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2National Clinical Research Center for Child Health and Disorders, Ministry of Education Key
Laboratory of Child Development and Disorders, Chongqing, China, 3Chongqing Key Laboratory of
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Background: Wilms tumor (WT) lacks precise molecular subtyping tools, which

limits the development of personalized therapies. To address this issue, we

investigated whether NK cell-related genes (NKGs) could refine the molecular

subtyping of WT, aiming to identify novel therapeutic strategies.

Methods: Consensus clustering was employed for the molecular subtyping of

WT. The immunemicroenvironment of different WT subtypes was assessed using

immune profiling algorithms. Potential therapeutic compounds targeting the

identified subtypes were screened using the CMap database, and their

mechanisms of action were elucidated through molecular docking and

molecular dynamics simulations. Subsequently, in vitro cell experiments,

including CCK8, flow cytometry, and Transwell assays, were performed to

assess the biological behavior of tumor cells. A prognostic signatures was

constructed using machine learning algorithms, with its performance evaluated

by ROC curves, calibration curves, and the concordance index. Additionally,

cellular localization and expression of marker genes were investigated through

single-cell analysis and validated using RT-qPCR.

Results: We developed novel molecular subtyping tools that classified WT into

prognostically distinct subtypes: “immune-rich” and “immune-desert”. Screening

the CMap database identified the small-molecule drug TGX-221 as a candidate

modulator. TGX-221 significantly inhibited the malignant progression of WT

through a dual-action mechanism: blocking the key oncogenic Wnt/b-catenin
signaling pathway and sensitizing tumor cells to NK cell-mediated cytotoxicity.

Furthermore, a prognostic signatures based on HS2ST1, EPI3M, and PPP3CA

effectively predicted patient outcomes. Notably, HS2ST1 emerged as a novel

biomarker, potentially promoting cancer stem cell-like properties via heparan

sulfate-mediated enhancement of Wnt/b-catenin signaling, highlighting its dual

value as both a prognostic indicator and a therapeutic target.
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Conclusion: Molecular subtyping and prognostic signatures based on NKGs

enable the precise identification of high-risk WT patients. Moreover, TGX-221

represents a promising novel therapeutic candidate, while HS2ST1 serves as a

potential prognostic biomarker. These findings collectively provide tools for risk

stratification and targeted therapy, advancing precision oncology for WT.
KEYWORDS

Wilms tumor, natural killer cells, molecular subtyping, prognostic signatures, TGX-
221, HS2ST1
Introduction

Nephroblastoma, also designated as Wilms tumor (WT), the

most prevalent pediatric renal malignancy, remains incompletely

elucidated in its pathogenic mechanisms (1–3). Prevailing theories

suggest its origin lies in the developmental arrest of embryonic

nephrogenic progenitor cells, where synergistic genetic alterations

(such as WT1/2 deletions) and epigenetic dysregulation conspire to

reactivate primitive signaling cascades such as Wnt/b-catenin (1, 4–

7). This molecular reprogramming ultimately subverts

microenvironmental homeostasis, driving uncontrolled

proliferation (1, 4, 5). Epidemiologic patterns demonstrate

striking geographic heterogeneity, implicating gene-environment

interactions in disease initiation (8–10). Histopathologically, three

distinct subtypes are recognized: the classical triphasic pattern,

anaplastic variant with hallmark nuclear pleomorphism, and the

recently characterized desert subtype featuring TP53 mutations

with concomitant cGAS-STING pathway inactivation (11).

Crucially, these high-risk subtypes (anaplastic and desert), though

constituting only 15%-20% of total cases, account for 90% of

disease-related mortality, highlighting the imperative for

molecular subtyping in therapeutic stratification (12).

While contemporary multimodal therapies have elevated the 5-

year survival rate beyond 90% in WT patients, critical challenges

persist: approximately 20% of patients develop chemoresistance-

driven treatment failure (2, 13, 14). In comparison, 40% of survivors

endure chemotherapy-associated late effects including secondary

malignancies and organ dysfunction (13). The therapeutic dilemma

between radical resection and nephron-sparing preservation

remains unresolved (15). Recent molecular subtyping studies have

uncove r ed compe l l ing a s soc i a t ions be tween tumor

microenvironment remodeling - particularly the immune/stromal

depletion signature characteristic of desert subtypes - and

therapeutic resistance (11, 16–18). These findings underscore the
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imperative of developing biomarker-guided risk stratification

systems and targeted interventions. Consequently, elucidating

tumor heterogeneity and engineering novel therapeutic modalities

to overcome drug resistance have emerged as pivotal research

frontiers for improving outcomes in high-risk cohorts.

The tumor immune microenvironment (TME) constitutes a

dynamic ecosystem comprising neoplastic cells, immune

populations (T cells, Natural Killer cells, macrophages), stromal

components, extracellular matrix, and signaling molecules

(cytokines, metabolites) (19). This interplay orchestrates tumor

progression through immune evasion, neoangiogenesis, and

metabolic reprogramming. Notably, pediatric solid tumors differ

fundamentally from their adult counterparts by exhibiting

attenuated tumor antigen presentation and innate immunity-

dominant TME profiles, contrasting with the mutation-driven T

cell-infiltrated landscapes characteristic of adult malignancies (20,

21). NK cells, as pivotal effectors of innate immunity, mediate

tumor surveillance through granzyme/perforin-dependent

cytotoxicity, antibody-dependent cellular cytotoxicity, and

interferon-g/TNF-a secretion (22, 23). Emerging evidence

indicates that post-chemotherapy NK cel l functional

reconstitution demonstrates significant positive correlations with

therapeutic responses in neuroblastoma (24, 25). Notably, umbilical

cord blood-derived NK cells demonstrate metastasis suppression

efficacy comparable to conventional chemotherapy in WT

preclinical models (25–27). These collective insights position NK

cell adoptive immunotherapy as a promising therapeutic frontier

for high-risk WT management.

