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Neutrophil extracellular traps (NETs) are chromatin-based structures containing
histones and granular proteases released during NETosis. They constitute a key
antimicrobial defense mechanism while exposing pathogenic histones. While
NET components effectively eliminate microorganisms, their pro-inflammatory
and cytotoxic properties inflict significant damage on host endothelial cells and
tissues. This damage contributes to diverse pathologies, including autoimmune
diseases where NET-derived components act as autoantigens, as well as
circulatory disorders, diabetes, and especially, cancer. Recent research has
increasingly illuminated the critical connection between NETs and cancer
progression, highlighting their role in promoting tumor development across all
stages through inflammation and tissue injury. Consequently, targeting NET
composition, formation, or release has emerged as a promising therapeutic
strategy. These approaches effectively mitigate NET-mediated pathogenesis
while circumventing the drawbacks of direct neutrophil depletion. Although
translating these strategies into widespread clinical practice presents
challenges, experimental studies demonstrate significant potential. This review
examines the mechanisms by which NETs drive cancer, explores current
therapeutic applications targeting NETs, and discusses both the prospects and
challenges of this evolving anticancer approach.
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1 Introduction

Neutrophils serve as critical effector cells in immune defense, employing diverse
antimicrobial strategies—phagocytosis, degranulation, reactive oxygen species (ROS)
production, and NET formation. These web-like structures—composed of DNA,
histones, and granular proteins—enable extracellular pathogen containment. Although
spontaneous DNA release from lymphocytes was documented in 1975 (1), the functional
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significance of extracellular chromatin remained unclear until
Brinkmann and colleagues formally defined NETosis in 2004 as a
programmed cell death mechanism through which neutrophils
expel NETs to capture and kill extracellular bacteria—a concept
now widely established (2). Historically viewed as short-lived
terminal effector cells (circulating ~12 hours), neutrophils were
mischaracterized by an oversimplified perspective hindering
recognition of their roles in chronic pathologies that hindered
recognition. Beyond acute infection control, NETosis can be
triggered by persistent inflammatory stimuli. During chronic
inflammation, sustained NET release exacerbates tissue damage
and drives disease progression as neutrophils deplete alternative
regulatory mechanisms (3). Crucially, neutrophils are now
recognized as major constituents of the tumor microenvironment
(TME), where they exhibiting context-dependent functions across
all cancer stages. While protumor roles dominate current literature,
NETs specifically have emerged as key mediators of cancer
initiation and progression—facilitating DNA damage, metastatic
dissemination, and inflammatory cascades within the TME.
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NETs represent a critical effector mechanism of neutrophils—
the body’s primary “first responders” to inflammation. When
deposited in tissues, NETs establish persistent inflammatory
microenvironments through sustained release of their molecular
components. This chronic inflammatory signature not only
reprograms the function of macrophage and dendritic cell but
also drives systemic pathologies including cancer, diabetes, and
atherosclerosis (3). These mechanisms establish NETs as central
players in circulatory disorders and autoimmune pathogenesis
(Figure 1). Recent paradigm shifts now recognize NETs as major
contributors to chronic disease progression, mirroring the evolving
role of neutrophils in cancer biology. This recognition has catalyzed
targeted therapeutic strategies against NET components,
demonstrating significant efficacy across infectious and
inflammatory conditions.

This review focuses specifically on NETs in oncogenesis, a field
significantly advanced by the landmark 2013 study of Sivan Berger-
Achituv et al., which linked NETSs to Ewing sarcoma (4). Although
NETs retain dual potential in tumor immunity, accumulating
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NETs in physiological and pathological conditions. Under physiological conditions, NETs exert host defense effects through directly killing
pathogens, causing pathogen membrane disruption, and recruiting and activating neutrophils. During trauma, aggregated NETs can degrade pro-
inflammatory factors, which is conducive to wound repair. When NETs accumulate overly, the intracellular substances they release can trigger
autoimmune reactions, cause tissue damage, intensify immune responses, and thereby give rise to diseases such as sepsis, autoimmune diseases,
atherosclerosis, diabetes, and cancer. Abs, Antibodies; Agg-NETs, Aggregated NETSs; AIDs, Autoimmune Diseases; AMPs, Adenosine
Monophosphates; AS, Atherosclerosis; cfDNA, Circulating Free DNA; CitH3, Citrullinated histone H3; CKs, Cytokines; DM, Diabetes Mellitus; ECM,
Extracellular Matrix; I/R Injury, Ischemia/reperfusion (I/R) Injury; NE, Neutrophil Elastase; pDCs, Pre-Dendritic Cells; ROS, Reactive Oxygen Species;

