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Background: The early prediction of postoperative recurrence and high

recurrence area of gliomas is important for individualized clinical treatment.

This study aimed to evaluate the performance of a magnetic resonance imaging

(MRI)-based multiparametric radiomics model for the early prediction of

postoperative recurrences.

Methods: The data from 60 patients who met the inclusion criteria between

2000 and 2021 were collected in this study. Radiological features were extracted

from the T1-weighted imaging (T1WI) and T2WI/fluid-attenuated inversion

recovery sequence images. The multiparametric model was composed of two

classifiers, the support vector machine and the logistic regression (LR), and it was

used for training and prediction. The highest scoring classifiers and sequences

were screened out according to the area under the curve (AUC) and accuracy.

Results: For predicting the postoperative recurrences and high recurrence areas

of gliomas, the performance of the LR classifier was most stable, and the

multiparametric model based on clinical information, basic imaging, and

radiomics had the best performance (AUC: 0.99; Accuracy: 0.96).

Conclusion: The MRI-based multiparametric radiomics method provided a non-

invasive, stable, and relatively accurate method for the early prediction of

postoperative recurrences, which has guiding importance for individualized

clinical treatment.
KEYWORDS
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1 Background

Glioma is the most common primary tumor of the human

brain, approximately 80% of which are malignant (1). High-grade

gliomas, especially glioblastomas, are the most common and

aggressive subtype of glioma (2, 3). Despite the choice of

treatment comprising maximal safe resection combined with

standard therapeutic regimens of radiotherapy and/or

chemotherapy (4), most patients have a poor prognosis with a

median survival of 12–15 months, which is mainly correlated with a

recurrence of the tumor/residual tumor (5). Most patients may

relapse in the short term, and approximately 90% of the recurrence

sites are within the range of radiotherapy (6). Recurrent tumors

destroy the blood–brain barrier, and the nodules with abnormal

enhancements on contrast-enhanced T1-weighted imaging

(CET1WI) are the targets for therapy after recurrences. Therefore,

predicting the patients who will have a recurrence and their

recurrence sites early may lead to early and active treatment,

thereby reducing the risk of recurrence and improving

their prognoses.

Based on the 2016 update of the World Health Organization

(WHO) classification of tumors of the central nervous system, the

5th edition published in 2021 advances the integration of molecular

diagnostics with a histopathological assessment of brain tumors,

including dividing the previously designated glioblastoma entities

into isocitrate dehydrogenase (IDH)-wild-type glioblastoma and

IDH-mutant glioblastoma (7). A recurrence is correlated with the

tumor’s spatial heterogeneity, invasiveness, and vascular

proliferation. The high expression of antigen KI-67 (Ki-67) is

correlated with the invasiveness, as well as the cellular and

vascular proliferation of the tumor (8). It has been shown that a

patient’s age, the extent of resection, and expressions of Ki-67 and

IDH are correlated with poor postoperative prognoses in gliomas

(9). By combining positron emission tomography (PET) and

magnetic resonance imaging (MRI) with available tumor-related

molecular understanding, a wealth of information about the

relevant tumor tissue may be captured to assist in the diagnosis

and treatment of gliomas (10). Due to the heterogeneity of gliomas,

many tumor microenvironments may not be observed by the naked

eye and are limited by multiple factors, such as the resolution,

evaluation parameters, and doctor’s experience. What a doctor can

see with solely their eyes is still unable to meet the requirements of

any clinical precision treatment when evaluating the recurrence of

a tumor.

