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Targeting PDCD4 in cancer and 
atrial fibrillation: mechanistic 
insights from integrated multi­
omics and single-cell analysis 
Juledezi Hailati , Zhiqiang Liu, Lei Zhang 
and Muhuyati Wulasihan* 

Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China 
Background: Atrial fibrillation (AF) is a complicated and varied cardiovascular 
disorder with inadequate understanding of its molecular underpinnings. While 
Programmed cell death factor 4 (PDCD4) has been associated in several illnesses, 
its particular significance in AF remains unknown. This work seeks to discover 
PDCD4-associated critical genes and clarify their regulation processes. 

Method: We built a protein-protein interaction (PPI) network to emphasize 
important biological interactions and used transcriptome analysis to find 
differentially expressed genes (DEGs). Regulatory mechanisms were explored 
through miRNA-mRNA and transcription factor (TF) analysis. Single-cell RNA 
sequencing (SCRNA-SEQ) data were utilized to identify crucial cell types and 
intercellular communication patterns associated with key genes. 

Results: qRT-PCR analysis of peripheral blood mononuclear cells (PBMCs) from AF 
patients and healthy controls revealed a significant upregulation of PDCD4 in AF 
patients. Through differential expression analysis and PPI network construction, 11 
key genes were identified. In addition, mmu-miR-429-3p regulates Sirt1 while Wt1 
shares regulatory roles with PDCD4, Wasl, and Abl2, and that Sirt1 and Atad5 are 
both regulated by Thap9. Drug prediction analyses revealed sirtinol and trichostatin 
as promising therapeutic drugs for targeting Atad5 and Sirt1, respectively, with 
good molecular docking scores (< -5 kcal/mol). SCRNA-SEQ data pinpointed 
arterial and venous endothelial cells as critical cell types associated with the key 
genes. Finally, we also found that PDCD4 dysregulation in cancers like ACC may 
increase AF risk through immune modulation, suggesting that targeting PDCD4 
could benefit both AF and ACC patients. 

Conclusions: This study demonstrates that PDCD4 modulates AF progression by 
regulating key genes and pathways involved in inflammation, fibrosis, and 
metabolic processes. Insights from transcriptome and single-cell analysis give 
a full knowledge of the molecular processes underlying AF and indicate PDCD4 
as a possible therapeutic target. 
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1 Introduction 

Atrial fibrillation (AF), the most prevalent cardiac arrhythmia 
worldwide, is a major contributor to morbidity, mortality, and 
reduced quality of life related to cardiovascular disease (1). There is 
a significant public health concern around AF, as it affects over 37.5 
million people globally and is expected to increase significantly in the 
coming 30 years (2). Risk factors that have long been recognized 
include becoming older, being overweight, having hypertension, 
diabetes, sleep apnea, having a history of myocardial infarction or 
heart failure, smoking, and having a genetic predisposition (3). 
Although AF seldom causes death on its own, it is associated with 
several major health issues, including renal failure, cancer, heart 
attacks, strokes, dementia, blood clots, heart attacks, and chronic 
kidney disease (4). Current treatment options have their limits, as 
evidenced by significant recurrence rates and residual stroke risk, 
especially with anticoagulation, despite advances in pharmacological 
and catheter-based therapies (5). In order to overcome these obstacles 
and develop better prognostic and therapeutic methods, we must 
have a better knowledge of the fundamental processes of AF. 

An extensively expressed protein first identified for its role in 
apoptosis (6), PDCD4 goes by several other names, including H731, 
TIS, 195/15a, and MA-3. PDCD4 is a newly identified tumor 
suppressor that induces apoptosis and suppresses cell proliferation, 
invasion, and metastasis (7). New research suggests that PDCD4, in 
addition to its known functions in cancer, regulates oxidative stress, 
inflammation, and metabolic pathways (8), which might put it at the 
root of a number of metabolic illnesses. These include diabetes, 
obesity, polycystic ovarian syndrome, and obesity. In addition, the 
role of PDCD4 in cardiovascular illnesses such atherosclerosis and 
acute myocardial infarction has been more and more acknowledged 
in recent years (9, 10). In the setting of AF, fibrosis-characterized 
structural remodeling is an indicator of disease progression (11). New 
research indicates that atrial myocytes are more prone to 
inflammation and fibrosis when PDCD4 is expressed through the 
PPAR-g/NF-kB signaling pathway (12). Nevertheless, there is still 
much we don’t know about how PDCD4 affects AF etiology, which is 
both a significant knowledge gap and a possible opportunity 
for therapy. 

In addition to its cardiovascular functions, PDCD4 plays a 
critical role in tumorigenesis and cancer progression. As cancer 
incidence continues to rise globally—particularly among younger 
populations—this disease remains a major public health burden, 
with over 2 million new cases and more than 600,000 deaths 
projected in the United States alone in 2024 (13). Although 
cancer mortality has declined over recent decades due to earlier 
detection and improved therapies, the overall burden remains 
substantial and unevenly distributed across populations. 
Traditional approaches to cancer therapy, such as surgery, 
chemotherapy,  and  radiotherapy,  have  gradually  been  
complemented by targeted therapies and immunotherapy, 
including immune checkpoint inhibitors and personalized 
vaccines (14). However, limitations such as drug resistance, 
immune evasion, and systemic toxicity persist. In this context, 
increasing attention has been paid to strategies that target not 
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only cancer cells directly but also the tumor microenvironment 
(TME), where stromal and immune cells collectively influence 
tumor behavior and treatment response (15). PDCD4 has been 
implicated in several of these mechanisms, including its regulation 
by miRNAs and ubiquitin-mediated degradation, which affects its 
tumor suppressive activity across multiple cancers (16). These 
findings raise the possibility that PDCD4 may serve as a 
molecular nexus between tumor-intrinsic signaling and 
microenvironmental regulation. Therefore, investigating the pan-
cancer expression, prognostic value, and immunological relevance 
of PDCD4 may provide broader insight into its therapeutic 
potential beyond atrial fibrillation. 