TFs, Tissue Factors; VTE, Venous Thrombosis Embolism. (By Figdraw.).
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evidence reveals their pan-cancer pro-tumorigenic functions (5).
Critically, NETs drive hallmark cancer processes including cancer
cell proliferation, angiogenesis, and epithelial-mesenchymal
transition (EMT)—mechanisms that collectively accelerate tumor
progression and adversely affect clinical prognosis. By integrating
evidence on these key pro-tumorigenic mechanisms, we evaluate
the emerging significance of NETs as multifunctional
oncology targets.

2 NETosis

Neutrophil extracellular trap formation, termed NETosis
(Figure 2), is initiated upon neutrophil activation by diverse
stimuli. Originally characterized as a regulated cell death
mechanism distinct from apoptosis and necrosis (6), NETosis
proceeds via two established pathways: suicidal and vital NETosis.
In tumors, suicidal NETosis predominates (7). This pathway
involves the activation of nicotinamide adenine dinucleotide
phosphate oxidase (NOX), which generate ROS that trigger
peptidyl arginine deiminase 4 (PAD4)-mediated histone
citrullination. Concurrently, neutrophil elastase (NE) and
myeloperoxidase (MPO) translocate to the nucleus, facilitating
nuclear membrane disintegration. Subsequently, chromatin
decondenses, followed by the rupture of the plasma membrane,
releasing the DNA-protein network and thereby causing the death
of neutrophils (2). In contrast, vital NETosis involves distinct
stimuli and accelerated NET release. Within 30 minutes,

10.3389/fonc.2025.1593510

neutrophils extrude NETs via vesicular budding independent of
NOX activity. Remarkably, these anucleated cells retain their
migratory and phagocytic capacities (8).

3 Pro-tumorigenic functions of NETs

NETs exhibit dual immunological roles: they are essential for
pathogen defense through microbial killing, cytokine degradation,
and immune cell recruitment and regulation (9). Paradoxically, they
also exert immunosuppressive effects by modulating immune cells
and inflammatory mediators. These suppressive activities promote
vascular occlusion, tissue damage, and disease pathogenesis. The
balance between NET-mediated immune protection and
immunosuppression appears to be concentration-dependent,
highlighting their context-specific duality. This review focuses on
the cancer-promoting immunosuppressive role of NETs (Figure 3).

3.1 NET formation induced by the tumor
microenvironment

Emerging evidence reveals a complex regulatory network in
which TME-derived factors orchestrate tumor-associated
neutrophil (TAN) polarization and NET formation (10). The
TME harbors multiple chemokines capable of inducing the
release of NETs by neutrophils. One example is chitinase-3-like
protein 1 (Chi3ll), a chemokine associated with triple-negative
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FIGURE 2

The formation pathways of NETs. When NETosis is initiated by activated neutrophils, the cytoskeleton and membrane system disintegrate, and with
chromatin depolymerization, the nucleus becomes rounded, the plasma and nuclear membranes become more permeable, and granular proteins as
well as chromatin and DNA are released, completing the formation of NETs. HMGB 1, High mobility group protein B 1, MPO, myeloperoxidase; NOX,
NADPH Oxidase; PMA, Phorbol Myristate Acetate; PAD 4, Peptidyl Arginine Deiminase 4; RAGE, Receptor for advanced glycosylation end products;
SIRL-1, Signal Inhibitory Receptor on Leukocytes-1; TLR 2, Toll-like receptor 2; TLR 4, Toll-like receptor 4. (By Figdraw.).
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FIGURE 3