Radiomics refers to the mining, high-throughput extraction of

features from medical images that characterize the underlying

pathophysiology of tumors (11). With the emerging technologies

such as shape, size, and texture features (12, 13), the clinical features

and molecular markers may be taken as additional input features

and combined with radiomics (technologies defined as high-
Abbreviations: MRI, magnetic resonance imaging; T1WI, T1-weighted imaging;

LR, logistic regression; AUC, area under the curve; CET1WI, contrast-enhanced

T1-weighted imaging; WHO, World Health Organization; IDH, isocitrate

dehydrogenase; PET, positron emission tomography.
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throughput biochemical assays that measure comprehensively and

simultaneously molecules of the same type from a biological

sample) features to build predictive models. Therefore,

quantitative assessment of imaging and the development of

imaging biomarkers using radiomics may assist in understanding

the biology of tumors. Many studies (14, 15) have shown that

radiography combined with radiomics technology has a high

predictive ability in the diagnosis, grading, phenotype prediction,

and treatment evaluation of tumors (16). In recent years, advances

in computer technology have led to breakthroughs in radiomics-

related research, which is now being increasingly applied in the

detection of the invasive margins of gliomas, distinguishing the

treatment-related changes from the true tumor progression, and

predicting the invasiveness, risk of future recurrence, and overall

survival, to achieve real-time tumor therapy monitoring (17).This

study aims to evaluate the multiparametric radiomics model’s

ability to predict the postoperative recurrence of gliomas based on

conventional MRI sequences and attempts to identify the gross area

of recurrence, which might guide the delineation of clinical surgical

resections and postoperative radiotherapy regimens.
2 Materials and methods

2.1 General data

A retrospective cross-sectional approach was adopted in this

study, and the data from 450 patients with pathologically confirmed

gliomas who were treated in the Hainan Provincial People’s

Hospital between February 2000 and January 2022 were collected.

The inclusion criteria were as follows: (1) adult patients that had a

primary glioma and had histopathological proof of a history of

central nervous system malignancy; (2) patients that were tested for

IDH and Ki-67 expression; (3) patients that had preoperative and

postoperative axial T1WI enhancement and T2WI/FLAIR data; (4)

the MRI images obtained had no artifacts affecting image

observation and post-processing; (5) patients who had not

received radiotherapy, chemotherapy, or other treatments before

surgery; and (6) patients that had a recurrence and the existence of

measurable enhanced lesions on CET1WI MRI within the 80%

isodose range after concurrent chemoradiotherapy. As a result,

there were 60 cases of patients included. Thirty of these patients

had a recurrence, and 30 had not (Figure 1). The Institutional

Review Board approved this study, and the requirement for written

informed consent was waived.
2.2 Image acquisition and preprocessing

The conventional MRI images were obtained in all patients after

tumor resection. The Digital Imaging and Communications in

Medicine images were imported into the local computer by the

picture archiving and communication system. All MRI images came

from different scanners. To eliminate the impact of different

scanning parameters and physiological differences among
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patients, the FMRIB software library (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FSL) was adopted for registration. The image was re-

sampled to a voxel size of 1 × 1 × 1 mm3 by the custom software

using linear interpolation before feature extraction.
2.3 Tumor segmentation

The enhanced lesions were manually segmented for all subjects on

T1WI using the ITK-SNAP (version 3.4.0; http://www.itksnap.org)

software (13). The region of interest (ROI) included the entire

tumor while avoiding the blood vessels and identifiable peritumoral
Frontiers in Oncology 03
edemas. Finally, the mask was registered to the T2WI/fluid-

attenuated inversion recovery (FLAIR) sequence. This process

was conducted by a clinical radiologist with 3 years of experience

and verified by a senior radiologist with 20 years of experience, who

was blind to the final outcome. The analysis flow chart and typical

images used in this study are shown in Figures 2 and 3.
2.4 Feature extraction and preprocessing

3D Slicer (version 5.0.2; https://www.slicer.org/) was used to

extract features from each enhanced lesion and the surrounding
FIGURE 2

Flowchart, including image preprocessing, ROI segmentation, feature extraction, feature dimension reduction, modeling and model
performance evaluation.
FIGURE 1