RNA-seq, or whole-transcriptome analysis, has recently become 
a potent method for revealing disease-related DEGs and 
understanding gene expression patterns (17). Our knowledge of 
disease processes, biomarkers, and potential treatment targets has 
been greatly enhanced by this technology. Researchers studying AF 
have found that RNA-seq is a great tool for elucidating the 
molecular and genetic mechanisms that contribute to the disease’s 
development. We may better understand the complex molecular 
and cellular interactions that cause AF by combining transcriptome 
analysis with single-cell RNA sequencing (SCRNA-SEQ). This will 
allow us to identify important regulatory networks and 
cellular heterogeneity. 

This work utilizes extensive transcriptome and cellular analysis 
to explore the function of PDCD4 in the development of AF. To 
discover important genes, pathways, and regulatory networks 
related to PDCD4, we used RNA sequencing in mouse models of 
PDCD4 deletion and overexpression. Through the integration of 
data from single-cell RNA sequencing, we investigated expression 
unique to cell types and relationships between cells. We have 
discovered new information about PDCD4 and its role in the 
evolution of AF. This suggests that PDCD4 might be a key 
regulator and possible target for therapy. 
2 Methodology 

2.1 qRT-PCR analysis of PDCD4 expression 
in PBMCs 

This study was approved by the Ethics Committee, and 
informed consent was obtained from all participants. Peripheral 
blood samples were collected from 5 AF patients and 5 healthy 
controls at the First Affiliated Hospital of Xinjiang Medical 
University (December 2023–January 2024). Peripheral blood 
mononuclear cells (PBMCs) were isolated using standard 
protocols, and total RNA was extracted with the FastPure Cell/ 
Tissue Total RNA Isolation Kit (Vazyme). cDNA was synthesized 
using the ReverTra Ace qPCR RT Master Mix with gDNA Remover. 
qRT-PCR was performed using SYBR Premix Ex Taq II on a real-
time PCR detection system, with GAPDH as the endogenous 
control. The 2^(-DDCt) method was used for relative gene 
expression  analysis.  Primer  sequences  are  provided  in  
Supplementary Table 1. 
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2.2 Animal models 

To evaluate the function of PDCD4 in AF, this research used 
two mouse models: one with overexpression of PDCD4 (PDCD4­
OE) and one without it (PDCD4-KO). As a control group, we 
utilized C57BL/6J wild-type mice. A transgenic method was used to 
produce PDCD4-OE mice, whereas CRISPR-Cas9 gene editing was 
used to produce PDCD4-KO mice. The institutional animal care 
and use committee’s requirements were followed in all animal 
procedures. All investigations were carried out on 8–10 week old 
mice that were kept in a controlled environment with a 12-hour 
light/dark cycle. 

We used a mix of electrical stimulation and rapid atrial pacing 
(RAP) to produce AF. To summarize, isoflurane was used to put the 
mice to sleep, then a microelectrode was placed into the right 
atrium for RAP. To induce AF, a pacing rate of 450 beats per minute 
was applied for 1 hour. Using electrocardiography, the frequency 
and duration of atrial fibrillation were tracked. After AF was 
induced, the mice were kept for 24 hours before molecular 
examination of their tissue samples. 
2.3 RNA sequencing 

Total RNA was isolated from the atrial tissues of PDCD4-KO, 
PDCD4-OE, and wild-type control mice utilizing TRIzol reagent in 
accordance with the manufacturer’s instructions. The integrity of 
RNA was evaluated with an Agilent 2100 Bioanalyzer. High-quality 
RNA was utilized to construct RNA sequencing libraries with the 
NEBNext Ultra II RNA Library Prep Kit. The libraries were 
sequenced using an Illumina NovaSeq 6000 platform to produce 
150-bp paired-end reads. Raw sequencing data were subjected to 
quality control via FastQC and subsequently trimmed using Trim 
Galore. All reagents were obtained from the USA unless 
stated differently. 
2.4 Data collection 

We used the Gene Expression Omnibus database to get the 
SCRNA-SEQ dataset GSE197518. Four animals with atrial 
fibrillation and four control mice had non-cardiomyocyte samples 
collected from the left atrium and included in this collection. Key 
cell clusters were identified, cell-cell communication was analyzed, 
and pseudotime was calculated using the data. These investigations 
sought to delve into the AF molecular landscape and the dynamics 
of important cell populations that have a role in the development of 
the illness. 
2.5 Whole transcriptome data quality 
control 

Transcripts per million were calculated from raw count values 
that were quantified using FeatureCounts software for mRNA 
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analysis. By following these steps, we were able to compare total 
expression levels among samples and evaluate the dispersion of 
gene expression within each. Next, all transcriptome samples were 
subjected to principal component analysis (PC) in order to detect 
any possible outliers and evaluate the overall data quality. 

First, the transcriptome data were analyzed for long non-coding 
RNAs (LncRNAs) by evaluating the raw sequencing data for quality 
using FastQC. Next Generation Sequencing Quality Control 
methods were used to filter out low-quality reads, resulting in 
clean data. The GRCm38.102 reference genome was used to align 
the clean reads with TopHat2 (v 2.1.1) (18), and Cufflinks and 
Cuffmerge were used to undertake transcript assembly. Annotation 
of LNC-RNA was based on sources such as LncRBase and The Atlas 
of Noncoding RNAs in Cancer (TANRIC). Using RNA-Seq by 
Expectation Maximization, we assessed gene and transcript 
expression levels. To normalize the expression data, we used FK­
MMR, which stands for fragments per kilobase of transcript per 
million mapped reads. The ggplot2 software (v 3.3.6) (19) was used 
to construct box plots, and PC was applied to eliminate outliers, so 
that we could evaluate the distribution and variability of the data. 