The mechanism of the carcinogenic action of NETs. NETs play a pro-cancer role by promoting cancer initiation, progression, metastasis, and
complications. The quantity of NETs that promote oncogenesis is elevated in the TME. Thereby facilitating cancer initiation and progression through
lymphocyte depletion, modulation of immune cell differentiation, induction of epithelial-mesenchymal transition (EMT), and remodeling of the
extracellular matrix (ECM). Furthermore, NETs enhance the transvascular migration and survival of circulating tumor cells, contribute to the
preparation of pre-metastatic niches (PMNs), and can reactivate dormant cancer cells to stimulate metastasis. Additionally, NETs promote
angiogenesis and thrombosis, processes that are associated with drug resistance following chemotherapy. ANG, Angiopoietin; CAF, Cancer-
Associated Fibroblasts; CTSC, Cathepsin C; ECM, Extracellular Matrix; EMT, Epithelial-Mesenchymal Transition; G-CSF, Granulocyte Colony-

Stimulating Factor; IL-8, Interleukin 8; MDSC, Myeloid-Derived Suppressor Cells; VEGF, Vascular Endothelial Growth Factor. (By Figdraw.).

breast cancer, has been implicated in this process (11). In tumor
settings, the activation of C-X-C motif chemokine receptorl
(CXCR1) and CXCR2 receptors on neutrophils by agonist C-X-C
motif chemokine ligand 8/Interleukin-8(CXCL8/IL-8) stimulates
neutrophil activation, thereby enhancing the formation of NET
(12). Besides, tumor-produced CXCL8/IL-8 attracts human
myeloid-derived suppressor cells and elicits extrusion of NETSs
(13). Studies have revealed that granulocyte colony-stimulating
factor (G-CSF) increases the number of neutrophils prone to
forming NETs in the circulation promoting tumor progression in
models of chronic leukemia, breast cancer, and lung cancer (14). In
thyroid cancer and melanoma, the soluble factors produced by the
tumors, including but not limited to CXCL8/IL-8 and granulocyte-
macrophage colony-stimulating factor (GM-CSF), can educate
neutrophils to enter an activated functional state, which is related
to the formation of NETs (15, 16). As well as the IL - 17-dependent
recruited TAN cells subsequently form NETSs in pancreatic cancer
(17). Beyond chemokines, proteolytic enzymes and cytokines act
synergistically: cathepsin C (CTSC) upregulates IL - 6 and CCL3 to
recruit neutrophils in breast cancer while simultaneously enhancing
ROS production to drive NETosis (18). Critically, these pathways
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form a self-amplifying cycle wherein TME factors induce NETosis,
generating bioactive molecules that further stimulate neutrophil
recruitment and activation. This cascade establishes a pro-tumor
niche through immunosuppression, angiogenesis, and metastasis.

3.2 Role of NETs in tumorigenesis and
progression

Chronic tissue inflammation is a well-established oncogenic
driver, with NET-associated inflammation playing a significant role
in tumorigenesis. In non-alcoholic steatohepatitis (NASH), elevated
free fatty acids stimulate NET formation, promoting mononuclear
cell infiltration and pro-inflammatory cytokine production that
drive progression to hepatocellular carcinoma (HCC) (19).
Similarly, infection with Fusobacterium nucleatum induces robust
NET release by activated neutrophils, fostering chronic
inflammation that predisposes individuals to colorectal cancer
(CRC) and shapes a pro-tumorigenic TME (20).

Within the TME, NETSs exert multifaceted oncogenic effects
through immunomodulatory and structural remodeling. Studies
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across non-small cell lung cancer, bladder cancer, and metastatic
melanoma demonstrate NET-mediated immunosuppression via CD8
+ T cell depletion, programmed death 1 (PD - 1)- and protease-
mediated T cell dysfunction (21), and physical tumor shielding
through their reticular architecture. Beyond direct cytotoxic cell
modulation, NETs promote broader immunosuppressive networks
by inducing regulatory T (Treg) cell differentiation (22) and
facilitating macrophage polarization toward an immunosuppressive
phenotype (23). Furthermore, NET-associated proteases, particularly
matrix metalloproteinases (MMPs), significantly remodel the
extracellular matrix (ECM) through targeted protein degradation
and fibrillar matrix reorganization (24, 25). This multifaceted
regulation of both immune and structural components establishes
NETs as central mediators of tumor-permissive niche formation
across diverse malignancies.

