclude the generation

of incorrect sample pairs that might otherwise affect training results,

thereby fortifying the robustness of the extracted features (32, 33).

Finally, the data from diverse systems was also examined to

evaluate the model’s generalization performance. These three

aspects, namely deep learning for feature extraction, patient

variation, and system influence, are all crucial for prostate cancer

diagnosis. Based on our research, no prior study has jointly

analyzed these three aspects within the context of photoacoustic

spectrum analysis. Beyond the introduction, this study is structured

into four parts: the Methods section, where the dataset is introduced

and an analysis of the employed algorithms and specific models,

such as photoacoustic spectral analysis and data preprocessing, is

provided; the Experimental section, which presents detailed

experimental outcomes; the Discussion section, in which the

details of the methods and their limitations are deliberated; and

the Conclusion section, which offers a summary of the paper.
2 Materials and methods

2.1 Data collection and ethical approval

This study was carried out in cooperation with Tongji Hospital.

The Institutional Review Committee of Tongji Hospital gave its

approval for the project experiments. Volunteers were recruited

after signing an informed consent form and underwent screening to

ensure that they had not received any previous treatment and were

suitable candidates for surgical resection. A flowchart of the

experiment is presented in Figure 1.

The first system collected data from 12 volunteers, while the

second system collected data from 10 volunteers. The patients were

aged between 61 and 85 years, with an average age of 71.9 years. The

overall acquisition structures of the two systems were the same,

except for the calibration system. The data collected by the two

systems could be used for model validation and testing respectively,

thereby ensuring the robustness of the model. Signals were obtained

from multiple sites under the guidance of preoperative pathology.

To further ensure the pathological characteristics of the

photoacoustic detection sites, each site underwent an additional

puncture at the same location after detection, and the samples were

sent back to the hospital for pathological analysis at the end of the

experiment. This process was used to determine the

histopathological characteristics of the detected sites and serve as

labels for the detected tissues.

It was indeed found in the experiment that there were

sometimes discrepancies between the pre-experimental and post-

experimental pathological results. However, due to the diffusive
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nature of prostate cancer, pre-experimental (or preoperative)

puncture provides only a rough localization, which may deviate

from the photoacoustic detection sites. Therefore, the post-

experimental pathological results were uniformly adopted as the

labels for the samples.

The photoacoustic signal acquisition system employed in the

experiment has been described in detail in our previously published

work (18) and thus will not be reiterated herein. In the experiment,

photoacoustic signals were collected at 77 wavelengths (ranging

from 690 to 950 nm and from 1200 to 1690 nm, with a wavelength

increment of Dl = 10 nm) for each point. The collected multi-

wavelength signals were then subjected to power spectrum

calculation using the subfunction pwelch in MATLAB 2019B. The

default Hamming window was utilized as the window function,

which had a length of 2500 sampling points and an overlap rate of

90%. The spectral resolution was 0.1 MHz, and the sampling rate

was 250 MHz. After the transducer frequency response correction

and the wavelength energy correction of the blackbody, the multi-

wavelength photoacoustic power spectrum within the range of 1 to

10 MHz was obtained. The data were stored in a 77 × 90 matrix,
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which served as the initial high-dimensional data for photoacoustic

spectral feature extraction. Considering the number of samples, the

format of the constructed raw dataset was N× 77 × 90, where N

represented the number of samples (in this paper, N is 107), and

77 × 90 denoted the multi-wavelength spectral features.

Both our previous studies and those of other researchers have

demonstrated that the linear fitting of photoacoustic spectra in the

middle and high frequencies can mirror the variation in

heterogeneity within the tissue. Based on this, three parameters,

namely the slope, intercept, and median of the linear fit within the

1–10 MHz range of the spectrum, were extracted. Considering that

these parameters are non - independent, we focused only on the

slope and median and conducted the statistical analysis.
2.2 Network architectures

CNNs are widely recognized as a potent feature extraction

model for spatial distribution data. Our prior research also

indicated that the spatial features of photoacoustic spectra are
TABLE 2 Machine learning used for various biomedical applications in photoacoustic spectrum analysis.

Stages of application Objective Architecture & algorithm Reference

Parameter inversing

Fitted the PA signal spectrum and the
adipocyte size

Deep Neural Network with Fully
Connected Layers

(21)

Photoacoustic spectral unmixing Autoencoders (22)

Semi-quantify bone mineral density Fully connected multi-layer deep neural network (23)

Feature extraction and prostate
cancer diagnosis

Dimension reduction and classification
Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), ResNet-18

(18)

Feature extraction for breast cancer
subtype identification

Feature wavelengths selection
Partial least-squares discriminant
algorithm (PLS–DA)

(14)

Glucose concentration prediction
Dimension reduction and fitting the
glucose concentration

Linear Regression (LR), Support Vector Regression (SVR),
Random Forest Regression (RFR), Adaboost, LightGBM,
Artificial Neural Network (ANN) and
Gaussian Process Regression (GPR)

(24)

Assessment of Breast Tumor
Progression

Dimension reduction and classification
SVM, SVM- Radial Basis Function (SVM-RBF), SVM-
Polynomial, SVM-
Linear, KNN, PLSDA & SVMDA

(25–27)
TABLE 1 Overview of various diagnostic modalities for PCa (4).