Flowchart of patient inclusion and exclusion criteria.
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T2WI/FLAIR high signal components, including first-order

statistical features, shape features, and second-order gray level co-

occurrence matrix (GLCM), gray-level run-length matrix, and gray-

level size zone matrix (GLSZM). There were filters (the wavelet

transforms, Laplacian of Gaussian, square root, and the log and

exponent of the square root) built into these features. In order to

eliminate the difference in the scale of extracted feature values,

normalization and standardization were performed before feature

extraction. Zscores were normalized for each feature of all patients,

the mean was subtracted, and divided by SD.
2.5 Model construction

A total of three radiomics models were constructed, followed by

feature screening and training: (i) Molecular typing prediction

model to predict the expression status of molecules, including the

five characteristics of gender, age at diagnosis, radiomics

characteristics, location of lesions (frontal lobe, temporal lobe,

parietal lobe, or occipital lobe), and degree of edema (none, mild,

or obvious); (ii) Recurrence prediction model based on group

characteristics, and (iii) Recurrence prediction model based on
Frontiers in Oncology 04
radiomics and clinical characteristics, early prediction of

postoperative recurrence of glioma. This combined radiomics and

radiological model was validated by the receiver operator

characteristic curve, calibration curve, and detrended

correspondence analysis.
2.6 Feature screening and training

The least absolute shrinkage and selection operator (LASSO)-

logistic regression was adopted to screen out the most relevant

features. The SelectKBest method was adopted to screen out the ten

most relevant features. The support vector machine (SVM) and

logistic regression (LR) classifiers are robust machine learning

classifiers that are often applied in biomedical data classification.

In this work, the test set and training set are divided into test set and

training set according to the ratio of 7:3, and we use SVM and LR to

train the training set. At the same time, a 5-fold cross-validation

scheme is applied to avoid training bias. The features with the

highest frequency in all the training were determined as the most

discriminative features in the training set. The model’s performance

was then validated in an independent test cohort.
FIGURE 3

Representative MRI images of primary tumor, based on CE-T1WI sequence (a) and T2WI/FLAIR sequence (b), and recurrent tumors, based on CE-
T1WI sequence (c) and T2WI/FLAIR sequence (d).
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2.7 Statistical analysis

The measurement data were tested for a normal distribution,

and those that satisfied the normal distribution characteristics were

compared. Age was represented by mean ± standard deviation (X ±

s), and an independent samples t-test was adopted to compare

groups. The chi-square test was used for countable data, such as

gender and molecular typing. The SPSS 25.0 software was used for

data analysis.
3 Results

3.1 General data of the subjects

The difference in gender between the recurrence group and the

control group was not statistically significant (X2 = 1.424, P =

0.233), while the difference in Ki-67 expression between the two

groups was statistically significant (X2 = 21.592, P < 0.001). The

average ages of the two groups were 45.7 ± 15.0 years and 30.0 ±

17.1 years, respectively, and the difference was statistically

significant (t = 3.658, P < 0.001).
3.2 Feature extraction

There were 1,064 radiomics features extracted based on T1-

enhanced and T2WI/FLAIR sequences, respectively. With the

exclusion of some invalid information and also the LASSO

screening, a total of 39 features were extracted.
Frontiers in Oncology 05
3.3 Feature correlation

The ten most relevant features found are demonstrated in

Figure 4, including the Ki-67, GLCM, first-order morphological

features, first-order statistical features, and their wavelet features.
3.4 Model prediction performance

The performance of the two classifiers in different models is

illustrated in Figure 5, respectively, and LR had the best

performance. The results of the calibration curve and K-fold

cross-validation are shown in Figures 6 and 7. The performances

of the three models in predicting the molecular classification and

recurrence of gliomas were as follows.

3.4.1 Molecular prediction model
3.4.1.1 SVM

The area under the curve (AUC) of the training set was 0.97,

and, when the threshold was 0.82, the sensitivity, specificity, and

accuracy of the set were 97%, 89%, and 97%, respectively (95%

confidence interval [95%CI]: 0.91–1).

The AUC of the test set was 1, and, when the threshold was 0.67,

the sensitivity, specificity, and accuracy of the set were 100%, 100%,

and 100%, respectively (no 95%CI required).