3.3 NET-driven mechanisms of metastatic
progression

Metastatic potential is governed by several critical factors: the
invasiveness of cancer cells, their capacity to intravasate and survive
the circulatory system, the establishment of pre-metastatic niches
(PMNs), and the reactivation efficiency of dormant disseminated
tumor cells. NETs potently enhance this metastatic cascade - the
most lethal aspect of malignancy - by actively facilitating multiple
steps of cancer dissemination.

NETs promote cancer cell proliferation by modulating tumor-
associated inflammation, inducing EMT, and remodeling the ECM.
NET-mediated inflammation upregulates cyclooxygenase-2 (COX - 2)
in liver cancer cells and activates the inflammasome pathway in lung
cancer cells, thereby promoting the metastatic potential of cancer cells
(26). This persistent inflammatory state drives EMT, thereby
transforming epithelial-like cancer cells into a mesenchymal-like
phenotype with enhanced migratory and invasive capabilities (27-
29). Notably, this intermediate state exhibits stem cell-like properties,
which further augmenting metastatic potential. Additionally, NET-
derived proteases—such as NE, MMPs, and disintegrins—degrade
ECM components, releasing bioactive metabolites that contribute to
a tumor-permissive microenvironment.

NETs facilitate hematogenous dissemination by promoting
tumor cell migration through the vasculature. Histones within
NETs directly damage vascular endothelium, creating
intravasation pathways for metastatic cells (30). The binding of
NET-DNA to the receptor CCDC25 enhances the mobility of
circulating tumor cells (CTCs) (31), while NET-derived proteases
cleave laminin, activating integrin-mediated signaling pathways
that promote tumor cell survival in circulation (32). Within
microvascular beds, NETs cooperate with platelets to form
protective aggregates that shield micrometastases from shear
stress and natural killer (NK) cell-mediated clearance (33).
Despite these protective mechanisms, only a small number of
CTCs manage to survive in circulation. These surviving cells
continually adapt their phenotypes and may even enter a
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reversible dormant state to facilitate ultimate colonization (34).
Ultimately, NET's enable extravasation through endothelial damage
and proteolytic disruption of intercellular junctions (35).

Before the arrival of CTCs, NETs precondition future
colonization sites by promoting vascular leakage, redistributing
resident and bone marrow-derived cells, and remodeling the
ECM—collectively establishing the PMN (36). NET components
(elevated tissue factor and exposed phosphatidylserine) exert
coagulant effects in cancer through enhanced thrombin and fibrin
generation, promoting hypercoagulability (37). NET-associated
neovascularization exhibits compromised barrier function,
facilitating vascular leakage—particularly when elevated histones
and fibrin damage endothelium (38). The establishment of PMNs
depends on bone marrow-derived cells and frequently reprograms
local stromal cells at metastatic sites. In pancreatic ductal
adenocarcinoma with liver metastasis, cancer-associated
fibroblasts (CAFs) originate from hepatic stellate cells (HSCs).
NETs facilitate CAF recruitment by altering HSC migration (39).
Subsequently, CAFs produce amyloid-f, which induces additional
NET formation, establishing a feedback loop that amplifies stromal
activation and promotes PMN development (40). Similarly, in
breast cancer lung metastasis, NETs enhance PMN formation by
provoking inflammation in alveolar epithelial cells (41). Beyond
modifying resident cells, NET's shape the hepatic PMN in colorectal
cancer by mediating translocation of gut microbiota and related
signaling events (42).

Upon colonization of the PMN, CTCs are influenced by NETs
through two primary mechanisms: NET-secreted NE and MMP - 9
degrade extracellular mucoproteins, thereby reactivating dormant
cancer cells and promoting their proliferation and metastasis to
distant organs (43); concurrently, NET-induced angiogenesis
stimulates tumor cell division and metastatic expansion.