Modality Sensitivity (%) Specificity (%) Advantages Disadvantages

DRE 37 20 Simple and easy to operate
Cannot be used for early detection;
low reliability.

PSA test 72.1 93.2 Prostate tissue-specific. Not specific to PCa.

TRUS-guided biopsy 66.1 96 Golden standard
Invasive; discomfort and the potential for
infection

MRI (DWI) 69 89

Its applications encompass
the domains of PCa

Poor real-time performance
MRI (T2WI) 60 76

MRI (mpMRI) 93 41
Relatively higher rate of false-
positive results

PAI 81.3 96.2 Non-ionizing;non-invasive;real-time Limited deep tissue penetration
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associated with disease progression. Owing to the restricted number

of samples, the constructed network ought not to be overly complex

in depth. The optimal architecture of the CNN-based baseline

model and its hyperparameters were ascertained through ablation

studies and random searches in Section 3B. The detailed basic CNN

model architecture can also be observed in Figure 2 in blue. Cross-

entropy is used as the loss function (CEL).

Based on the optimized baseline model, two contrastive

models were constructed (Figure 2). The first one was a SC

model, which comprised an encoder and a projector. The

encoder of this model employs exactly the same structure as the

baseline CNN (indicated by the same color). Serving as the feature

extractor in the contrastive learning model, it is denoted as fq . The

output feature hi (a 256-dimensional vector here) represents the

input representation of the model and can be used for downstream

tasks. To enhance the effectiveness of the representation, before

performing downstream tasks, hi is mapped to a latent space using
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a projector (projection head), denoted as gq in the Figure 2 and the

mapped feature is denoted as zi. The supervised contrastive

learning loss [SCL, defined in Equations 1 and 2 (34)] is applied

to zi. This loss function is designed to pull similar samples closer

together in the feature space while pushing dissimilar samples

apart, thereby enhancing the discriminative power of the

learned representations.

The dimensionality selection of the projector significantly

impacts model performance. From an information-theoretic

perspective (35), it is proven that the projector dimension must

satisfy D ≥ log2 C (for binary classification, C = 2 → D ≥ 1).

Generally, higher dimensions lead to stronger separability in the

feature space but require more data for support. Therefore, in this

paper, the projector dimension is also treated as a tunable

hyperparameter. The optimal parameter selected via the random

parameter method is 4, which aligns well with the criteria for

selecting the projector dimension.
FIGURE 1

Diagram of sample entry and collection process.Diagram of sample entry and collection process.
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The above process is collectively referred to as representation

learning. Subsequently, the projector is removed, and the

downstream task training is performed. Here, the classifier

maintains the same dimension as the baseline CNN classifier, and

CEL is also used as the loss function. Each layer of the SC is labeled,

and Table 3 summarizes the number of kernels and the size of the

feature maps’ output at each layer.

si,j =
zTi zj

∥ zi ∥   ∥ zj ∥
(1)

Where i, j, k denote the ordinal numbers of the samples; zj is the

feature vector of sample j, which is the output of the projector; the

notation zTi represents the transpose of the feature vector zi. This

transposition is used to compute the dot product. ∥ zi ∥ represents

the norm (or magnitude) of the feature vector zi. si,j is the cosine

similarity of the feature vectors of samples i and j; It’s used to

measure the similarity between feature vectors of samples.

SCL = −o
M

i=1

1
Myi − 1o

M

j=1
li≠jlyi=yj ln

exp
si,j
t

� �
exp

si,j
t

� �
+oM

k=1lyi≠yk exp
si,k
t

� �
" #

(2)

Where M represents the batch size; yi is the label of the

corresponding sample i; Myi is the sample size in a batch labeled

yi; li≠j ∈ 0, 1f g is 1 when i ≠ j, and 0 otherwise. It’s used to select

different sample pairs; lyi=yj functions similarly which is used to filter

same-label sample pairs; on the other hand, lyi≠yk is used to filter

sample pairs with different labels. si,j and si,k is the cosine similarity

as shown in Equation 1 and t is a hyper-parameter. Generally, the

smaller t, challenging it becomes for the model to concentrate on

samples that are difficult to distinguish (36). In this study, we set it

to 0.5 to achieve a balance.
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The other was a SCL-adjust model, which modified the loss of

the basic CNN model. Its architecture is completely identical to the

CNN model, with the only modification being the addition of SCL

to the model’s loss function. To prevent weight imbalance, the loss

function of the SCL-adjust model is defined as SCL*ratio + CEL*ð
1 − ratioÞ, where ratio represents the weighting coefficient between

the two losses. To determine the optimal weight ratio, the

proportion of the two losses is optimized using a random

parameter search method.
2.3 Training

The experiments were conducted using Python 3.8 on a

Windows 10 system with an NVIDIA RTX 3060 GPU. Key

dependencies include PyTorch 2.4. The random seed was set to

42 for reproducibility. The code used to produce the results

reported in this article is available in the supplementary.