3.4.1.2 LR

The AUC of the training set was 0.99, and, when the threshold

was 0.97, the sensitivity, specificity, and accuracy of the set were

95%, 88%, and 96%, respectively (95%CI: 0.97–1).
FIGURE 4

The ten most relevant features found of molecular prediction model (a), recurrence prediction model, based on radiomics features (b), and
recurrence prediction model, based on radiomics features and clinical characteristics (c).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1592881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2025.1592881
The AUC of the test set was 0.96, and, when the threshold was

0.88, the sensitivity, specificity, and accuracy of the set were 88%,

100%, and 100%, respectively (95%CI: 0.87–1).

3.4.2 Recurrence prediction model, based on
radiomics features
3.4.2.1 SVM

The AUC of the training set was 0.89, and, when the threshold

was 0.47, the sensitivity, specificity, and accuracy of the set were

93%, 75%, and 93%, respectively (95%CI: 0.78–1).

The AUC of the test set was 1, and, when the threshold was 0.83,

the sensitivity, specificity, and accuracy of the set were 100%, 100%,

and 100%, respectively (no 95%CI required).

3.4.2.2 LR

The AUC of the training set was 0.76, and, when the threshold

was 0.68, the sensitivity, specificity, and accuracy of the set were

94%, 75%, and 94%, respectively (95%CI: 0.5–1).
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The AUC of the test set was 1, and, when the threshold was 0.81,

the sensitivity, specificity, and accuracy of the set were 100%, 100%,

and 100%, respectively (no 95%CI required).

3.4.3 Based on radiomics features and clinical
characteristics
3.4.3.1 SVM

The AUC of the training set was 0.97, and, when the threshold

was 0.82, the sensitivity, specificity, and accuracy of the set were

97%, 89%, and 97%, respectively (95%CI: 0.91–1).

The AUC of the test set was 1, and, when the threshold was 0.68,

the sensitivity, specificity, and accuracy of the set were 100%, 100%,

and 100%, respectively (no 95%CI required).

3.4.3.2 LR

The AUC of the training set was 0.99, and, when the threshold

was 0.67, the sensitivity, specificity, and accuracy of the set were

95%, 89%, and 96%, respectively (95%CI: 0.97–1).
FIGURE 5

Performance of molecular prediction model (a, b), recurrence prediction model, based on radiomics features (c, d), and recurrence prediction
model, based on radiomics features and clinical characteristics (e, f), constructed based on SVM and LR in training set and test set.
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The AUC of the test set was 0.96, and, when the threshold

was 0.88, the sensitivity, specificity, and accuracy of the set were

88%, 100%, and 100%, respect ive ly (95%CI: 0 .87–1)

(Tables 1, 2).
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4 Discussion

Gliomas are the most common malignant tumors of the central

nervous system. Glioblastomas, due to their aggressiveness and rate of

infiltration, have a high recurrence rate after surgery. Previous studies

have reported that although there were interventions using secondary

resection, radiotherapy, and chemotherapy to treat patients with

recurrences, the results showed limited clinical benefit for patients

(18). Therefore, early predictions of tumor recurrence, together with

interventions and targeted, individualized treatments, are crucial for

improving the prognoses of these patients.

Imaging techniques such as PET and MRI are highly valuable in

predicting postoperative recurrence of gliomas, but there are many

problems with these methods, including higher rates of false negativity,

high prices, and lower accuracy. Taking amino acid PET as an example,

although it can display the tumor metabolic activity area beyond the

enhanced boundary detected by MRI through the biologically active

volume (BTV), providing a more accurate range of infiltration for

surgical planning (19). With the continuous development of artificial

intelligence, the identification of microstructures and tumor

microenvironments by radiomics provides a possibility for the early

prediction of recurrences in patients with glioma using conventional

imaging techniques. For example, the voxel-level radiomics model
FIGURE 6

Calibration of molecular prediction model (a), recurrence prediction model, based on radiomics features (b), recurrence prediction model, based on
radiomics features and clinical characteristics (c).
FIGURE 7

The K-fold cross-validation (CV), reflecting the stability of
the model.
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based on postoperative MRI (such as the CatBoost algorithm) has

demonstrated good performance in an external cohort, with an average

AUC of 0.81 and an accuracy of 84%. Moreover, the predicted

recurrence area is highly spatially consistent with the actual

recurrence (20).