3.4 NETs in tumor-associated
complications

NETs exacerbate critical cancer complications including
angiogenesis, thrombosis, and therapeutic resistance, all of which
contribute to increased patient mortality. NETs promote tumor
angiogenesis (44) by damaging the vascular endothelium, inducing
a pro-angiogenic inflammatory response (45), activating the
stimulator of interferon genes (STING) pathway (46), and
upregulating vascular endothelial growth factor A (VEGFA)
expression (47).Within tumors, NETs exert dual pro-thrombotic
functions: they combin with tissue factors to amplify thrombin
generation (48, 49), and providing scaffolds for platelet and fibrin
accrual via histone-mediated platelet activation and von Willebrand
factor (VWF) release (14). Furthermore, NETs form physical
barriers around tumor cells, shielding them from therapeutic
agents and promoting the emergence of drug-resistant
phenotypes (50). Simultaneously, NET-associated integrins and
MMP - 9 drive EMT, which further augments chemoresistance in
cancer cells (51).
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4 NETs in cancer: diagnostic and
therapeutic applications

The clinical relevance of NETs continues to expand, with their
components serving as dual-purpose biomarkers for both tumor
prediction and prognosis, as well as therapeutic targets. Combined
strategies that incorporate NET modulation alongside immunotherapy,
in conjunction with precision oncology methods, demonstrate growing
therapeutic potential.

4.1 NET components as cancer biomarkers

Cancer transcriptome analyses identify NETs as significant
oncological risk factors. NET-derived biomarkers demonstrate
prognostic and therapeutic response predictive value (Table 1).
Current detection primarily employs staining techniques, with
colocalization methods preferred over single-marker assays for
enhanced specificity. Enzyme-linked immunosorbent assay
(ELISA) quantifies MPO-DNA complexes and citrullinated
fibrinogen in biofluids (52), while multiplexed ELISA/
immunofluorescence platforms measure plasma NET components
using MPO, citrullinated histone H3 (CitH3), and DNA antibodies
(53). Flow cytometry with SYTOX Green/anti-MPO double-
staining provides superior objectivity for in vivo and in vitro NET
detection. Emerging techniques include NET transcriptomic
signatures and computed tomography (CT)-derived radiomic
models, which have been validated for predicting HCC prognosis
and immunotherapy responses (54).

Despite rapid methodological advances, the detection of NETs
remains constrained by several critical limitations. The lack of
specificity in circulating free DNA (cfDNA) poses a major
challenge, as it originates from both NETs and non-NET cellular
debris. Furthermore, conventional microscopic evaluations are
susceptible to observer bias, while currently available antibody
panels often fail to reliably detect NETs even when multiplexed
approaches are employed. Additionally, the dynamic and
heterogeneous kinetics of NETosis further reduce detection
accuracy (55). Ito address these challenges, newly developed

TABLE 1 Markers used to detect NETSs.

2GSl Source References
object
NE, MPO Granin (5, 89)

S100A8, S100A9 Intracellular calcaretin of neutrophils (90)
PAD4 Protease in the nucleus (91)
CitH3 Citrullinated Histone (92)

Til; (C:I;:I;_g;l)s;te The specific cleavage site of NETs (93)
cf-DNA Depolymerized chromatin (31)
TRIMS Genes associated wi-th childhc?od acute 94)

Iymphoblastic leukemia
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automated detection systems have emerged, offering enhanced
reproducibility and enabling more profound mechanistic insights
into NET-related pathophysiology.

4.2 Therapeutic targeting of NETs in
oncology

The growing recognition of NET pathophysiology has spurred
clinical exploration of NET-targeted therapies, which leverage anti-
inflammatory mechanisms, immune modulation, thrombo-
regulation, and ROS control. These strategies aim to suppress
NETosis, thereby mitigating NET-mediated pathology and
improving patient survival. Recent oncology research highlights
critical NET-cancer interplay. Since systemic neutrophil depletion
carries a risk of life-threatening neutropenia, strategies that target
NET structures post-neutrophil activation circumvent this
limitation and represent a promising immunotherapeutic
direction. Specifically, the degradation of key NET components
and the inhibition of NET formation offer rational and targeted
approaches for cancer therapy, as summarized in Table 2.

4.2.1 Targeting proteolytic enzymes in cancer
therapy

Inhibiting key NETosis enzymes effectively suppresses NET
formation. PAD4—which catalyzes the conversion of arginine to
citrulline—represents a well-validated therapeutic target. However, its
irreversible inhibitors (Cl-amidine, F-amidine) and reversible
counterparts (GSK484, JBI - 589) exhibit limited specificity in murine
and human models (56). PAD4 inhibitor-based combination therapies
show promising anticancer activity: for instance, multifunctional nano-
agents integrating PAD4 inhibition with sonodynamic and
immunotherapies demonstrate significant anti-metastatic efficacy (57).