The dynamic equilibrium between activating receptors (e.g.,

NKG2D) and inhibitory receptors (e.g., Siglec-9) plays a pivotal role

in regulating NK cell functional activity (28). Our preliminary

studies demonstrated that combined IL-2/IL-15 intervention

activates the MAPK signaling pathway, effectively upregulating

NKG2D expression and enhancing NK cell-mediated cytotoxicity

against WT (29). Furthermore, the immunoregulatory function of

the Siglec-9/Siglec-9L axis in hepatocellular carcinoma immune

evasion has been increasingly validated, alongside the clinical

prognostic value of NK cell-related gene signatures in

glioblastoma (30). However, critical knowledge gaps persist

regarding the mechanistic role of NK cell-associated molecular
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markers in the molecular subtyping of WT (31). Systematic

elucidation of this mechanism will establish a theoretical

foundation for developing an NK cell functionality-based

molecular subtyping system. This advancement is expected to

guide the design of precision immunotherapeutic strategies

targeting high-risk WT subtypes, addressing current limitations in

conventional therapeutic paradigms.

In this study, we systematically characterized the molecular

heterogeneity of WT through integrated multi-omics sequencing

technologies encompassing transcriptome profiling and single-cell

sequencing. For the first time, a novel molecular subtyping

framework based on consensus clustering was established from

NK cell-associated molecular dimensions in WT. Validation across
Frontiers in Oncology 03
multi-center datasets revealed significant inter-subtype survival

disparities and immune microenvironment heterogeneity.

Through computational biology approaches, we identified

candidate drugs with subtype-reversing potential, subsequently

validating their mechanisms via molecular docking and dynamics

simulations. The developed prognostic prediction model provides a

quantitative tool for clinical decision-making. This investigation

expands the theoretical framework of WT molecular subtyping

from an NK cell perspective, while the discovered biomarkers and

potential therapeutic strategies lay a crucial foundation for precision

medicine. Figure 1 illustrates the systematic research workflow in

flowchart format, encompassing data acquisition, bioinformatics

analysis, and experimental validation.
FIGURE 1

Graphical representation of the study.
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Materials and methods

Multi-omics data acquisition

The CQMU cohort (GEO accession GSE197047) comprises RNA

sequencing data from 8 paired WT tissues and matched normal

kidney tissues, enabling paired analytical design (32). The TARGET-

WT dataset provides multidimensional data from 125 WT cases and

6 normal kidney controls, including clinical parameters,

transcriptomic profiles, somatic copy number variations (CNV),

and single-nucleotide variations (33). GSE31403 contributes RNA

expression profiles of 224 WT samples generated using Affymetrix

microarray chips. Single-cell sequencing data encompassing 6 WT

samples were obtained from the Single-cell Pediatric Cancer Atlas

Portal (https://scpca.alexslemonade.org/projects/SCPCP000006).

Additionally, leveraging the ImmPort, TISDIB, and KEGG

databases alongside published literature, we constructed a gene set

containing 329 NK cell-related genes (NRGs). Specifically, the gene

set was built by: (1) extracting genes annotated with NK cell-specific

functions ormarkers from the ImmPort database; (2) retrieving genes

from functional modules in the TISIDB database, including

molecular signatures related to “Natural killer cell” (e.g., NK cell

activation, NK cell-mediated immune response to tumor cells),

ensuring that all relevant signatures were systematically

incorporated during the retrieval process; (3) including all genes in

the KEGG database for the “Natural killer cell mediated cytotoxicity”

pathway (hsa04650); and (4) supplementing this with genes identified

through systematic literature mining in PubMed using the key phrase

“NK cell-related gene” in titles and abstracts, followed by a manual

review. This rigorous process yielded a total of 329 high-confidence

NRGs. We further validated the functional relevance of these genes

through gene enrichment analysis. The complete gene set is provided

in Supplementary File 1 (31, 34, 35).
Differential gene expression analysis

Differentially expressed genes (DEGs) were identified using the

R package “limma”. Linear models were constructed for individual

genes through the lmFit function, followed by empirical Bayes

adjustment implemented via the eBayes function (36). Candidate

DEGs were selected under stringent thresholds (false discovery rate-

adjusted P < 0.05 and |fold change| ≥ 2). To validate analytical rigor,

we applied Benjamini-Hochberg false positive rate correction, with

subsequent visualization of gene expression patterns through

volcano plot and heatmap.
Consensus clustering

As an unsupervised ensemble clustering method, consensus

clustering generates multiple clustering results through repeated

random subsampling and clustering operations (37). These results

are then aggregated to construct a consensus matrix, which

evaluates the stability and validity of clustering patterns.
Frontiers in Oncology 04
Specifically, we utilized the “ConsensusClusterPlus” package with

the Pearson correlation distance metric and hierarchical clustering

algorithm. By calculating consensus matrices and silhouette

coefficients under different cluster numbers (k values), the

optimal number of clusters was determined, ultimately stratifying

the samples into distinct tumor subtypes.
Survival analysis

Kaplan-Meier survival curves with log-rank tests were plotted to

compare survival differences between patient groups stratified by

gene expression levels (38). Univariate Cox proportional hazards

regression models were employed to assess the prognostic effects of

gene expression levels and clinical characteristics (e.g., age, gender,

tumor stage), with results presented as hazard ratios and

corresponding 95% confidence intervals, where statistical

significance was defined as P < 0.05. Subsequently, multivariate

Cox regression analysis was performed by incorporating significant

variables identified in univariate analysis, aiming to evaluate their

independent prognostic value.
Immune analysis

The ESTIMATE algorithm was utilized to calculate

StromalScores, ImmuneScores, and ESTIMATEScores for each

sample, evaluating the infiltration levels of stromal and immune

cells in tumor tissues (39). Single-sample gene set enrichment analysis

(ssGSEA) was performed to quantify the infiltration levels of different

immune cell subtypes based on gene sets defining 28 immune cell

subtypes established by Zlatko Trajanoski et al., with subsequent

comparison of their relative abundance (40). Additionally, expression

levels of common immune checkpoint-related genes were extracted

to analyze inter-sample variations and assess immune checkpoint

activity. Finally, the activity of immune-related pathways in different

samples was evaluated by calculating the expression levels of key

genes within each immunologically relevant pathway.
Computational drug screening

The CMap database serves as a computational platform for drug

candidate discovery by matching disease-specific differential gene

expression profiles with transcriptional signatures of cells exposed

to known small molecules, thereby identifying compounds capable

of reversing disease-associated gene expression patterns (41). The

Kolmogorov-Smirnov enrichment algorithm was employed to

quantify inverse correlations between input gene sets and

transcriptomic signatures of 1,309 pharmacologically perturbed

cellular states, generating connectivity scores ranging from -100

(maximum reversal potential) to +100 (maximum synergy).