In this study, the radiomics features were extracted from

conventional MRI, and a predictive model was developed for an early

prediction of the molecular classification and postoperative recurrence

in patients with glioma. The results indicated that a comprehensive

model combining the clinical features and radiomics features could

better assist in diagnosing the postoperative recurrence of gliomas. As an

independent predictor of the prognosis in glioma, the IDH level is

generally considered more objective and reliable than current clinical

criteria (21). However, in this study, it was suggested that the Ki-67 level

was a factor more relevant to the recurrence of gliomas. The

reconstructed model, which removed the irrelevant features, including

IDH expression, but incorporated highly relevant features such as the

Ki-67 level, was reconstructed, and it was revealed that the final model

had a better performance, which further verified the high correlation

between Ki-67 and the recurrence of gliomas. However, owing to the

small sample size of this study, there might be some bias.

The ten radiomic features screened could be roughly divided into

four categories: (1) first-order morphological features, (2) Ki-67 as the

clinical feature, (3) GLCM and GLSZM as the texture features, and (4)

the features with the conduction of wavelet transformation on the first

several feature. The high recurrence of Ki-67 indicated that tumor

recurrence was correlated with the abnormal proliferation of tumor cells.

Because the spatial distribution of grayscale is adopted in the GLCM to

characterize texture, the spatial distributions of textures with different

thicknesses are different. Their high recurrence also indicated that the

recurrence of gliomas might be closely correlated with spatial
Frontiers in Oncology 08
heterogeneity. To verify the correlation, the model was not only

reconstructed using these features and not only performed 5-fold

cross-validation but also verified the correlation between these features

extracted from a single sequence and glioma recurrence in this study.

The correlated features, extracted by the T1WI and T2WI/FLAIR

images, failed to predict the recurrence of gliomas successfully, except

for the CE-T1 sequence. Tumor tissues showed similar signals on the

T1WI, which might be why features extracted from the T1WI sequence

alone failed to predict the recurrence of gliomas successfully. The

prediction model was developed by combining the CE-T1 sequence

and radiomics score (Radcore), including the T1WI and T2WI/FLAIR

features, and the results revealed a strong prediction performance. This

suggested that multi-feature analysis along with the Radscore might be

more effective than traditional texture features in predicting the

recurrence of gliomas. And this result was consistent with what has

been demonstrated in previous studies, that is, the TI value can

distinguish tumor infiltration from edema, a high TI value

corresponds to the area with a high recurrence risk at the edge of the

surgical cavity, and it is related to the preservation of neurological

function after surgery (22). However, the biological significance of some

of the radiomics features in this study still remains unknown, and further

research is needed to investigate the potential significance in the future.

In this study, as a relatively traditional and robust nonlinear

classifier, the SVM showed poor prediction performance on the test

set, which was inconsistent with previous studies. On the one hand,

it might be related to the small sample size of the test set. On the

other hand, as a classic linear classifier, whether the uniformly

better prediction performance of the LR in the training and test sets

could indicate that the prediction of glioma recurrences might be

more related to the extraction and screening of linear features was a

question that had not been addressed in previous studies.
TABLE 1 Performance of 2 models in the training set.

Models Classifiers AUC 95% CI Specificity Sensitivity Accuracy

Model 1
SVM 0.97 0.91-1 0.97 0.89 0.97

LR 0.99 0.97-1 0.95 0.88 0.96

Model 2
SVM 0.89 0.78-1 0.93 0.75 0.93

LR 0.76 0.5-1 0.94 0.75 0.94

Model 3
SVM 0.97 0.91-1 0.97 0.89 0.97

LR 0.99 0.97-1 0.95 0.89 0.96
TABLE 2 Performance of 2 models in the test set.