Prior to miRNA analysis, the raw data underwent processing with 
Bcl2fastq software (v 2.20). This program eliminated sequences that 
had poly-N, had 5’ adapters, did not have 3’ adapters or insert 
fragments, and had an excessive amount of poly-A, T, G, or C. We 
computed quality control measures for the clean data, which include 
Q20, Q30, and GC content. Following the selection of sequences that 
were within a certain length range, Bowtie software (v1.3.1) was used 
to align them to the reference genome (20). The miRBase database 
was used to accomplish miRNA annotation. Just like with the mRNA 
analysis, we used expectation maximization to determine the levels of 
gene and transcript expression, and FK-MMR to normalize the 
expression data. For further quality control, box and PC plots were 
created using the ggplot2 software (v 3.3.6). 
2.6 Differentially expressed analysis and 
reverse intersection 

Using the DESeq2 program (v 1.38.0) (21) on  the  preprocessed  
transcriptome data, we conducted differential expression analysis 
comparing the KO vs. control (CO) and OE vs. CO groups to 
assess the effects of PDCD4 deletion and overexpression on gene, 
LNC-RNA, and miRNA expression in mice. Separately, the entities 
that showed differential expression were called DEGs, differentially 
expressed long non-coding RNAs (DE-LncRNAs), and differentially 
expressed microRNAs (DE-miRNAs). For this study, the significance 
level was established at |log2 fold change (FC)| > 0.5 and adjusted 
p-value (adj.p) < 0.05. To illustrate the expression patterns, heatmaps 
were made using the ggplot2 package (v 3.3.6) and volcano plots were 
created using the pheatmap package (v 1.0.12) (22). Top 10 genes that 
were upregulated and downregulated based on log2FC values were 
highlighted. By utilizing the ggVenn package (v1.2.2) (23), we were 
able to do reverse intersection analysis and discover shared 
differentially expressed components across categories. By 
combining the common DEGs from the KO vs. CO and OE vs. 
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CO comparisons, this method produced intersection DEGs. Also 
produced using the same procedure were intersection DE-miRNAs 
and intersection DE-LncRNAs. 
2.7 Enrichment analysis 

The clusterProfiler package (v 4.7.1.3) (24) was used with a 
significance threshold of p < 0.05 to conduct enrichment analyses in 
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), in order to explore the possible biological 
functions and pathways linked to the intersection of differentially 
expressed mRNAs. An ascending gene ratio was used to arrange the 
GO and KEGG analysis findings. The three most abundant keywords 
and the 10 most important gene functions were shown independently 
for each group. With this method, we were able to zero down on the 
specific biological mechanisms and molecular pathways that may play 
a role in the control of genes related to PDCD4 in patients with 
atrial fibrillation. 
2.8 Construction of protein-protein 
interaction network 

After that, we looked for protein-level interactions between 
these genes by entering the intersection of differentially expressed 
mRNAs into the STRINGP database with a confidence score 
threshold of > 0.4. After removing the genes that weren’t part of 
the network, the remaining genes were thought of as important 
interacting proteins. Cytoscape software (v3.8.1) (PMID: 31477170) 
was used to display the resultant PPI network, which allowed for a 
thorough depiction of the molecular interactions within the atrial 
fibrillation PDCD4-associated gene network. 
2.9 Construction of relevant molecular 
regulatory networks 

The “cor” function in the psych package (v2.4.3) was used to do a 
Spearman correlation study between mRNAs and differentially 
expressed LncRNAs (PMID: 37505622). The pheatmap software 
(v1.0.12) was used to create the heatmaps, using the criteria of | 
correlation| > 0.9 and p < 0.05. The key genes were found by combining 
these findings with miRNA predictions for the mRNAs that showed 
differential expression, which were obtained from the miRanda and 
PITA databases. The ChEA3 database was searched for predicted TFs 
associated with these important genes, using a score cutoff greater than 
900. To better understand the molecular interactions that lead to atrial 
fibrillation, a regulatory network involving microRNAs (miRNAs) and 
transferases (TFs) was built and shown in Cytoscape (v3.8.1). 
2.10 Key genes localization 

We used the RCircos software (v1.2.2) (PMID: 23937229) to 
look into the chromosomal locations of the important genes 
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according to the gene annotation data. In order to make the 
chromosomal data visualizable, we first isolated the positions of 
the important genes. The genomic distribution of the important 
genes was then clearly shown by creating circumcos plots, which 
show where the genes are located on the chromosomes. 
2.11 Enrichment analysis of key genes 

We used the clusterProfiler software (v4.7.1.3) to do GO and 
KEGG analyses, and we show you the top three GO keywords and top 
ten KEGG pathways. The psych package (v2.4.3) was used to 
determine the Spearman correlation coefficients between all of the 
genes and each important gene. Applying the GSEA program to the 
transcriptome dataset allowed us to detect route differences between the 
KO  vs. CO and  OE  vs. CO groups. The  expression  of  several pathways  
was examined using DESeq2 (v1.38.0), and pathways were considered 
significant if their adjusted p-value was less than 0.05. For the purpose 
of visualizing the results, bar plots were created using ggplot2 (v3.3.6). 
In order to do pathway analysis, the Molecular Signatures Database’s 
(MOSD) “m2.all.v2023.2.Mm.symbols.gmt” gene set was borrowed. 

After sorting the gene correlation coefficients by decreasing order, 
the clusterProfiler software (v4.10.1) and the same MOSD reference 
gene set were used to conduct Gene Set Enrichment Analysis 
(GESEAN). The five routes that were shown to be considerably 
enhanced (adj. p < 0.05) were then displayed. After sorting the gene 
correlation coefficients by decreasing order, the clusterProfiler software 
(v4.10.1) and the same MOSD reference gene set were used to conduct 
Gene Set Enrichment Analysis (GESEAN). The five routes that were 
shown to be considerably enhanced (adj. p < 0.05) were then displayed. 
2.12 Drug prediction and molecular 
docking 

By merging drug data from the Drug Gene Interaction Database 
(DUGID) and the Comparative Toxicogenomics Database (COTD), 
with an emphasis on interactions with an Interaction Count > 1, 
candidate compounds were chosen to find possible therapeutic 
medicines targeting the important genes. Using Cytoscape (v3.8.1), 
we were able to see how these potential drugs interacted with 
important genes. In order to assess the binding affinity of 
important genes with the most potential medications, the Protein 
Data Bank (PDB) was queried for the protein structures of the 
relevant genes and the PubChem database was queried for two-
dimensional molecular structures of the chosen compounds. To 
conduct molecular docking investigations, we used AutoDock Vina 
after converting protein structures to PDBQT format with AutoDock 
software. A binding energy criterion of less than -5 kcal/mol was used 
to show the docking data in PyMOL (v3.0) (PMID: 31710740). 
2.13 Disease association analysis 

Using the COTD an association analysis between the key genes 
and various diseases was performed. After the results were sorted 
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based on the Inference Score, the top 20 diseases were visualized 
using Cytoscape software (v 3.8.1). 
 