Compounds demonstrating statistically significant negative

connectivity scores (absolute value >90, P<0.05) were prioritized

as putative phenotype-reversing agents (41). Based on this
frontiersin.org
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computational framework, the top-ranked compounds with the

most negative connectivity scores were selected as potential

therapeutic candidates for further investigation.
Molecular docking and molecular
dynamics simulations

Using AutoDock Tools 1.5.6 for protein hydrogen addition and

small-molecule hydrogen addition and torsion bond definition. The

Grid module was used to generate the grid box for docking.

Docking was performed in AutoDock Vina 1.2.0 with flexible side

chains of the small molecule (exhaustiveness = 25). For molecular

dynamics simulations (Gromacs 2024.4), the Amber14sb and

GAFF2 force fields were applied to the protein and ligand,

respectively, with solvation in a TIP4P water model (1.2 nm

periodic boundary box). Long-range electrostatics were handled

via PME, and the system was neutralized with Na+/Cl- ions using

the Monte Carlo method. Energy minimization involved 50,000

steepest descent steps (max force <1000 kJ/mol), followed by

50,000-step NVT (310 K) and NPT (1 atm, 310 K) equilibrations

(2 fs timestep). A 100 ns production simulation (2 fs timestep) was

conducted, saving coordinates every 10 ps. Trajectory analysis

included RMSD, RMSF, Rg, hydrogen bond counts, free energy

profiles, structural comparisons at 0/25/50/75/100 ns, and MM/

GBSA binding free energy calculations.
Prognostic signatures and nomogram
construction

Prognostic genes were initially screened via univariate Cox

regression analysis. Subsequent feature dimension reduction was

implemented using LASSO regression (10-fold cross-validation,

regularization parameter l selection under the one standard error

rule). The risk score formula was derived as: Risk Score = S(LASSO
coefficient × gene expression level). By integrating the risk score

with clinically independent prognostic factors, a nomogram was

developed to visually demonstrate the prognostic contributions of

variables and quantitatively predict survival probability. Model

discrimination was assessed through the concordance index (C-

index), with prediction accuracy evaluated via calibration curves

(1000 resamplings). Clinical net benefit was quantified using

decision curve analysis (DCA), while predictive performance was

determined by time-dependent receiver operating characteristic

(ROC) curves, where the area under the curve (AUC) measured

classification capability. All analyses were implemented using R

packages glmnet, rms, ggDCA, and timeROC.
Single-cell data analysis

The single-cell transcriptomic data were analyzed through a

standardized pipeline encompassing data quality control, batch
Frontiers in Oncology 05
effect correction, dimensional reduction, clustering, and cell-type

annotation. Initially, rigorous quality control was performed on the

raw sequencing data to filter high-quality cells for downstream

analyses. Subsequently, the Harmony algorithm was applied to

eliminate batch effects across experimental batches, ensuring data

comparability. Dimensionality reduction was achieved via principal

component analysis, followed by visualization using either Uniform

Manifold Approximation and Projection or t-distributed stochastic

neighbor embedding to discern cellular distribution patterns. Cell

clustering was conducted using graph-based algorithms on the

reduced-dimensional space to identify distinct subpopulations.

Final cell-type annotation was performed by cross-referencing

canonical marker genes with established biological databases to

determine cellular identities.
In vitro cell experiments

The WIT49 and WT-CLS1 WT cell lines (ATCC-derived) were

maintained at the Chongqing Key Laboratory of Structural Birth

Defects and Organ Reconstruction. TGX-221 (HY-10114,

MedChemExpress) was dissolved in DMSO and assessed for

cytotoxicity via CCK-8 assays (HY-K0301), where cells seeded at

5×10³/well in 96-well plates were treated with gradient

concentrations, incubated for specified durations, and measured

at 450 nm to determine IC50 values. Cell migration and invasion

capacities were evaluated through wound healing assays (scratch

closure monitored at 0/48 hours) and Matrigel-coated Transwell

chambers (Corning®), respectively, with invaded cells quantified

after crystal violet staining. Apoptosis and cell cycle distribution

were analyzed by flow cytometry using Annexin V-FITC/PI double

staining and PI single staining, while qRT-PCR profiling with

Tsingke Biotechnology-synthesized primers evaluated gene

expression normalized to GAPDH via the 2^-DDCt method.
Statistical analysis

All statistical analyses in this study were performed using R

(version 4.3.1) and GraphPad Prism (version 9.5) software.
Results

Characterization of the immune
microenvironment and identification of
NKGs in WT

We analyzed transcriptomic data from eight paired samples of

WT and adjacent normal renal tissues in the CQMU cohort, using

ESTIMATE and ssGSEA algorithms. WT exhibited significantly

reduced ImmuneScore compared to adjacent normal renal tissues

(Figure 2A), with a prominent decrease in CD56dim NK cell

infiltration (Figure 2B). By leveraging 329 previously reported
frontiersin.org
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NRGs, we constructed an NK-related gene set. GSEA analysis

revealed that the activity of NK cell-related pathways significantly

differs between WT and adjacent normal renal tissues (Figure 2C).

Subsequent analysis identified 68 differentially expressed NRGs in

the CQMU cohort (Figure 2D), which were further validated by

differential expression analysis in the TARGET-WT cohort

(Figure 2E). The intersection of these datasets yielded 37

differentially expressed NRGs (Figure 2F), with functional

enrichment showing a strong association with NK cell activation

and immune responses (Figure 2G). CNV analysis demonstrated

frequent copy number gains (e.g., CREB3L4, MYL6B) and losses

(e.g., PPP3CA, PLCG2) in these genes (Figure 2H), and their

chromosomal location distributions were mapped (Figure 2I).