The data collected by the first system which contains 12 data

groups of volunteers is initially used for model training, and the

same model is then applied to the other set of data. To ensure that

individual data is not leaked and to account for individual

variations, the article does not randomly shuffle all data but

rather focuses on the data from individual volunteers. Due to

differences in samples from different volunteers, the number of

acquisition points in the experiment also varies. Twelve patients

were randomly shuffled, and 75% of the volunteer sample data (with

the number of selected volunteers being an integer) was extracted as

the training set, i.e., 9 patients, with the remaining samples as the

test set. In the training set, samples from another 2 patients

(approximately 20%) were randomly selected as the validation set.
FIGURE 2

Model framework diagram. Three modeling frameworks are involved: the CNN-based model, SC model, and SCL-adjust model. Blocks with thesame
color indicate that they share the same architecture and hyperparameters.
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Table 4 provides a detailed display of the number of sample points

and labels in the training set, validation set, and test set of both two

datasets. According to the data in Table 4, a total of 57 sample

points were collected from 12 volunteers, including 37 in the

training set, and 10 each in the test set and validation set. In

terms of sample points, the training set accounts for approximately

65%, while the test set and validation set each account for about

17.5%, which represents a reasonable proportion distribution. From

the perspective of the distribution of normal and tumor samples, the

dataset contains more normal data (approximately 60%), which is a

common phenomenon in the experiment. This leads to an

imbalance in the training set, where normal samples outnumber

tumor samples. Fortunately, the proportions of tumor samples in

the test set and validation set are relatively balanced. This helps

prevent the model from being biased toward normal samples and

ensures the reliability of the model. Since the post-training data

group does not require a validation set, only the data from three

volunteers are divided into test sets, with the rest being allocated to

the training sets.

All models in this paper are optimized using Stochastic

Gradient Descent (SGD). Three models were trained with

different loss functions: The CNN model was constrained by the

conventional CEL for classification tasks. The SC-model first

underwent representation learning using the SCL with an encoder

and a projector; subsequently, the trained encoder was combined

with a predictor for downstream classification tasks, with the CEL
Frontiers in Oncology 06
employed as the loss function. The SCL-adjust model, based on the

CNN architecture, used a weighted sum of the supervised

contrastive loss (SCL) and cross-entropy loss (CEL) as the loss

function. The loss weight ratio of SCL-adjust model as well as the

momentum of SGD is treated as hyperparameters and optimized

via random parameter selection. The learning rate and batch size, as

hyperparameters, were also determined using the same method

through the validation set. For each model, 500 rounds of random

parameter experiments were conducted, and the parameter

combination with the best performance on the validation set was

selected. Each model was trained for 20 epochs.
2.4 Evaluation matrix

Five evaluation metrics are put forward to quantitatively assess

the performance of the proposed method. A confusion matrix,

which encompasses True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN), is commonly utilized for

representing classification quality. Subsequently, a variety of criteria

can be computed based on these four numbers. For specific

biomedical problems, it is more crucial to concentrate on the

criteria that take into account the number of cases that are

actually healthy but are predicted as cancerous (i.e., False

Positives), as this may lead to misdiagnosis. Of course, the criteria

considering the number of cases that are actually cancerous but are
TABLE 3 Summary of data at each layer of the SC model.

Layer Number of kernels/
feature maps

Size of output
feature maps

PA spectrum - - 77×90

Encoder

Conv1 64 64×77×90

Max-pooling1 2×2 64×38×45

Conv2 4 4×38×45

Max-pooling2 3×3 4×12×15

Fully-connected layer 256 256

Projector Fully-connected layer 4 4

Prediction head Fully-connected layer 2 2
TABLE 4 Distribution of sample points by volunteers in each dataset.

Datasets Normal (Label = 0) Tumor (Label = 1) Datasets Normal (Label = 0) Tumor (Label = 1)

Training set

3 3
Validation set

3 2

5 0 1 3

5 0

Test set

0 4

1 4 2 1

6 0 1 2

3 2

4 1
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predicted as healthy are also of significant importance, since this

may result in missed diagnoses and delayed treatment. Ultimately,

in accordance with the literature, in this paper, aside from accuracy,

we use precision, recall, specificity, and the Area Under the Curve

(AUC) as follows and score is the mean value of these

five parameters.