2.14 Identification of differential cells based 
on SCRNA-SEQ data 

The CreateSeuratObject function from the Seurat package 
(v4.3.0) (PMID: 34062119) was used to preprocess the 
GSE197518 dataset. The settings were set to min.cells = 3 and 
min.features = 200. We used the PercentageFeatureSet tool to 
determine the content of mitochondrial genes; cells whose 
mitochondrial gene expression was more than 10% were not 
included. Any cells or genes that did not match the quality 
control standards, which included minGene = 200, maxGene = 
6000, and pctMT < 10, were eliminated. To see the quality control 
results graphically, we used the ggplot2 software (v3.3.6). 

After using NormalizeData to standardize the data, the 
FindVariableFeatures function used the mean-variance relationship 
to identify the top 2000 genes with the highest levels of variability. For 
the top ten most variable genes, these genes were shown visually with 
labelled annotations. Following data normalization with ScaleData, 
dimensionality reduction was achieved by doing principal 
component (PC) analysis on the variable genes using the runPC 
function. To find the best number of PCs to cluster, the ElbowPlot 
program looked for ones that were before the elbow point. 

The FindClusters and FindNeighbors functions were used to do 
unsupervised clustering at a resolution of 0.4. Optimizing cluster 
assignments was done using a Jackstraw-based permutation test, 
which helped to refine clustering. Using the clustering visualization 
tools provided by Seurat, the resulting clusters were shown. 

Marker gene expression was used to identify cell types for each 
cluster, with common markers and established markers from the 
literature (PMID: 3727811) consulted. Using ggplot2 (v3.3.6), a dot 
plot was created to confirm the marker gene expression across clusters. 

To reduce potential technical confounders in cell type 
proportion comparisons, stringent quality control filtering was 
applied, and data normalization steps were conducted to mitigate 
batch effects and sequencing depth variability. The Jackstraw 
permutation test further ensured robust clustering results, 
minimizing technical artifact influence on biological interpretation. 
2.15 Identification of key cells and gene 
expression analysis 

Stack bar plots were created using the ggplot2 software (v3.3.6) 
to portray the proportions of each cell type inside clusters. We used 
box plots to show the levels of expression of important biomarkers 
in immune cells. The Wilcoxon rank-sum test was used to identify 
cells with significantly different gene expression, and these cells 
were defined as important cells, with an adjusted p-value threshold 
of less than 0.05. In the end, we utilized the FeaturePlot function 
from the Seurat package (v4.3.0) to generate UMAP plots, which 
displayed the gene expression patterns in the selected key cells. 
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2.16 Intercellular communication analysis 

Using the CellChat package (v 1.6.1) (PMID: 33597522), 
intercellular communication analysis was performed on all 
annotated cell clusters. The results were then visualized as 
interaction plots alongside a heatmap to depict the communication 
patterns between the different cell types. 
2.17 Gene expression and mutation 
analysis in pan-cancer datasets 

We obtained RNA sequencing data (FPKM format) and 
somatic mutation profiles for 33 cancer types from The Cancer 
Genome Atlas (TCGA) via the UCSC Xena browser. PDCD4 
expression was compared between tumor and adjacent normal 
tissues using the Wilcoxon rank-sum test. The tumor mutational 
burden (TMB) and microsatellite instability (MSI) scores were 
acquired from published pan-cancer annotations. Spearman 
correlation was used to evaluate the association between PDCD4 
expression and TMB/MSI in each cancer type. 
2.18 Survival analysis across cancers 

Overall survival (OS) data were retrieved from TCGA clinical 
annotations. Kaplan–Meier survival curves were plotted using 
the “survival” and “survminer” R  packages to assess the

prognostic significance of PDCD4 expression. Patients were 
stratified into high and low expression groups based on the 
median PDCD4 level within each cancer type. The log-rank test 
was applied to assess significance. Multivariate Cox regression 
was not performed in this study, which we acknowledge as 
a limitation. 
2.19 Immune infiltration analysis 

To explore the immune relevance of PDCD4, we assessed its 
correlation with immune cell infiltration using two independent 
approaches: CIBERSORT and single-sample gene set enrichment 
analysis (ssGSEA). The LM22 gene signature matrix was used in 
CIBERSORT to estimate the relative proportions of 22 immune cell 
types. ssGSEA was performed using the “GSVA” R package and 
immune-related gene sets from published literature. Spearman 
correlation was used to evaluate associations between PDCD4 
expression and infiltration scores. 
2.20 Statistical analysis 

R program (v4.2.2) was used to perform bioinformatics 
analysis. When comparing groups in animal studies, the 
Wilcoxon rank-sum test was used because the data was 
non-parametric. If the adjusted p-value (adj.p) was less than 
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0.05, it was deemed statistically significant. All analyses were 
corrected for multiple testing, and the ggplot2 package (v3.3.6) 
was used to construct visualizations of the results. 
3 Results 