These findings reveal the abnormal characteristics of NK cells in

the immune microenvironment of WT and suggest that these

differentially expressed NRGs may be associated with WT

progression, although further functional studies are needed to

confirm their roles as potential drivers.
Frontiers in Oncology 06
Unsupervised clustering based on 37
differentially expressed NRGs characterizes
WT subtypes

We performed consensus clustering analysis on 125 WT

samples using the expression profiles of 37 differentially expressed

NRGs and determined the optimal subtype number by the

cumulative distribution function (Figures 3A, B). The results

indicated that the clustering stability was highest at K=2, which

was further validated by the delta area plot (Figure 3C).

Subsequently, the 125 WT samples were divided into two

subtypes: Cluster 1 (n=62) and Cluster 2 (n=63). PCA revealed

significant differences in gene expression patterns between these

subtypes (Figure 3D). Heatmap demonstrated distinct relative

expression levels of 37 differentially expressed NRGs across the

two subgroups (Figure 3E). Kaplan-Meier survival analysis showed

that patients in Cluster 2 had significantly worse OS compared to

Cluster 1 (Figure 3F). Immune status assessment using the
FIGURE 2

Analysis of the immune microenvironment in Wilms tumor and identification of NK cell-related genes. ESTIMATEScore, ImmuneScore, StromalScore,
(A) and infiltration levels of 28 immune cell subtypes (B) were evaluated in 8 pairs of Wilms tumors and adjacent normal kidney tissues. (C) GSEA
analysis showing the downregulation of NK cell-related gene sets in Wilms tumor (NES = -1.6898, p.adjust = 0.01228). (D) The heatmap illustrates
the expression of 68 differentially expressed NK cell-related genes in the CQMU cohort. (E) The volcano plot illustrates that 121 out of 329 NK cell-
related genes are differentially expressed in the TARGET-WT cohort. (F) The Venn diagram shows the overlap between the CQMU cohort (68 genes)
and the TARGET-WT cohort (121 genes), with 37 differentially expressed NK cell-related genes identified in both cohorts. Functional enrichment
analysis (G), copy number variation analysis (H), and chromosomal location distribution (I) of 37 differentially expressed NK cell-related genes.
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ESTIMATE and ssGSEA algorithms indicated that WT samples in

Cluster 2 exhibited lower ImmuneScore and reduced infiltration

levels of multiple immune cell populations (Figures 3G, H).

Additionally, immune checkpoint-related genes showed marked

expression differences between the subtypes (Figure 3I).

Integrative analysis suggested that WT samples in Cluster 1

tended to exhibit “hot tumor” features, characterized by enhanced

immune cell infiltration and more favorable survival outcomes.

These findings provide critical insights for exploring personalized

therapeutic strategies and prognostic evaluation in WT.
Screening of TGX-221 and evaluation of its
antitumor activity in WT cell lines

Given the critical role of these 37 differentially expressed NRGs

in survival outcomes and immune characteristics across WT

subtypes, we screened and identified a small-molecule drug, TGX-

221 (Figure 4A, Supplementary File 2), through the CMap database.

This compound is hypothesized to regulate the expression of these
Frontiers in Oncology 07
genes, potentially promoting an immune-mediated shift from

“cold” to “hot” tumor phenotypes, thereby enhancing patient

outcomes. In vitro experiments revealed concentration-dependent

inhibitory effects of TGX-221 on WT cell viability, with IC50

determined for two WT cell lines (Figures 4B, C). CCK-8 assays

demonstrated that TGX-221 significantly suppressed WT cell

proliferation in a dose-dependent manner (Figures 4D, E).

Scratch wound healing and Transwell assays further confirmed its

ability to impair WT cell migration and invasion (Figures 4F, G).

Flow cytometry analyses showed that TGX-221 effectively induced

apoptosis in WT cells (Figures 4H, I), while cell cycle profiling

revealed S-phase arrest and G2-phase extension as a potential

mechanism underlying its antiproliferative effects (Figures 4J, K).

We observed that the expression of b-catenin protein was

significantly downregulated in WiT49 cells treated with TGX-221

(Figure 4L). Additionally, the mRNA expression of MYC, a

downstream target gene of the WNT/b-catenin pathway, was also

inhibited. Furthermore, the expression of WNT3A, a classical

ligand of the WNT pathway, was suppressed following TGX-221

treatment. TGX-221 promotes the degradation of b-catenin by
FIGURE 3

Consensus clustering. (A) When k = 2, the Wilms tumor samples are divided into two distinct clusters. The cumulative distribution function (B) and
Delta area plot (C) validate the stability and rationality of clustering at K = 2. (D) PCA analysis divided Wilms tumor samples into two distinct subtypes,
Cluster 1 (n=62) and Cluster 2 (n=63). (E) The heatmap illustrates the expression patterns of 37 differentially expressed NK cell-related genes across
distinct subtypes of Wilms tumor. (F) The Kaplan-Meier curves demonstrate the survival differences between the two subtypes (p = 0.020). Boxplots
display the ESTIMATEScore, ImmuneScore, StromalScore (G), the infiltration levels of 28 immune cell subtypes (H), as well as the expression
differences of immune checkpoint genes (I) for the two subtypes.
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upregulating the expression of GSK3B (Figure 4M). Our results

demonstrate that WiT49 and WT-CLS1 incubated with TGX-221

exhibited significantly enhanced susceptibility to NK cell-mediated

cytotoxicity, resulting in reduced viability compared to untreated

tumor cells, when co-cultured with NK cells across effector-to-

target ratios of 1:1 and 5:1 (Figure 4N). These findings collectively

highlight the robust antitumor activity of TGX-221 in WT

cellular models.
Molecular docking and dynamics
simulations of TGX-221 with hub NRGs

Given the significant anti-WT activity of TGX-221 observed in

vitro experiments, we investigated its mechanism of action, focusing

on whether its antitumor efficacy is mediated through the regulation

of NRGs expression. Using protein-protein interaction network

analysis and CytoHubba, we identified 5 hub genes (FYN, NRAS,

PAK1, RAF1, and SOS1) from 37 differentially expressed NRGs

(Supplementary Figure 1). Molecular docking revealed strong
Frontiers in Oncology 08
binding affinities between TGX-221 and these proteins, with

binding energies of -9.2, -8.4, -7.1, -8.6, and -7.1 kcal·mol-1 for

FYN, NRAS, PAK1, RAF1, and SOS1, respectively (Figures 5A–E).