Models Classifiers AUC 95% CI Specificity Sensitivity Accuracy

Model 1
SVM 1 1 1 1

LR 0.96 0.97-1 0.88 1 1

Model 2
SVM 1 1 1 1

LR 1 1 1 1

Model 3
SVM 1 1 1 1

LR 0.96 0.87-1 0.88 1 1
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Previous studies primarily focused on adopting radiomics

methods to distinguish whether a glioma was benign or

malignant and evaluate the postoperative efficacy. Some studies

did not consider clinical factors. However, these studies mainly

focused on the application of radiomics for the therapeutic

evaluation of recurrent malignant gliomas, and most studies did

not consider the clinical factors (23, 24). The significance of this

study lies in the early prediction of glioma recurrences. By

extracting the features of recurrence areas at different time points

multiple times, we screen out features related to recurrence and

establish a prediction model to achieve early prediction of glioma

recurrence and high-recurrence general areas.

The comprehensive model showed the ability to predict early the

recurrence of gliomas and predilection sites in both the training and

test sets. To eliminate the selection bias caused by the small sample size

as much as possible, the K-fold cross-validation method was adopted,

and the features were re-screened through multiple cross-validations;

the results proved that the model had good stability. The results of the

statistical analysis also revealed that the statistical difference between

the two cohorts was not significant. Therefore, building a

multiparametric radiomics model was a feasible solution for the early

prediction of glioma recurrences, which was also in line with the

current trend of individualized medicine (17, 25).

This study also attempted to incorporate the macroscopic

radiographical features (tumor location, midline spanning, and

degree of peri-tumor edema) into the comprehensive model, but the

results showed no high recurrence indicators, which indicated that

these features did not significantly correlate with the recurrence of

gliomas. The texture features were extracted from the T1WI and T2/

FLAIR images through a filtering step, with extraction and

enhancement of the features of different sizes corresponding to fine,

medium, and coarse texture scales. Because of these features, the

constructed model better predicted postoperative recurrence of

gliomas with a strong performance, demonstrating that texture

analysis might predict the postoperative recurrence of gliomas by

quantifying heterogeneity without additional unconventional imaging.

The image segmentation method is a very important factor for

radiomics. In recent years, automatic segmentation has become

increasingly popular among researchers due to the development of

deep learning. This study adopted a combination of manual and

semi-automatic segmentation methods. Although different from the

mainstream methods, manual segmentation had the advantage of

enabling the doctors to modify the ROI based on their own

recognition since there was information that was difficult to be

explained by the current automatic segmentation technology in the

images. Moreover, the final performance of the radiomics model

not only depended on the image segmentation method but also on

the selection of clinical information, the degree of differentiation of

the tumor and other factors.

There were certain limitations in this study. First, this was a

retrospective study, and there might have been selection bias. Second,

most of the subjects included in the present study were those with

tumors classified as grades III to IV by WHO. If those with low-grade

gliomas could be enrolled in the study, comparing recurrences between

different grades could make the correlation between the recurrence of
Frontiers in Oncology 09
gliomas and the spatial heterogeneity more convincing. In addition, the

sample size was small and lacked external validation. There was the

possibility of model over-fitting, which should be solved through

continuous optimization of dimensionality reduction methods. The

model in this study uses the default parameters of sklearn library

without tuning parameters, which might also contribute to sub-

optimal performance. In the future, it is also advisable to consider

incorporating the characterization of transcriptional heterogeneity by

radio genomic features, integrating more molecular markers (such as

factors related to the circ0030018/miR-1236/HER2 pathway and

functional imaging parameters, so as to further optimize the

universality and predictive efficacy of the model (3, 16).

In conclusion, it was demonstrated in this study that combining

the MRI-based multiparametric radiomic model with clinical

features, molecular information, and basic imaging features might

have complementary effects and could improve the early

predictions of postoperative glioma recurrences and the areas of

high recurrence with a strong performance. In the future, the

investigation will focus on integrating more molecular markers,

radiomics signatures, and functional imaging to apply clinical

decision support tools for individualized treatment decisions and

improve the patients’ quality of life.
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