Following neutrophil activation, NE is extruded extracellularly
within NETs, serving as both a key NET formation mediator and
effector. NE inhibitors have longstanding anticancer applications:
naturally derived flavonoids and synthetic tetrahydropyridine
derivatives demonstrate promising antitumor efficacy in experimental
models (58, 59). Boron-, sulfur-, and fluorine-containing compounds
—structurally analogous to heparan sulfate proteoglycan metabolites
and aminoglycosides—inhibit NE activity and suppress NETosis (60).
Clinically, sivelestat sodium treats acute respiratory distress syndrome,
while next-generation NE inhibitors (lonodelestat/POL6014, alvelestat/
MPH966) show safety in Phase I trials (49, 61). Engineered exosomal
NE inhibitors further enhance antitumor immunity as in situ dendritic
cell vaccines in breast cancer (62).

As tumor-induced NETosis is NOX-dependent, inhibiting
NOX effectively suppresses NET formation. The non-selective
NOX inhibitor diphenyleneiodonium chloride (DPI) and taurine
attenuate ROS-dependent NETosis in murine models, delaying
tumor progression (63, 64, 65).

4.2.2 DNase-based therapeutic strategies
Deoxyribonuclease I (DNase I) cleaves extracellular NET-DNA,
thereby inhibiting NET-driven tumor progression (66). Although the
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TABLE 2 Methods and applications of targeted NETSs to treat cancer.

10.3389/fonc.2025.1593510

Target Mechanism Application References
Cl-amidine and F-amidine (95)
PAD4 Inhibitor GSK484 (96)
JBI-589 (56)
Multifunctional nanoagent (57)
Taurine (63)
NOX Inhibitor GSK2795039 (64)
Enzymes DPI (65)
Flavonoids 58)
Tetrahydropyrimidine derivatives (59)
. Compounds containing boron or sulfur and
NE Inhibitor K (60)
fluorine bonds ©1)
Inhalable NE Inhibitors ©2)
Engineered Exocrine
DNase [ (66)
DNase I MG (67)
Dual pH ive h 1 68
DNA Cleavage DNase Endonuclease ualp . re'sp onstve Ydroge s (68)
Bionic nanocarrie (69)
Injectable combination hydrogel (70)
Recombinant human DNase 1 (71)
TLR 4 Inhibitor TAK-242 (75)
CXCR Antagonist AMD3100 (74)
ROS Blocker Curcumin (79)
HMGB 1 Inhibitor Glycyrrhizin (76)
Metformin (77)
Formation of NETS TLR 9 Blocker Hydroxychloroquine (80)
NETosis Inhibitor Glyeyrrhizin (81)
Tetrahydroisoquinolines (82)
IL-17 Antibody BAY11-7082 (83)
G-CSFR Antibody CSL324 (84)
i iti- 4
CCDC 25 Ant}body ‘ Aniti-CCDC25 (49)
Oncolytic bacteria VNP-shCCDC25 (85)
Release of NETs GSDMD Inhibitor Disulfiram (88)

clinical application of free DNase I is constrained by its serum
instability, microgel formulations incorporating hydrophilic
zwitterionic modifications significantly improve its pharmacokinetic
profile and bioavailability (67). The immunosuppressive effects of
NETs and the acidic TME diminish the efficacy of NK cell-based
therapies; however, this limitation can be overcome using pH-
responsive hydrogels that co-deliver DNase I and acidity-
neutralizing nanoparticles, thereby preventing HCC recurrence
after resection (68). To disrupt the pro-metastatic signaling axis
mediated by NET-DNA and CCDC25, lipid-based nanocarriers
engineered to express CCDC25 and encapsulate DNase I have been
developed, effectively suppressing colorectal cancer metastasis to the
liver (69). Injectable fibrin-alginate hydrogels enabling the dual
release of DNase I and propranolol simultaneously facilitate NET
degradation and inhibit B-adrenergic signaling, leading to a
significant reduction in postoperative recurrence and metastatic
spread (70). Recombinant human DNase I—which is clinically
approved for the treatment of cystic fibrosis—also exhibits
therapeutic potential in mitigating cancer-associated thrombosis
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(71). Studies have indicated that the efficacy of NET inhibition by
DNase I is highly dependent on both the dosage and the
administration route (72). Moreover, preclinical studies of DNase
formulations have detected corresponding antibodies in both animal
models and patient sera following treatment, suggesting a potential
risk of allergic reactions (73).