Notably, FYN, NRAS, and RAF1 exhibited particularly strong

interactions (binding energies below -7.2 kcal·mol-1). Binding

mode analysis showed that TGX-221 primarily formed

hydrophobic interactions with key amino acid residues across all

five proteins, while only Ser17 in NRAS formed a hydrogen bond

with TGX-221 (Figure 5C). This limited hydrogen bonding aligns

with TGX-221’s low hydrophilic group content, but the prevalence

of hydrophobic interactions ensured robust binding stability.

To validate the binding affinity and stability of TGX-221 with its

target proteins, we conducted 100 ns molecular dynamics

simulations on the complexes of TGX-221 with FYN, NRAS,

PAK1, RAF1, and SOS1. As shown in Figures 6A-E, stability

analysis revealed that RMSD curves remained stable within 1 nm,

RMSF curves showed minimal amino acid movement (<1 nm), and

Rg curves indicated compact protein structures (1.5–2.0 nm). SASA

curves fluctuated steadily with values of 140 nm² (FYN), 80 nm²

(NRAS), 140 nm² (PAK1), 140 nm² (RAF1), and 140 nm² (SOS1);
FIGURE 4

TGX-221 effectively inhibits the malignant phenotype of Wilms tumor. (A) Identification of potential small molecule compounds TGX-221 targeting 37
NK cell-related genes using the CMap database. The IC50 values of TGX-221 in WiT49 and WT-CLS1 cell lines are 19.25 µM (B) and 37.34 µM (C),
respectively. TGX-221 significantly inhibits the proliferation of WiT49 (D) and WT-CLS1 (E) cells in a dose-dependent manner. The scratch and transwell
assays indicate that TGX-221 effectively inhibits the migration of WiT49 cells (F) and the invasion of both WiT49 and WT-CL1 cells (G). Annexin V/PI
staining demonstrates that TGX-221 induces apoptosis in WiT49 (H) and WT-CLS1 cells (I). Cell cycle analysis reveals that TGX-221 induces S-phase
arrest in WiT49 cells (J) and prolongs the G2 phase in WT-CLS1 cells (K). Changes in b-catenin protein expression levels (L) and mRNA expression
levels of WNT3A, MYC, GSK3B, and GSK3A after TGX-221 treatment (M). TGX-221 treatment enhances the susceptibility of WiT49 and WT-CLS1 cells
to NK cell-mediated cytotoxicity, showing reduced viability compared to untreated cells at effector-to-target ratios of 1:1 and 5:1 (N).
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the narrow fluctuation range for NRAS was attributed to its smaller

size. Hydrogen bonds were stable (1–2), with predominant

hydrophobic interactions. Conformational analysis showed that

TGX-221 maintained stable binding with most proteins, although

RAF1’s binding site underwent minor changes without detachment

(Figures 6F-H). Free energy landscape analysis indicated that the

SOS1-TGX-221 complex formed a single minimum energy cluster,

suggesting the most stable binding. In contrast, the complexes of

FYN, NRAS, PAK1, and RAF1 formed two clusters, transitioning

from an initial stable state to a more stable state (Figures 6F-H).

Binding free energy calculations revealed that FYN exhibited the

strongest binding (-36.72 kcal·mol-1), while the binding energies of

the other proteins ranged from -25.32 to -13.67 kcal·mol-1

(Figures 6F-H). Key residues contributing to binding affinity

included FYN (LEU-17, LEU-137, VAL-125, LYS-39), NRAS

(GLY-15, PRO-34), PAK1 (VAL-284, ILE-276, LEU-396), RAF1

(LEU-355, TRP-423, PHE-475), and SOS1 (TYR-884, PHE-890,

LEU-901) (Figures 6F-H). Overall, these results confirmed that

TGX-221 formed stable complexes with these proteins, particularly

with FYN, where key residues played critical roles in binding. These

interactions suggest that TGX-221 may significantly influence the

structural and functional properties of these proteins, thereby

contributing to its observed anti-WT effects.
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Construction and validation of a
prognostic signatures for WT based on 37
differentially expressed NRGs

Given that only the TARGET-WT cohort currently has complete

prognostic information among WT research cohorts, we conducted

prognostic analyses on 125 WT samples from this cohort, randomly

dividing them into training set (63 cases) and test set (62 cases). In the

training set, univariate Cox regression analysis on 37 differentially

expressed NRGs identified five NRGs—HS2ST1, CCDC88A, EIF3M,

NOTCH3, and PPP3CA — significantly associated with OS in WT

patients (Figure 7A). Subsequently, LASSO regression analysis using

10-fold cross-validation identified three genes (HS2ST1, EIF3M, and

PPP3CA) with significant prognostic risk (Figures 7B, C). A

prognostic signatures model was constructed, with risk coefficients

determined by multivariate Cox regression (HS2ST1: 0.773, EIF3M:

0.645, PPP3CA: -0.927). Using these coefficients and gene expression

levels, we calculated a risk score for each WT sample, dividing them

into high-risk and low-risk groups based on the median risk score of

the training set. The heatmap revealed higher expression of HS2ST1

and EIF3M in the high-risk subgroup WT samples (Figure 7D). The

survival status distribution plot indicates that the number of deaths

among WT patients significantly increases with higher risk scores
FIGURE 5

Molecular docking. Molecular docking reveals strong binding affinities between TGX-221 and the target proteins FYN -9.2 kcal·mol-1 (A), NRAS -8.4
kcal·mol-1 (B), PAK1 -7.1 kcal·mol-1 (C), RAF1 -8.6 kcal·mol-1 (D), and SOS1 -7.1kcal·mol-1 (E).
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(Figure 7E). K-M survival analysis confirmed that low-risk patients

had significantly better survival outcomes (Figure 7F), consistent

across WT subtypes with varying clinical characteristics

(Supplementary Figure 2), demonstrating the robustness and broad

applicability of the prognostic signatures model. ROC curve analysis

showed AUC values ranging from 0.72 to 0.82 for 3- to 9-year

survival predictions, indicating high predictive accuracy (Figure 7G).