1) The accuracy is denoted by the proportion of correct

classifications, which gives a general prediction performance of

the model, as shown in Equation 3:

accurcay =
TP + TN

TP + TN + FP + FN
(3)

2) In the case of binary cancer diagnosis, the precision, also

called positive predictive value, is defined as the proportion of the

correctly predicted cancerous samples in all the actual cancerous

samples which is inversely proportional to the misdiagnose rate, as

shown in Equation 4:

precision =
TP

TP + FP
(4)

3) The recall, also called sensitivity, is defined as the proportion

of the correctly predicted cancerous samples in all the predicted

cancerous sample, which is used to evaluate the ability to recognize

positive samples of the model, as shown in Equation 5. It’s inversely

proportional to the missed diagnose rate.

recall =
TP

TP + FN
(5)

4) The specificity, also known as the harmonic mean of the

precision and the recall, as shown in Equation 6. This matric

conveys the balance between the precision and the recall and

reaches its best value at 1 and worst at 0.

specificity =
TN

TN + FP
(6)

5) AUC, which is defined as the area under receive operating

characteristic (ROC) curve, as shown in Equation 7, gives a

quantitative evaluation of models avoiding the influence of

sample distribution and unbalance. When its value is 1, it

indicates a perfect classifier.

AUC =
o pi, nj

� �
pi>nj

P + N
(7)

Where P is the positive sample number, N is the negative

sample number, pi is the positive sample prediction score and nj is

the negative sample prediction score.

The mean value of the above five indicators is recorded as the

score, which serves as an evaluation index for the model’s average

performance. To validate the effectiveness and stability of our

machine learning and deep learning models, we conducted

systematic sampling of the test set at varying proportions, ranging

from 10% to 100%. For each proportion, we conducted 10 random

samplings and calculated the average value as the result for that

proportion. We used the Student’s t-test to perform statistical

analysis on the performance parameters under 10 rounds of
Frontiers in Oncology 07
different testing strategies to validate the effective improvement of

model performance.
2.5 Visualization and quantification of
high-dimensional data

Uniform manifold approximation and projection (UMAP) (37)

was employed as a dimensionality reduction technique to visualize

high-dimensional data. This allows for the visualization of the

distribution characteristics of such data. Analyzing the feature

state within a neural network can contribute to enhancing the

interpretability of the results. The downscaled features were

visualized by means of a joint plot from the Python Seaborn

library, which incorporated scatterplots and kernel density

estimation plots.

To quantitatively evaluate the distribution of features, we

utilized the silhouette score (38), a metric designed for assessing

clustering quality in order to characterize the distribution of the

extracted features. The value of the silhouette score ranges from [-1,

1]. The closer the value is to 1, the better the clustering effect;

conversely, the closer it is to -1, the poorer the clustering effect.
3 Results

In this section, we first visualized the raw data distribution of

samples from two systems and presented the statistical results of

photoacoustic spectrum characterization. The results of ablation

studies, where the model’s performance is tested following the

removal of key design features, are demonstrated on the

photoacoustic spectrums. Additionally, a comparison between

traditional photoacoustic spectrum characterization and the

proposed deep learning models was carried out. The final results

showcase the architecture’s capacity to enhance the robustness of

photoacoustic features and improve the diagnosis performance.
3.1 Raw data visualization and
characterization

Figure 3 shows the results of the downscaled visualization of

raw photoacoustic spectrum from both two systems using UMAP.

The joint plot displays signal samples acquired at various point

locations, along with separated kernel density distribution curves at

the upper and right edges. The two black dotted frames respectively

contain the sample data collected from two systems. System 1

employs the energy of the blackbody as a means of calibrating the

laser energy. Conversely, system 2 resorts to the energy profile of the

outgoing field for the calibration procedure. It is clear from the

figure that there is a significant difference between the two sets of

data. This is quite consistent with our conventional impression that

different collection systems will cause deviations in sample

distribution. And this will obviously have an impact on the

extracted features.
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Figure 4 is the characterization result of photoacoustic signals,

including the statistical analysis of the slope and the median at three

different characteristic wavelengths. Based on clinical fundamentals

and our preliminary research, prostate cancer exhibits enhanced

structural heterogeneity compared to normal tissues, which is

reflected in photoacoustic power spectrum as changes in the

proportion of high and low frequencies. This can be

quantitatively characterized by the slope of the first-order linear

fitting of the photoacoustic power spectrum. From Figures 4a, b, the

feature that the slope of normal samples is smaller than that of

tumor samples is still retained. This is consistent with previous

studies. However, statistically, the difference between the two could

not be demonstrated (Figure 4c). The primary reason is that for the

entire tissue, the photoacoustic signal represents an average of the

signals within the irradiated area, which obscures the tissue

heterogeneity. Thus, according to actual statistical results, the

statistical effect is weakened.