3.1 Differentially expressed genes related 
to PDCD4 and their functional analysis 

To investigate the role of PDCD4 in AF, we first examined its 
expression levels in PBMCs from AF patients and healthy controls. 
qRT-PCR analysis revealed a significant upregulation of PDCD4 in 
the PBMCs of AF patients compared to controls (Figure 1), 
suggesting a potential role for PDCD4 in the pathogenesis of AF. 
To further elucidate the regulatory mechanisms and functional 
significance of PDCD4 in AF, we conducted transcriptome 
sequencing. After rigorous quality control, the sequencing data 
showed minimal variation across samples and consistent fragment 
size distribution (Supplementary Figure 1). Principal component 
(PC) analysis confirmed clear separation between groups, indicating 
reliable sample classification (Supplementary Figure 1). Differential 
expression analysis identified a total of 3,583 differentially expressed 
genes (DEGs) in the PDCD4 knockout (PDCD4-KO) group 
compared to controls, with 1,697 genes upregulated and 1,886 
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genes downregulated (Figures 2A, B). Similarly, 449 DEGs were 
detected in the PDCD4 overexpression (PDCD4-OE) group, with 
248 upregulated and 201 downregulated genes (Figures 2C, D). To 
explore the biological pathways associated with PDCD4, we 
performed gene set enrichment analysis (GSEA). In the PDCD4­
KO group, GSEA revealed reduced eosinophil-related signatures 
and enhanced beta-oxidation of hexanoyl-CoA to butanoyl-CoA 
(Figure 2E). Conversely, the PDCD4-OE group exhibited 
downregulated choline catabolism and upregulated glucocorticoid 
biosynthesis (Figure 2F). To identify key regulatory genes, we 
intersected the DEGs from both comparisons and identified 47 
common differentially expressed mRNAs (DE-mRNAs) as 
candidates for further analysis (Figures 2G, H). Gene Ontology 
(GO) enrichment analysis of these DE-mRNAs revealed significant 
associations with biological processes such as steroid hormone 
response, positive regulation of adaptive immune responses, and 
response to ketone. As shown in Figure 2I, cellular component 
analysis highlighted enrichment in the Golgi membrane, 
microtubules, and the lumenal side of the endoplasmic reticulum 
membrane. In terms of molecular function, the predominant roles 
involved oxidoreductase activity, particularly those involving NAD 
(P)+ as acceptors, as well as ATP hydrolysis activity. Finally, KEGG 
pathway enrichment analysis (Figure 2J) identified significant 
pathways related to viral myocarditis, cell adhesion molecules, 
and cellular senescence. Taken together, these findings shed light 
FIGURE 1 

PDCD4 expression in peripheral blood mononuclear cells (PBMCs) of atrial fibrillation (AF) patients and healthy controls. Bar chart showing the 
relative expression levels of PDCD4 in PBMCs from AF patients (n=5) and healthy controls (n=5), determined by qRT-PCR; "****" indicates p < 
0.0001. GAPDH was used as the internal control. Statistical significance was assessed using an unpaired t-test. 
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on the multifaceted biochemical and molecular pathways associated 
with PDCD4 and underscore its potential role in the development 
of atrial fibrillation. 
3.2 The PPI network and the functional 
findings of eleven important genes related 
to PDCD4 

Our goal in building the PPI network was to gain a better 
understanding of the protein-level interactions among the 47 DE­
mRNAs. Figure 3A shows that after isolating nodes, 11 proteins with 6 
different kinds of interactions remained and were subsequently 
recognized as important genes. A targeted subset of prospective 
genes for further investigation is represented by these important 
genes. Based on the results of the chromosomal localization study, it 
was found that the following genes did not distribute randomly: Abi2, 
Rgs13, and Rgs1 were grouped on chromosome 1; Fabp4, Hltf, Hsd3b2, 
and Hsd3b3 were on chromosome 3; Wasl was on chromosome 6; 
Sirt1 was on chromosome 10; Atad5 was on chromosome 11; and 
Frontiers in Oncology 07 
PDCD4 was on chromosome 19 in Figure 3B. By using GO enrichment 
analysis, we were able to probe the discovered important genes’ 
biological importance. The primary associations of the important 
genes in the biological process category with steroid biosynthesis 
pathways, ketones, and steroid hormones indicate that these genes 
are involved in metabolic and endocrine control. This group of cellular 
components includes genes that are involved in mitochondrial function 
and intracellular structural organization; these genes were shown to be 
more abundant in the intercellular bridge, organelle envelope lumen, 
and mitochondrial intermembrane space. Their enzymatic activities in 
steroid metabolism were reflected in the genes’ molecular function 
links to 3-beta-hydroxy-delta5-steroid dehydrogenase, intramolecular 
oxidoreductase, and steroid delta-isomerase (Figure 3C). Figure 3D 
shows the results of further KEGG pathway analysis that connected 
these genes to important metabolic and regulatory processes, such as 
steroid hormone biosynthesis, cortisol production and release, and 
ovarian steroidogenesis. Additional insights were provided by 
GESEAN, which showed that pathways related to respiratory 
electron transport, ATP synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins were significantly enriched 
FIGURE 2 

Differential gene expression and functional analysis associated with PDCD4 regulation in atrial fibrillation. (A) Volcano plot illustrating DEGs in the 
PDCD4-KO group compared to the control group, highlighting the top 10 upregulated and downregulated genes. (B) Heatmap showing the expression 
levels of the top 10 upregulated and downregulated DEGs in the PDCD4-KO group compared to the control group. (C) Volcano plot illustrating DEGs in 
the PDCD4-OE group compared to the control group, highlighting the top 10 upregulated and downregulated genes. (D) Heatmap showing the 
expression levels of the top 10 upregulated and downregulated DEGs in the PDCD4-OE group compared to the control group. (E) Bar chart of GSEA 
results for pathway enrichment analysis in the PDCD4-KO group. (F) Bar chart of GSEA results for pathway enrichment analysis in the PDCD4-OE group. 
(G) Venn diagram showing overlapping genes significantly upregulated in the PDCD4-KO group and downregulated in the PDCD4-OE group. (H) Venn 
diagram showing overlapping genes significantly downregulated in the PDCD4-KO group and upregulated in the PDCD4-OE group. (I) Circular plot 
summarizing GO enrichment analysis for intersecting DEGs. (J) Bar chart summarizing KEGG enrichment analysis for intersecting DEGs. 
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in 10 out of the 11 key genes (Sirt1, PDCD4, Hsd3b3, Hsd3b2, Rgs1, 
Rgs13, Atad5, Hltf, Abi2, and Wasl). This emphasizes the functions of 
the mitochondria and their significance in energy metabolism. 
Figures 3E–O show that Fabp4 has a specific role in metabolism, 
since it is uniquely enriched in the citric acid (TCA) cycle. 
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To summarize, the results of the enrichment analyses strongly 
suggest that these important genes are involved in hormone 
pathways, steroid metabolism, and mitochondrial energy generation. 
This suggests that they may play a role in atrial fibrillation and the 
metabolic dysregulation that comes with it. 
FIGURE 3 