These results were validated in both the test set (Figures 7H-K) and

the complete TARGET-WT cohort (Figures 7L-O), confirming the

model’s reliability and effectiveness.
Construction and validation of nomogram

Through both univariate and multivariate Cox regression

analyses based on the training set, test set, and the complete

TARGET-WT cohort, we identified the risk score as an

independent predictor of prognosis in WT patients, unaffected by

other clinical characteristics (Figure 8A-F). To facilitate the clinical

application of the prognostic signatures, we developed a nomogram

based on patient staging and risk score (Figure 8G). This nomogram
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enables precise quantification of WT patient OS probabilities at 1, 3,

and 5 years. Calibration curves demonstrated that the nomogram’s

predicted values were highly consistent with observed survival

probabilities (Figure 8H), confirming its excellent predictive

accuracy. ROC curve analyses revealed that the nomogram

(AUC=0.748) outperformed the risk score (AUC=0.716) and

clinical features alone in survival prediction (Figure 8I),

showcasing its higher specificity and predictive accuracy.

Additionally, consistency index and decision curve analyses

further demonstrated the nomogram’s maximal net benefit in

clinical decision-making (Figures 8J, K). These findings indicate

that the NRGs-based prognostic signatures and nomogram offer

superior clinical utility compared to traditional clinical models,

providing more accurate and quantitative prognostic assessments.
Characterization of immune and mutation
landscape in WT risk subgroups

Using the ESTIMATE analysis, we found that low-risk WT

patients had significantly higher immune scores compared to high-
FIGURE 6

Molecular dynamics simulations. The stability of the FYN, NRAS, PAK1, RAF1, and SOS1 protein complexes with TGX-221 is confirmed by RMSD (A),
RMSF (B), Rg (C), hydrogen bond number (D), and SASA (E) curve analysis. (F1, G1, H1, I1, J1) show the free energy distribution of the complexes
formed between FYN, NRAS, PAK1, RAF1, SOS1 proteins, and TGX-221, respectively. (F2, G2, H2, I2, J2) present the structural comparisons of these
complexes at five-time points (0, 25, 50, 75, and 100 ns) in molecular dynamics simulations, with the red, green, blue, yellow, and orange small
molecules corresponding to the structures of TGX-221 at different time points. (F3, G3, H3, I3, J3) list the average binding free energies of the
respective complexes, where VDWAALS, EEL, EGB, ESURF, GGAS, GSOLV, and TOTAL represent the van der Waals interactions, electrostatic energy,
polar solvation energy, non-polar solvation energy, molecular mechanics term, solvation energy term, and the total average binding free energy,
respectively. (F4, G4, H4, I4, J4) reveal the energy contributions of the amino acid residues in each protein that participate in the binding with TGX-221.
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risk patients, as validated by the external dataset GSE31403

(Figures 9A, B). Quantification of 28 immune cell subtypes via

the ssGSEA algorithm revealed significant differences between high-

risk and low-risk subgroups, with low-risk WT samples showing

higher infiltration of NK cells and plasmacytoid dendritic cells

(Figures 9C, D). Pathway enrichment analysis identified activation

of immune-related pathways in low-risk WT samples (Figure 9E),

including NK cell-mediated cytotoxicity, T-cell receptor signaling,

and chemokine signaling, suggesting low-risk WT samples have

higher immune activity and better survival outcomes. For genetic

mutations, TP53 and ADCK5 mutations were more frequent in the

low-risk group, while TP53 and CTNNB1 mutations were more

prevalent in the high-risk group (Figures 9F, G). The high-risk

group also exhibited higher tumor mutation burden (TMB)

(Figure 9H), with high TMB linked to poorer survival outcomes

(Figures 9I, J). These findings suggest that mutations driving

abnormal tumor cell proliferation and immune evasion, such as
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CTNNB1 mutations leading to unchecked cell cycle progression

and Wnt pathway activation, contribute to these outcomes. Overall,

classifying WT samples based on risk scores provides insights into

distinct immune and mutational profiles, supporting precision

medicine and personalized treatment strategies.
Investigation of HS2ST1, EIF3M, and
PPP3CA in immune modulation within WT
and their potential as targets for immune
therapy

After data quality control, filtering, batch correction,

dimensionality reduction, and clustering, we identified 40,653

cells and annotated them into 5 major subtypes: tumor cells,

stromal cells, epithelial cells, endothelial cells, and immune cells

(Figures 10A, B). HS2ST1 and EIF3M were predominantly
7FIGURE

Construction of prognostic signatures. (A) Cox regression analysis of 37 NK cell-related genes identified 5 prognostic genes. (B, C) Prognostic
signature constructed via Lasso regression. (D) Heatmap showing expression patterns of 3 risk genes across different risk subgroups. (E) Survival
status distribution indicates that the number of deaths in Wilms tumor patients increases with higher risk scores. (F) The K-M survival curve also
shows that Wilms tumor patients with high-risk scores have poorer overall survival. (G) The area under the ROC curve validates the predictive
performance of the prognostic signatures. Similar results were obtained in the Test set (H–K) and TARGET-WT cohort (L–O).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1593011
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hong et al. 10.3389/fonc.2025.1593011
expressed in tumor cells, while PPP3CA was mainly expressed in

non-tumor cells, such as immune cells (Figure 10C). We validated

these findings using RT-qPCR, which showed that HS2ST1 and

EIF3M were significantly upregulated in WT cell lines (WiT49 and

WT-CLS1), whereas PPP3CA exhibited significant expression in

human normal renal epithelial cells (293T) (Figures 10D, F, H). K-

M survival analysis demonstrated a close correlation between the

expression of these genes and patient outcomes (Figures 10E, G, I).