In Figure 4c, the median shows statistical significance. Although

this statistical result supports the median as a classification index for

prostate cancer, in reality, combining with previous research

foundations, the median is not a very suitable indicator. During

tumor evolution, changes in the content of specific chemical

components such as collagen and lipids can be partially reflected

by the intercept or median of the power spectrum’s first-order linear

fitting. In particular, the median is less affected by outliers

compared to the intercept. However, the median only represents

the signal intensity at the central frequency and may not necessarily

align with the actual characteristic dimensions of the tissue.
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Additionally, as an intensity parameter, it is also vulnerable to

noise and individual variability, which can be observed from the fact

that the median exhibits greater variance than the slope in Figure 4c.

Moreover, in this study, statistical results show that the median

parameter of tumor samples is larger than that of normal samples.

However, clinical guidance indicates that the content of collagen

and lipids decreases in prostate cancer, which may be an error

caused by individual variability and sample limitations. Therefore,

although the median is statistically distinguishable for prostate

cancer, its physical meaning is unclear and it is easily influenced

by other factors.
3.2 Ablation study

An ablation study was conducted to determine the degree to

which each design feature of the described model is necessary for

the accurate photoacoustic diagnosis of the prostate cancer. After

removing or changing from the model what we considered to be the

key design features, the model was retrained on data with same

random parameter initializations (random seed was set to 42).

Table 5 summarizes the results. When the designed SCL model

was removed as part of the ablation study, all other features

remained unchanged from the original architecture. Besides, the

number of the convolution layers and the kernel dimension were

also compared to verify the model validation. Table 5 indicates the

change of model in each experiment and reports the corresponding

quantitative classification performance. Each model was trained to
FIGURE 3

Feature visualization plot of the original sample data. The horizontal and vertical coordinates represent the UMAP dimensionality-reduced covariates.
Blue indicates normal samples labeled as 0, while orange represents tumor samples labeled as 1. The figure includes the scatter plot (solid dots) of
the samples, the sample probability distributions (semi-transparent distribution region in the figure), and the nuclear probability curves (separate
density curves on the marginal axes).
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convergence using the same training set as described in Section 2D.

Though the AUC of the model with one convolution layer and 2-D

kernel is a little bit higher, it remains poor precision and recall. It

can be happened in disease diagnosis indicating an occasion that the

method can almost correctly identify people without the disease as

being disease-free (high specificity). However, it will only diagnose

people as being ill when their symptoms are very obvious or their

condition is very severe (low sensitivity). When the specificity is

high, it means that the false positive rate is very low in the ROC

(Receiver Operating Characteristic) curve. Even if the sensitivity is

low, as long as the curve can show a certain upward trend in the true

positive rate on the basis of a low false positive rate, the AUC (Area

Under the Curve) may be relatively large.

Figure 5 shows the statistical analysis of performance between

models, where parameters from 10 rounds of different testing

strategies were all treated as variables for p-value calculation. It
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can be seen from the figure that the 2-layer CNN model based on

2D convolution, with or without the integration of SCL loss,

demonstrates better performance. Additionally, compared with

the relatively high-performing 3-layer CNN, both show effective

performance improvements, among which the model with SCL loss

added exhibits a more significant enhancement.
3.3 Experimental validation

The proposed deep learning model was further validated by

utilizing the experimentally measured PA spectrums of two

systems, as detailed in Section 2A. With reference to Section 2D for

data partitioning and training, the training hyperparameters of each

model after random parameter selection are shown in Table 6. Its

performance was then compared with that of photoacoustic spectrum
TABLE 5 Performance obtained when testing on variant model architecture.

Architecture Variant ACC Precision Recall Specificity AUC Score

2 Conv. layers, 2-D kernel
w/ SCL (proposed)

0.81 0.89 0.68 0.88 0.91 0.85

2 Conv. Layers, 2-D kernel
w/o SCL

0.71 0.86 0.54 0.88 0.90 0.78

1 Conv. Layers, 2-D kernel
w/o SCL

0.33 0 0 0.88 0.94 0.43

3 Conv. layers, 2-D kernel
w/o SCL

0.59 0.79 0.37 0.88 0.80 0.69

2 Conv. layers, 1-D kernel
w/o SCL

0.58 0.67 0.55 0.50 0.52 0.56
FIGURE 4

Example of linear fitting of photoacoustic spectra for normal (a) and tumor (b) samples; (c) statistical analysis of characteristic parameters, where *
denotes 0.01<p value<0.05, NS is no significance.
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characterization methods and machine learning based methods. An

additional comparison with the SC model was also carried out.

Table 7 summarizes the quantitative results. As shown in the

table, the SCL-adjust model outperforms other methods in most

metrics. The model demonstrates high discriminant accuracy

(ACC) and precision. It also exhibits a lower missed diagnosis

rate (recall) and better model stability (AUC) compared to other

models. Although the Specificity metric of the SCL-adjust model is

slightly lower than that of LDA across all methods – indicating a

slightly higher likelihood of false positives – false positives are more

tolerable than high false negatives when photoacoustics is employed

as a non-invasive primary screening system. It can be observed that

conventional signal-processing based methods possess lower

accuracy. This can be substantiated by Figure 4, where the

difference in parameters is not highly significant and there is a

large variance. Machine learning based methods encompass linear

discriminant analysis (LDA) and quadratic discriminant analysis

(QDA), as we have utilized previously in reference (17).