PPI network construction, chromosomal localization, and functional enrichment analysis of 11 PDCD4-associated key genes. (A) PPI network 
constructed using STRINGP for 47 candidate genes, with 11 nodes and 6 edges retained after removing isolated nodes. (B) Chromosomal 
localization of the 11 key genes visualized using RCircos, displaying their distribution across specific chromosomes. (C) Circular plot summarizing GO 
enrichment analysis for the 11 key genes, categorized by biological processes, cellular components, and molecular functions. (D) Bar chart 
summarizing KEGG pathway enrichment analysis for the 11 key genes. (E–O) GESEAN results for the 11 key genes, showing enrichment in distinct 
pathways related to energy metabolism, mitochondrial function, and specialized metabolic processes. 
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3.3 Building regulatory networks for 
PDCD4-related key genes using LNC-RNA, 
miRNA, and TFs 

Next, the LncRNAs were annotated using the TANRIC and 
LncRBase databases, after the alignment of the clean reads to the 
reference genome. Density and boxplot analyses of the expression 
distributions revealed comparable expression levels among samples 
(Supplementary Figure 2A). Additional assurance of data reliability 
was provided by PC analysis, which aimed to detect and eliminate 
outliers (Supplementary Figure 2B). By contrasting the PDCD4-KO 
and control groups, in addition to the PDCD4-OE and control 
groups, a differential expression analysis was conducted. In the 
PDCD4-KO vs. control comparison, 341 DEGs were shown by 
volcano plots and heatmaps (Supplementary Figures 2C-F). Of 
these, 138 genes were upregulated and 203 genes were 
downregulated. In the PDCD4-OE vs. control comparison, 32 
genes were shown, with 17 genes upregulated and 15 genes 
downregulated. By combining the DEGs from the two sets of 
comparisons, five possible LncRNAs were found (Figures 4A, B). 
A correlation study was carried out to investigate the co-expression 
connection between the DE-LncRNAs and DE-mRNAs. Figure 4C 
shows that there is a high association between the DE-mRNAs and 
the LncRNAs 4921513I3Rik and 1700011B04Rik. 

Following the processing and annotation of miRNA sequencing 
data (Supplementary Figures 2G-H), differential miRNA analysis 
was conducted across the groups (Supplementary Figures 2I-L) to  
study the regulatory mechanisms of DE-miRNAs on the eleven DE­
mRNAs that had been discovered. The intersection of the 
differential miRNAs led to the identification of three potential 
DE-miRNAs (Figures 4D, E). We were able to identify 181 target 
miRNAs by merging the PITA and miRanda datasets (Figure 4F). A 
crucial miRNA that controls Sirt1 was identified as mmu-miR-429­

3p by further intersecting with the differentially expressed miRNAs 
in our analysis (Figures 4G, H). 

In addition, a TF-mRNA network was built using 11 important 
genes and 49 projected TFs as there were no predicted TFs for the 
crucial genes RGS13, FABP4, and HSD3B3. Figure 3I shows that 
Wt1 typically regulates PDCD4, Wasl, and Abi2, whereas Thap9 
typically regulates Sirt1 and Atad5. 
3.4 In the heart microenvironment of atrial 
fibrillation, characterization of critical gene 
expression and cellular interactions 

Preprocessing the public single-cell RNA sequencing dataset 
GSE197518 allowed us to examine the cardiac microenvironment 
and the function of important genes in various cell types 
(Supplementary Figures 3A-E). Supplementary Figures 3F, G show 
the identification of 21 separate cell clusters following quality 
inspection. Figures 5A, B shows that these clusters were categorized 
as seven distinct cell types and one unidentified subgroup according 
Frontiers in Oncology 09
to gene expression patterns and references in the literature. After that, 
we looked at the different cell types in both the AF and control 
groups. The AF group had a preponderance of capillary endothelial 
cells (ECs), in contrast to the control group which exhibited a 
preponderance of arterial ECs (Figure 5C). In Figure 5D, we  can
see that the AF group had substantially lower arterial and venous ECs. 
We used the “CellChat” program to analyze cell-cell communication 
in order to learn more about cellular interactions in the heart 
microenvironment. According to the results of this investigation, 
lymphatic ECs and artery ECs interact strongly (Supplementary 
Figures 4E, F; Figures 5E, F). Lastly, we looked at the expression of 
eleven important genes in various cell types. Our findings 
demonstrated that venous ECs were the primary locus of Rgs1 
expression, whereas arterial ECs were the primary locus of Fabp4 
and Wasl expression. The AF group exhibited a preponderance of 
PDCD4-expressing capillary cells and Sirt1-expressing fibroblast-like 
endothelial cells, respectively. The expression of Hsd3b2, Rgs13, and 
Atad5 was found solely in AF cells, although at extremely low levels; 
in contrast, Abi2 and Hltf were mostly expressed in venous ECs 
(Supplementary Figures 4A-J). 
3.5 Cancer risk factor analysis, molecular 
docking, and targeted drug prediction for 
important genes 

Out of the five genes we tested, 295 were associated with Atad5, 
2 with Fabp4, 2 with Hsd3b2, 1 with PDCD4, and 29 with Sirt1. 
And results show that a separate study utilizing the COTD database 
predicted the effects of 18 medications on Atad5, 387 on Fabp4, 12 
on Hsd3b2, 57 on PDCD4, and 265 on Sirt1. One medication 
candidate for Atad5 (sirtinol) and five for Sirt1 (trichostatin A) were 
chosen for further molecular docking investigations when the drug 
predictions from both databases intersected (Figures 6A–F). 