4.2.3 Inhibition of NET formation and release
Inhibiting the formation and release of NETs effectively
attenuates their pathological effects. Platelet-neutrophil interactions
can trigger NETosis, which can be suppressed by blocking TLR4
expressed on platelets or CXCR2 on neutrophils (74). For instance,
administration of the TLR4 inhibitor TAK - 242 significantly inhibits
the proliferation of ovarian cancer cells (75). The inflammatory
mediator high mobility group box 1 (HMGBI) is implicated in
NETosis induction, and its inhibitors, such as glycyrrhizin and
metformin, exhibit anti-inflammatory and immunomodulatory
effects in chronic inflammatory diseases (76, 77). Targeting
HMGBI in gastric cancer effectively reduces NET formation and
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inhibits tumor growth (78). Additionally, NETosis is suppressed by
several natural and synthetic compounds, including curcumin,
glycyrrhizin, hydroxychloroquine, and tetrahydroisoquinolines (79,
80, 81, 82).

Within the TME, anticancer effects can be achieved by reducing
neutrophil activation and interrupting NET-receptor interactions.
Thus, IL - 17 and G-CSF, which recruit neutrophils and trigger
NETosis, represent potential therapeutic targets. IL - 17 antibodies
are already clinically used in psoriasis, and their efficacy in oncology
has been preliminarily validated (83). Blocking G-CSF signaling via
an anti-G-CSFR antibody (CSL324) reduces NET formation
without impairing neutrophil phagocytosis or oxidative burst
capacity, highlighting its potential as an immunotherapeutic
target (84). Similarly, targeting the CCDC25 receptor on cancer
cells disrupts its interaction with NET-DNA and inhibits metastatic
progression (85).

Gasdermin D (GSDMD), which facilitates NET release, can be
inhibited by disulfiram—an FDA-approved drug for chronic
alcoholism (86-88). Disulfiram also significantly suppresses
tumor growth by attenuating NET release, and nanoformulations
based on this compound have shown promising results in
experimental studies.

5 Conclusion

NETs, which represent an activated state of neutrophils,
participate in a wide range of physiological and pathological
processes. Initially recognized for their role in trapping
pathogens, NETs have more recently been implicated in
promoting disease. Studies indicate that a balanced rate of NET
formation and clearance contributes to host defense against
infection and tissue damage, whereas excessive or persistent NET
formation drives pathology—including cancer. The role of NETs in
cancer is subject to ongoing debate, as they exhibit both anti-tumor
and pro-tumor functions in different contexts. The probable
mechanisms of the anti-tumor effect are related to its direct
killing of cancer cells or stimulation of the immune system to
fight against the tumor. Under the bidirectional interplay between
malignant tumors and immune cells, the effects caused by the
quantity and composition of NETs change. With the weakening
of immune surveillance, NETs exhibit pro-tumor eftect and actively
modulate oncogenic progression through multifaceted roles. Owing
to these pro-tumorigenic roles, NET-targeted therapeutic strategies
are gaining attention in cancer immunotherapy. NETs are
increasingly regarded both as predictive biomarkers and
therapeutic targets in oncology.

However, when discussing NET-targeted therapies, the potential
risks of immunosuppression and increased infection must be
carefully considered. Furthermore, imprecise tumor classification
remains an obstacle to the development and application of targeted
therapies. The inherent difficulty in clearly detecting NET remains a
key limitation that hinders progress in evaluating the effectiveness of
related pharmacological interventions. Current priorities include the
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clinical translation of NET-directed agents, with DNase I, PAD4
inhibitors, and disulfiram representing leading candidates. Although
progress remains limited and numerous challenges persist, ongoing
research is essential to elucidate the tumor-specific functions of NETs.
Deeper insight into their systemic and local effects within the TME
will support the development of selective interventions that suppress
protumor activities without impairing antitumor immunity, thereby
contributing to more effective immunotherapeutic approaches.
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