Figure 6 is the statistic results of all methods. As shown in the

figure, deep learning demonstrates stronger feature representation

capabilities compared to traditional methods and machine learning

approaches, leading to significant improvements in performance

across all metrics. Although the performance enhancements among
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the three deep learning-based models are not highly pronounced,

the SCL model overall outperforms the other two models in all

performance indicators, and its improvements are more significant

than those of the other two methods.

When LDA is used for binary classification, the feature can only

be one-dimensional. According to the prior work, enhanced results

can be achieved following feature screening and subsequent

combination discrimination. After conducting feature screening

using the validation set, we overlay the selected features of LDA

onto the photoacoustic spectrum for visualization and is shown in

Figure 7. The white points in the figure are the feature points

extracted based on the validation set. Compared with the

absorption spectrum, the white points are scattered across the

entire characteristic spectrum. Whether in the absorption bands

of hemoglobin or the characteristic bands of collagen and lipids,

these features all influence the judgment of LDA. Intriguingly, the

majority of the screening features are situated at high frequencies,

which harbor more heterogeneous information.

Deep learning methods demonstrate an enhancement in

prediction performance, particularly for the proposed SCL -

adjusted model. To assess the robustness of the models, uniform

and Gaussian noise were independently incorporated into the test

set. To amplify the effect, the amount of noise data was augmented

to ten times that of the sample data. To observe the noise resistance

ability of the model on the test set, we exclude the samples from the

test set that were incorrectly predicted and solely analyze the impact

of noise on the samples that were originally predicted accurately.

The outputs of the model’s final layer before cross-entropy

calculation are visualized t for a more in - depth analysis, as

presented in Figure 8, and silhouette scores are calculated. Since

the models are for binary classification tasks, the final layer outputs

a 1×2 vector, with the two values in the vector corresponding to the

x-axis and y-axis in the figures. For the two-dimensional output, the

model selects the label corresponding to the larger feature value as

the predicted value. Based on this, the line y=x is described as the

decision boundary. Owing to the variation in the range of the image

coordinate axes, a certain visual disparity may exist. Nevertheless, it

can be discerned from the silhouette scores that the scores of the

two contrastive learning models are higher than those of the CNN

model. This indicates that the contrastive loss exerts an influence on

the distribution of features, thereby enhancing the clustering and

separation effect. As can be observed from Figure 8, following the

addition of noise, the sample dispersion of the CNN model is

remarkably increased, and a substantial number of samples exhibit

classification errors. The silhouette score also remains at a relatively

low level. Interestingly, the SC model has the highest silhouette

score but is significantly affected by noise. Perhaps it is precisely due

to the aggregating capability of contrast learning for features within

the class that it is prone to discrimination errors of related samples

when the sample is perturbed. Different noise parameters were

analyzed and are presented in Figure 9. It is demonstrated that the

SCL - adjust model performs better in both uniform and Gaussian

noise. Consequently, the SCL - adjust model combines the strengths

of the CNN model and supervised contrastive learning and is
TABLE 6 Training hyperparameters of different models.

Training
hyperparameters

CNN
SC

model
SCL-

adjust model

LR 0.001 0.01 0.01

MOM 0.7 0.95 0.95

Ratio / / 0.7
FIGURE 5

Statistical analysis of performance between different model
architecture, where * denotes 0.01<p value<0.05 and *** denotes
p value<0.001.
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regarded as the optimal model for photoacoustic spectrum analysis

in prostate cancer classification.

Figure 10 shows the statistical analysis results of multiple noise

experiments in Figure 9, from which results largely consistent with

the above can be obtained. The integration of contrastive loss,

whether in the SCmodel or the SCL-adjust model, optimizes feature

distribution compared to CNN, as reflected by the higher silhouette

scores of the two models. This indicates closer intra-class distances

and farther inter-class distances. Although the average silhouette

score of the SC model is slightly higher than that of the SCL-adjust

model, there is no significant difference between the two. It is

precisely due to this characteristic that the SCL-adjust model

maintains better performance in the presence of noise. The

reason why the accuracy of the SC model does not remain as

stable as that of the SCL-adjust model is likely because training the

feature extractor and classifier independently makes it difficult to
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balance the two when the data volume is limited. The SCL-adjust

model compensates for this issue by superimposing loss functions,

making it a more suitable solution for small-sample scenarios.

The proposed SCL-adjust model has also been verified using data

from the other system. In the preliminary experiments, the classification

performance of the SC model did not demonstrate a significant

improvement compared to the CNN. Moreover, its model complexity

and training difficulty were considerably higher than those of the CNN.