Molecular docking analysis showed that the target genes and their 
anticipated pharmaceuticals had high binding affinities. Both Sirt1 
and Atad5 demonstrated strong binding performance with 
trichostatin A and sirtinol, respectively, with docking scores of -8.5 
and -7.9 kcal/mol, respectively, suggesting binding energies below -5 
kcal/mol (Figures 7A–D). 

The disease-related network further showed that the 11 critical 
genes were strongly connected with inflammation and chemical-or 
drug-induced liver damage (Figure 7E). The results shed light on 
possible treatments and the importance of the important genes in 
illness settings, providing important information for the 
development of new treatments. 
3.6 PDCD4 expression across cancer types 
and its prognostic significance 

We conducted a thorough pan-cancer research to examine 
PDCD4 expression patterns, mutational features, prognostic 
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importance, and its possible function in tumor immune regulation 
because cancer is known to increase the incidence of AF. According 
to our findings, several forms of cancer have unique patterns of 
PDCD4 expression. Figures 8A, B shows that cholangiocarcinoma 
(CHOL) and liver hepatocellular carcinoma were highly increased, 
whereas malignancies including thyroid carcinoma and colon 
adenocarcinoma were markedly downregulated with respect to 
PDCD4. In cancers like prostate adenocarcinoma and breast 
invasive carcinoma, HIGH PDCD4 expression is negatively 
correlated with important markers of genomic instability, such as 
tumor mutational burden TMB and microsatellite instability (MSI), 
according to additional research into the genomic features linked 
with PDCD4 expression (Figures 8C, D). We performed an analysis 
of PDCD4’s correlation with overall survival (OS) across various 
cancer types to determine its therapeutic value. An intriguing 

finding in adrenocortical carcinoma (ACC) is the correlation 
between high PDCD4 expression and a much worse prognosis, 
which raises the possibility of an oncogenic function in this cancer. 
On the flip side, malignancies such kidney renal clear cell carcinoma 
(KRCC), lung adenocarcinoma (LADC), and mesothelioma 
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(MESO) were shown to have better survival outcomes when 
PDCD4 levels were higher. This suggests that PDCD4 may have a 
tumor-suppressing role in these cases (Figures 9A–C). Figures 9D, E 
show that PDCD4 may affect tumor-immune interactions in a 
cancer-specific way, as shown by unique immune cell infiltration 
patterns linked with PDCD4 expression, as indicated by single­
sample gene set enrichment analysis (ssGESEAN) and CIBERSORT 
analysis. To sum up, our pan-cancer research reveals that PDCD4 is 
an important molecular actor in several cancers. The fact that 
PDCD4 influences genomic stability, patient prognosis, and 
immune modulation implies that it could serve as a link between 
the biology of cancer and the progression of AF. 
4 Discussion 

Highlighting PDCD4 ’s significance in inflammation, 
mitochondrial function, and steroid metabolism, this study 
revealed critical genes and pathways controlled by it in AF. 
Endothelial  cells  were  identified  as  crucial  in  the  AF  
FIGURE 4 

Regulatory network analysis of LncRNAs, miRNAs, and TFs associated with 11 PDCD4-related key genes. (A) Venn diagram showing overlapping 
LNC-RNA significantly upregulated in the PDCD4-KO group and downregulated in the PDCD4-OE group. (B) Venn diagram showing overlapping 
LNC-RNA significantly downregulated in the PDCD4-KO group and upregulated in the PDCD4-OE group. (C) Heatmap illustrating the correlation 
between 5 intersecting differentially expressed LncRNAs and the 11 key genes. (D) Venn diagram showing overlapping miRNA significantly 
upregulated in the PDCD4-KO group and downregulated in the PDCD4-OE group. (E) Venn diagram showing overlapping miRNA significantly 
downregulated in the PDCD4-KO group and upregulated in the PDCD4-OE group. (F) Venn diagram showing the overlap of miRNAs targeting 
differentially expressed genes as predicted by PITA and miRanda databases, with 181 common miRNAs identified. (G) Venn diagram showing the 
intersection of database-predicted miRNAs targeting PDCD4-associated genes and miRNAs differentially expressed in sequencing data. (H) Key 
miRNA-mRNA regulatory network visualized using Cytoscape (I) Transcription factor regulatory network of the 11 PDCD4-related key genes. 
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microenvironment by single-cell RNA sequencing, and differential 
expression analysis exposed substantial changes in metabolic and 
endocrine processes. Furthermore, PDCD4 has several functions in 
cancer, and its dysregulation is associated with tumor growth and 
an increased risk of AF, so it may be a therapeutic target for 
both diseases. 

Although PDCD4 was first found in apoptotic cells, it is now 
known that it regulates chronic inflammation and metabolic 
dysregulation, which play a role in the pathophysiology of 
numerous diseases. These include cancer, hepatitis, neurological 
disorders, metabolic diseases, and cardiovascular diseases (25–28). 
The results of our GSEA enrichment analysis indicated that the 
activation of signaling pathways associated to lipid metabolism, 
specifically the PPARa signaling pathway, was dramatically 
enhanced by PDCD4 deletion. Previous research has found that 
PDCD4 enhances lipid accumulation in hepatocytes by hindering 
PPARa-mediated fatty acid oxidation (29), which is in line with our 
results. It has been demonstrated that the PPAR-a/sirtuin 1/PGC­
1a pathway inhibits atrial metabolic remodeling in individuals with 
AF, which is an essential process in the development of AF (30). 
Additionally, our GSEA enrichment analysis showed that the PI3K/ 
FGFR1 signaling pathway was significantly activated with PDCD4 
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overexpression. We found evidence that PDCD4 may have a role in 
cardiac fibrosis, adding to the literature that suggests it modulates 
PI3K/AKT signaling to induce cardiomyocyte apoptosis (31). In 
addition, research has demonstrated that the PPAR-g/NF-kB 
pathway is activated by PDCD4, which in turn increases 
inflammation and fibrosis in mouse atrial myocytes (12). The 
results of this study highlight the complex function of PDCD4 in 
AF and point to its possible use as a therapeutic target to address 
fibrosis, inflammation, and metabolic remodeling in this condition. 