Interestingly, we also found that TGX-221 effectively inhibits the

expression of HS2ST1 (Figures 10J). Pearson correlation analysis

revealed significant associations between the expression levels of

these genes and the infiltration of various immune cells

(Figures 10K-M). Specifically, HS2ST1 and EIF3M expression

levels were significantly negatively correlated with the infiltration

of CD56dim NK cells, while PPP3CA expression was significantly

positively correlated with the infiltration of CD56bright NK cells

and immature dendritic cells (Figures 10N-S). Collectively,

HS2ST1, EIF3M, and PPP3CA may play crucial roles in the

development and progression of WT. HS2ST1 and EIF3M likely

influence the tumor immune microenvironment by inhibiting NK
Frontiers in Oncology 12
cell function, whereas PPP3CA may exert protective effects by

promoting the infiltration of specific immune cells. These distinct

expression patterns and regulatory roles in the immune

microenvironment provide a strong basis for considering these

genes as potential immunotherapy targets in WT.
Discussion

WT, the most prevalent embryonal malignancy in the pediatric

urinary system, has witnessed improved survival rates through

current diagnostic frameworks that incorporate histopathological

features (e.g., anaplastic vs. non-anaplastic subtypes) and

monogenic molecular subtyping (3, 8, 14). Nevertheless, high-risk

subtypes characterized by tumor heterogeneity-driven relapse and

chemoresistance persist as clinical challenges, a predicament rooted

in conventional classification systems’ inadequacy to resolve the

dynamic evolution of the tumor microenvironment (42). Emerging

evidence implicates that NK cells, innate immune effector cells,

participate in the immune editing process of solid tumors through
FIGURE 8

Construction of nomogram. Univariate (A-C) and multivariate (D-F) Cox regression analyses indicate that the risk score is an independent prognostic
factor for Wilms tumor. (G) Nomogram constructed based on risk score and stage. Calibration curves (H), ROC curves (I), concordance index (J),
and DCA curves (K) were used to evaluate the accuracy and sensitivity of the nomogram’s prognostic predictions.
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their cytotoxic effects and immune regulatory functions (23, 28).

However, the specific mechanisms of NK cells in WT remain unclear.

This study elucidates the infiltration characteristics of NK cells in the

tumor microenvironment of WT, provides a new perspective for

understanding the immune evasion mechanisms of WT, and may

offer a theoretical basis for NK cell-based immunotherapy for WT.

Based on the analysis of the CQMU cohort and the TARGET-

WT database, this study found a significant deficiency in immune

infiltration in WT tissues compared to normal kidney tissues, with a

particularly notable reduction in the infiltration level of the

CD56dim NK cell subset. This finding suggests that NK cell

dysfunction may be a key microenvironmental feature driving the

malignant progression of WT. Through integrated multi-omics

analysis, this study systematically characterized the gene expression

patterns related to NK cells in WT. The cross-cohort analysis

identified 37 differentially expressed NRGs with significant copy

number variations, among which copy number gains in genes such

as CREB3L4 may influence NK cell function remodeling by

interfering with MAPK signaling transduction (43, 44). Consensus

clustering based on differentially expressed NRGs for the first time

stratified WT into two molecular subtypes with significant

prognostic differences. Cluster 1 exhibited a “hot” tumor
Frontiers in Oncology 13
phenotype, characterized by elevated immune scores and increased

infiltration of CD8+ T cells and NK cells, which corresponded to

better survival outcomes. In contrast, Cluster 2 presented an

“immune desert” phenotype, with suppressed expression of

immune checkpoint molecules and poor clinical outcomes. This

novel classification system, based on the dynamic evolution of the

tumor microenvironment, overcomes the limitations of traditional

histopathological classification in identifying high-risk subtypes and

provides a molecular basis for the precise selection of clinical

treatment strategies. This new classification system better reflects

the biological behavior and immune status of the tumor, and has the

potential to improve prognostic assessment and treatment response

prediction in WT patients.

The advent of combinatorial immunotherapeutics opens new

avenues for WT management (45, 46). Preclinical evidence

supports the synergistic efficacy of immune checkpoint inhibitors

paired with CAR-T or NK cell-based therapies (25–27, 47).

Targeting Cluster 2’s immune-cold phenotype using such

strategies may counteract immune microenvironmental resistance

mechanisms. Future trials should prioritize validating these

combinatorial regimens in high-risk WT subtypes to amplify

therapeutic efficacy while mitigating off-target toxicity.
FIGURE 9

Biological feature analysis of Wilms tumor samples with high- and low-risk scores. Boxplots display the ESTIMATEScore, ImmuneScore,
StromalScore (A, B), and the infiltration levels of 28 immune cell subtypes (C, D) between high- and low-risk Wilms tumor samples. (E) GSVA analysis
shows the enrichment scores of multiple immune pathways in high- and low-risk Wilms tumor samples. (F, G) Waterfall plot showing the mutational
spectrum of genes in high- and low-risk Wilms tumor samples. (H) Violin plots compare the differences in tumor mutation burden between high-
and low-risk Wilms tumor samples. (I, J) K-M survival curves show the relationship between tumor mutation burden and risk score with overall
survival in Wilms tumor samples.
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In the realm of translational medicine, this study identified

through computational pharmacology that the PI3Kb-specific
inhibitor TGX-221 may potentially reverse the expression profiles of

NRGs in high-risk subtypes (48–51). Molecular docking and

dynamics simulations revealed that TGX-221 forms stable

complexes with hub NRG targets such as FYN (binding energy

-36.72 kcal·mol-1) (52, 53). Its mechanism of action may involve the

inhibition of the PI3K/AKT pathway and the activation of the MAPK/

ERK signaling axis, thereby remodeling the TME in WT (54, 55). In

vitro experiments confirmed that TGX-221 may significantly

attenuate the malignant phenotype of WT cells by inducing S-phase

arrest and inhibiting the epithelial-mesenchymal transition process.

These findings suggest that the compound may achieve an immune

phenotypic shift from “cold” to “hot” tumors in high-riskWT through

a dual mechanism of direct cytotoxic effects and remodeling of the

tumor immune microenvironment offering a new strategy to

overcome chemoresistance in conventional chemotherapy. However,
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despite its promising antitumor potential demonstrated in vitro, the

efficacy and safety of TGX-221 in clinical applications still require

further validation. Future research should focus on the in vivo

pharmacological evaluation of TGX-221 and its potential for

combination with other immunotherapeutic agents. For example,

combining TGX-221 with immune checkpoint inhibitors or NK cell

therapy may further enhance its antitumor efficacy. Additionally,

considering the successful application of combination therapies in

various types of tumors, such as non-small cell lung cancer and breast

cancer, similar strategies could be explored for WT in the future, to

provide more effective treatment options for patients with WT.