Consequently, we no longer take this model into account and only

compare the CNN with the proposed model. The discriminant effect of

the SCL-adjust model remains superior. Figures 11 to 13 present the

corresponding noise influence results. The processing is identical to that

of the previous dataset. By comparing the two datasets from different

systems, the same conclusion can be drawn, indicating that the SCL-

adjust model is robust across different datasets. We conducted a

comparison of the models’ scores on two datasets from the two

systems in order to assess which model exhibits superior

performance in diverse situations. The results are presented in

Table 8. When the models were transferred to the other system, the

performance of both models deteriorated. This is understandable as it

was caused by the variations in data distribution. Evidently, the

proposed SCL-adjust model maintained better performance, both in

terms of classification accuracy and noise resistance.

Table 9 shows the number of parameters and other

computational metrics of three models, including Floating Point

Operations (FLOPs), memory usage, the time required for one

training epoch, and the time required to test all data.

As can be seen from the table, the SC model requires

independent training of the encoder and predictor using SCL

(Supervised Contrastive Learning) and CEL (Cross-Entropy Loss)

respectively, resulting in higher parameter count and computational

consumption than the other two models. The SCL-adjust model

adopts the same architectural framework as the CNN, so its

parameter count and computational load remain consistent with

the CNN. However, due to the integration of SCL in the

backpropagation process, its single-epoch training duration
FIGURE 6

Statistical analysis of performance of different method, where *
denotes 0.01<p value<0.05, ** denotes 0.001<p value<0.01, ***
denotes p value<0.001 and NS is no significance.
TABLE 7 Comparison with other methods.

Different methods Paras or Methods ACC Precision Recall Specificity AUC (with 95% CI)

Conventional signal-
processing based methods

Slope@700 0.60 0.67 0.40 0.80 0.60 [0.45, 0.73]

Mediam@700 0.50 0.67 0.33 0.75 0.65 [0.50, 0.76]

Slope@1210 0.40 1.00 0.33 1.00 0.57 [0.41, 0.69]

Mediam@1210 0.50 0.67 0.33 0.75 0.65 [0.50, 0.77]

Slope@1370 0.40 1.00 0.33 1.00 0.61 [0.45, 0.74]

Mediam@1370 0.50 1.00 0.38 1.00 0.62 [0.47, 0.74]

Machine learning based methods
LDA 0.64 0.66 0.42 0.90 0.70 [0.56,0.85]

QDA 0.72 0.72 0.55 0.83 0.78 [0.65, 0.91]

Deep learning-based
methods

CNN 0.71 0.86 0.54 0.88 0.90 [0.76 1.00]

SC model 0.72 0.87 0.56 0.88 0.91 [0.72, 1.00]

SCL-adjust
(proposed)

0.81 0.89 0.69 0.88 0.91 [0.78,1.00]
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FIGURE 8

Visualization of three deep learning models extracted features after adding noise (black dotted line is the discriminant limit).
FIGURE 7

Visualization of LDA screened features (white dots in the above part, most of them are in the yellow dotted box). The above is the superposition
result of the feature map and the original photoacoustic spectrum, and the below is the absorption curve of different components.
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increases significantly. With the increase in sample size and batch

size, the computational consumption of the SCL-adjust model will

rise. The three trained models share identical architectures; hence

their testing times are relatively close.
4 Discussion

CNN is believed to have the ability to extract the spatial patterns of

high-dimensional data. Through training and testing on the
Frontiers in Oncology 13
experimentally collected data, the CNN model learns to extract the

necessary features for classifying prostate cancer. Owing to the

preciousness of samples, the limited sample size restricts the depth

of the neural network. Although the architecture and hyperparameters

have been optimized via ablation study and random search (Table 5),

it exhibits low resistance to noise and poor adaptation to data

heterogeneity (Figures 7-10). Supervised contrastive learning is

incorporated as an additional strategic design to enhance

performance. As anticipated, the model incorporating contrastive

concepts tends to yield more accurate predictions of prostate cancer.
FIGURE 9

Influence of different noise parameters on feature distribution and discrimination accuracy.
FIGURE 10

Statistical results of model performance metrics under different noise conditions, where * denotes 0.01<p value<0.05, ** denotes 0.001<p
value<0.01, *** denotes p value<0.001 and NS is no significance.
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Initially, a contrastive learningmodel (SCmodel) was trained and

tested. We observe that the SC model has better feature clustering

(Figure 7), yet it sacrifices classification accuracy (Figure 8). We

hypothesize that it is precisely due to the aggregating capability of

contrast learning for features within the class that it is prone to

discrimination errors of related samples when the sample is

perturbed. Therefore, the SCL-adjust model is developed to balance

SCL and CE. The ratio evidently impacts the performance; thus, we

search for the ratio from 0.1 to 0.9 with an increment of 0.1 and

determine the optimal ratio of 0.3, and the results demonstrate better

noise resistance and classification performance.