The essence of constructing a predictive model is to transform the

elucidation of molecular mechanisms into clinically actionable

decision-making tools through systems biology approaches. This not

only identifies biomarkers associated with prognosis but also more

accurately predicts patients’ survival, recurrence risk, and treatment

response. For example, a prognostic model based on immune-related
FIGURE 10

Biological roles of HS2ST1, EIF3M, and PPP3CA in Wilms tumor. (A) UMAP analysis of single-cell RNA sequencing data from six Wilms tumor samples
clearly shows the distribution of 40,654 cells. (B) These cells are categorized into 5 major clusters: Tumor, Stromal, Epithelium, Endothelial, and
Immune, each identified by specific marker genes. (C) Violin plots show the expression levels of 3 risk genes across different cell types in the Wilms
tumor. RT-qPCR validation of the expression levels of HS2ST1 (D), EIF3M (F), and PPP3CA (H). K-M survival curves evaluate the impact of HS2ST1 (E),
EIF3M (G), and PPP3CA (I) expression levels on overall survival in Wilms tumor. (J) HS2ST1mRNA expression levels in tumor cells following TGX-221
treatment. (K–S) Correlation analysis between the expression levels of risk genes and the infiltration of 22 immune cell subtypes in Wilms tumor.
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lncRNAs can effectively predict the prognosis of colorectal cancer

patients and the efficacy of chemotherapeutic drugs, providing new

biomarkers and therapeutic targets for precision treatment in

colorectal cancer (56). In this study, a prognostic model was

constructed based on differentially expressed NRGs. Through

LASSO-Cox regression analysis, key variables such as HS2ST1,

EIF3M, and PPP3CA were identified. A risk score was calculated for

each WT patient, and patients were stratified into high- and low-risk

score groups. Patients with high-risk scores exhibited poorer clinical

outcomes. This NRGs-related prognostic model overcomes the

limitations of traditional clinical parameters (such as tumor stage

and histological classification) in predicting outcomes. This

quantitative stratification can guide clinical practice: for example, in

low-risk scores WT patients, overtreatment (such as reducing

chemotherapy cycles) can be avoided to minimize long-term

complications (such as secondary tumors and cardiopulmonary

toxicity). In contrast, high-risk scores WT patients should undergo

intensified follow-up (e.g., reducing the interval of imaging surveillance

from every 6 months to every 3 months) and be prioritized for

inclusion in targeted therapy clinical trials (such as TGX-221).

The risk genes within the prognosis model have the potential to

serve as novel biomarkers for WT. For instance, single-cell analysis

revealed that the oncogenic genes HS2ST1 and EIF3M are primarily

expressed in tumor cells, while the protective gene PPP3CA is

mainly expressed in immune cells. This was also confirmed by PCR

results. These risk genes are not isolated predictive factors but

rather key genes in constructing a predictive network, each with its

biological functions. For example, HS2ST1 may enhance Wnt/b-
catenin signaling by mediating heparan sulfate modification,

thereby promoting tumor stem cell properties; EIF3M may

regulate the translation efficiency of oncogenic proteins through

the eIF3 complex; and PPP3CA, as the catalytic subunit of

calcineurin, may inhibit NK cell IL-2/IFN-g secretion capacity

when its expression is downregulated due to impaired NFAT

dephosphorylation (57–63). In brief, the prognostic model

constructed in this study integrates a molecular network

comprising HS2ST1 (oncogenic), EIF3M (translational

regulation), and PPP3CA (immune activation). It transforms the

heterogeneity of WT into a quantifiable precision stratification and

prognostic assessment tool. This prognosis model reveals the

potential deep mechanisms of the interaction in the immune

microenvironment, explains the differences in clinical outcomes,

and provides a bridge for the transition from conventional

chemotherapy to individualized, molecularly stratified therapies.

In summary, this study elucidated the dynamic expression

patterns of NKGs in WT’s tumor microenvironment and

proposed a novel molecular classification system based on

immune microenvironment heterogeneity: “immune rich”

(Cluster 1) and “immune desert” (Cluster 2). This classification

overcomes the limitations of traditional histopathological methods.

For the first time, through computational pharmacology screening

combined with molecular dynamics simulations, we identified that

the PI3Kb inhibitor TGX-221 could target and regulate the proteins

of FYN and NRAS, elucidating its potential mechanism in reversing

the immune-suppressive microenvironment. Additionally, based on
Frontiers in Oncology 15
the LASSO-Cox regression model, we constructed an NRGs risk

score model to achieve quantitative stratification of WT prognosis,

providing a new tool for clinical individualized treatment (e.g., de-

escalation of chemotherapy for low-risk scores patients and targeted

intervention for high-risk scores patients). However, this study still

has the following limitations: the sample size and diversity of the

self-built cohort and public datasets are insufficient, and there is a

lack of independent validation across different ethnicities and age

groups, which may affect the generalizability of the classification

sys tem. The key mechani sms , such as the immune

microenvironment remodeling by TGX-221, lack in vivo

experiments and direct validation of NK cell function, resulting in

an incomplete evidence chain for therapeutic efficacy. The stability

of the prognostic model has not been tested in external cohorts, and

the WT-specific transformation pathways for combining TGX-221

with immunotherapy remain unclear. Future work should focus on

expanding cohorts, deepening mechanistic validation, and

conducting prospective clinical trials to promote the translation

of these findings into clinical practice.
Conclusion

This study innovatively classified WT patients based on

differential expression NKGs, proposing two subtypes: “hot tumor”

(immune-rich) and “cold tumor” (immune-desert), thereby

overcoming the limitations of traditional histopathological

classification. Molecular docking and dynamics simulations revealed

that the small-molecule compound TGX-221 can target and modulate

key proteins such as FYN and NRAS, potentially reversing the

immune-desert microenvironment in WT. Additionally, the

constructed NRGs risk score model enables quantitative prediction

of WT prognosis, offering a new tool for personalized treatment

strategies. Notably, the risk gene HS2ST1 shows potential as a novel

biomarker for WT, possibly promoting tumor stem cell properties

through the regulation of the Wnt/b-catenin signaling pathway.

Future research will further explore the clinical translation potential

of these findings to advance the precision treatment of WT.
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