In this research, we only introduce noise during the evaluation

process because our intention is merely to assess the noise resistance

of different models, rather than to train the model to disregard the

noise. Since our objective is to reduce sample heterogeneity, and
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training with samples from different individuals has achieved this

goal, that is, the model has learned the principle to overlook sample

heterogeneity. Adding noise to the testing dataset can magnify data

heterogeneity as well as diversity, thereby further validating the

robustness of the model. Additionally, we note that the difference

lies in the fact that the Gaussian noise parameters of the second

dataset are smaller. This is mainly because the normalization objects

of the two sets of data are different, and the energy of the blackbody is

much lower than that of the laser energy profile. Consequently, the

magnitudes of the two sets of data vary, leading to different Gaussian

noise parameters. The addition of uniform noise is determined by the

product of the signal amplitude and the ratio, so the uniform noise

parameters of the two sets of data are consistent.

The results reveal a transfer decline on the datasets from two

systems. Although we use the term “transfer,” this is not transfer
FIGURE 11

Visualization of three deep learning models extracted features after adding noise (black dotted line is the discriminant limit).
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learning in the strict sense. Here, we trained the model on two

datasets separately to verify the validity of the model with different

datasets. It is evidently not convenient enough for reliable

application, but it remains a common strategy currently that the
Frontiers in Oncology 15
model is retrained for use with another dataset. Transfer learning is

considered a more favorable strategy for different datasets, whether

through model fine-tuning or feature-domain adaptation. This is

also our next step of work.

Data were collected from two distinct systems, with one

equipped with a blackbody calibration block and the other

lacking such a component. These two represent commonly

employed methods for laser energy disrupt calibration. Despite

the sole difference lying in the energy calibration approach, a

pronounced disparity in data distribution was observed. When

taking into account various photoacoustic systems, additional

factors come into play, such as differences in hydrophone
FIGURE 12

Influence of different noise parameters on feature distribution and discrimination accuracy.
FIGURE 13

Statistical results of model performance metrics under different noise conditions, where *** denotes p value<0.001 and **** denotes p
value<0.0001.
TABLE 8 Comparison of the models’ scores on two datasets from
two systems.

Models System 1 System 2 Transfer decline

CNN 0.826 0.696 15.7%

SCL+CL 0.882 0.790 10.4%
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response and diverse experimental parameters, all of which have the

potential to impact the diagnosis outcome. In this article, we

verified the robustness of the contrastive loss in the

representation feature, and this aspect can be further explored

and analyzed with a broader range of data sourced from different

systems, thereby facilitating a more comprehensive understanding

and potentially uncovering novel insights.

Photoacoustic spectrum represents a typical high-dimensional

data. The difficulty in sample collection also gives rise to the issue of

small sample sizes. Although over 100 sample points may seem like

a substantial accumulation, when compared with the feature

dimension, it can still be regarded as a small sample problem in

high-dimensional space. This article solely centers around model

architecture and parameter control strategies for the purpose of

preventing overfitting and guaranteeing that its accuracy is on a par

with that of MRI. Feature reduction and sample augmentation are

two prevalent strategies for handling small samples in high

dimensions. By integrating photoacoustic data characteristics or

leveraging unsupervised auto-encoders, selecting appropriate

preprocessing techniques to eliminate redundant features or

augment the data are potential avenues for further bolstering data

consistency and elevating discrimination accuracy. Multispectral

photoacoustic spectra can also be regarded as multi-modal data,

and multimodal analysis can present novel perspectives for high-

dimensional data analysis of photoacoustic spectra.
5 Conclusions

In this paper, supervised contrast learning is incorporated into

photoacoustic spectrum analysis. Moreover, a comprehensive

analysis is conducted on the performance improvement of the

proposed SCL-adjust model in photoacoustic prostate cancer

diagnosis, its resistance to noise, and its adaptability to the data

heterogeneity of different systems.

The experimental results demonstrate that the feature

distribution can be optimized either by incorporating supervised

contrast loss into the loss function (SCL-adjust model) or through

two-stage training (SC model). Via the comparison of noise

disturbance, the proposed SCL-adjust model strikes a balance

between the advantages of SCL and CEL and exhibits enhanced

anti-noise capabilities. The proposed model is validated using data

from two systems, yielding comparable outcomes, which attests to

its proficiency in robust feature extraction compared to a single

CNN model. In comparison with other methods, the proposed

model generally outperforms in various indicators.
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TABLE 9 The computational complexity of different models.

Models Parameters (M) FLOPs (M) Memory usage (MB) Training time per epoch (s) Testing time (s)

CNN 0.20 138.1 22.65 0.05 0.02

SC model 0.76 140.0 30.50 0.14 0.03

SCL-
adjust model

0.20 138.1 22.65 0.12 0.02
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