We identified eleven important genes related with PDCD4 using 
differential expression and PPI analysis; of them, PDCD4, SIRT1, and 
FABP4 showed very significant connections. An NAD+-dependent 
deacetylase, SIRT1 is essential for controlling cell differentiation, 
oxidative stress, autophagy, and apoptosis (32). Research has 
indicated that SIRT1 has the ability to control the activation of 
PDCD4 through AP-1/decorin signaling (33), indicating that SIRT1 
might potentially operate as an intermediary regulator of PDCD4. 
Furthermore, SIRT1 reduces age-related AF by blocking RIPK1 
acetylation and by activating the SIRT1/PGC-1a/FNDC5 axis, it 
inhibits atrial fibrosis caused by angiotensin II (Ang II) (34). Based on 
these results, it seems that SIRT1 protects against the advancement of 
AF via its regulatory connection with PDCD4. We also found that 
FIGURE 5 

Characterization of cell type composition and interactions in the cardiac microenvironment of atrial fibrillation. (A) UMAP plot showing eight major 
cell subtypes identified via SCRNA-SEQ, including Arterial ECs, Venous ECs, Lymphatic ECs, Capillary ECs, Valvular ECs, EECs, FB-like ECs, and PC-
like ECs. (B) Bubble plot illustrating the expression of marker genes specific to each identified cell subtype. (C) Bar chart displaying the cell type 
composition in the control and AF groups. (D) Comparative analysis of cell type proportions between the AF and control groups. (E, F) Cell-cell 
communication analysis between eight cell subtypes. 
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FABP4, a cytosolic protein that is involved in the metabolism and 
absorption of fatty acids (35), was a major PDCD4-associated gene. 
By facilitating lipid and fibrotic alterations in heart architecture and 
Ca2+ dynamics, FABP4 has been recognized as a prognostic indicator 
for individuals with AF (36, 37). Curiously, research has shown that 
autophagic proteins drive the unusual secretion of FABP4 in a SIRT1­
dependent way (38), and the PPI network has shown a strong 
relationship between SIRT1 and FABP4. To summarize, our results 
shed insight on the intricate regulatory network including PDCD4, 
SIRT1, and FABP4. The fact that SIRT1 regulates PDCD4 and that it 
is connected to FABP4 implies that there is a coordinated process by 
which PDCD4 adds to the dysregulation of lipid metabolism and 
fibrosis in AF. 
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An AF-specific competing endogenous RNA (cenRNA) 
network  was  built  by  combining  interactions  between  
differentially expressed miRNAs, mRNAs, and LncRNAs in order 
to delve more into the regulatory linkages among the identified 
important genes. Metastasis Associated Lung Adenocarcinoma 
Transcript 1 (MET-LAT1) stood out among the differentially 
expressed LncRNAs. In addition to its role in non-small cell lung 
cancer prognosis, MET-LAT1 has been linked to cardiovascular 
diseases (39). According to research, cardiomyocyte apoptosis in AF 
can be decreased by upregulating Sox-6 expression through the 
downregulation of miR-499a-5p, which is produced by cardiac 
fibroblast-derived exosomal MET-LAT1 (40). Furthermore, we 
found that mmu-miR-429-3p and SIRT1 interact closely, which 
FIGURE 6 

Prediction and identification of potential drugs targeting key genes. (A) Venn diagram showing the intersection of potential drugs targeting ATAD5 
predicted by DUGID and COTD databases. (B) Venn diagram showing the intersection of potential drugs targeting FABP4 predicted by DUGID and 
COTD databases. (C) Venn diagram showing the intersection of potential drugs targeting HSD3B2 predicted by DUGID and COTD databases. 
(D) Venn diagram showing the intersection of potential drugs targeting PDCD4 predicted by DUGID and COTD databases. (E) Venn diagram showing 
the intersection of potential drugs targeting SIRT1 predicted by DUGID and COTD databases. (F) Identification of specific drugs targeting SIRT1, 
including SURAMIN, SIRTINOL, RESVERATROL, NIACINAMIDE, and GINSENOSIDE RG3, as well as a drug targeting ATAD5, TRICHOSTATIN A. 
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may indicate that the mmu-miR-429-3p/SIRT1 axis is involved in 
the pathophysiology of AF. An earlier study found that mmu-miR­

429-3p is associated with MET regulation, while another study 
found that SIRT1 promotes mesenchymal-epithelial transition 
(MET) via controlling Fra-1 expression (41, 42). This study adds 
to the growing body of evidence suggesting that the mmu-miR-429­

3p/SIRT1 axis may have a role in reducing atrial fibrosis, a major 
risk factor for AF development. Our cenRNA network study 
concludes that mRNAs, miRNAs, and LncRNAs all interact 
intricately to control PDCD4-related gene expression. New 
regulatory pathways may contribute to fibrosis, inflammation, 
and metabolic dysregulation in AF, as shown by the involvement 
of MET-LAT1 and the mmu-miR-429-3p/SIRT1 axis. The results of 
this study provide hope for the future of AF research into the 
potential of RNA-based treatment approaches that target the 
regulatory network focused on PDCD4. 

To better understand the roles and activities of these important 
genes in AF, we used data from single-cell RNA sequencing to 
investigate the cardiac microenvironment. In AF, we found that the 
fraction of arterial and venous endothelial cells (ECs) is much lower. 
This suggests that endothelial dysfunction may contribute to ischemia, 
thrombosis, and vascular shear stress, which are all associated with the 
development of AF (43). Furthermore, examination of cell-cell 
communication revealed robust connections between lymphocytes 
and artery ECs. When blood vessel ECs in the arteries are under 
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stress, they release cell adhesion molecules including ICAM-1 and 
VCAM-1. These molecules help monocytes and T cells communicate, 
and eventually travel to areas of inflammation (44). Abnormal 
interactions between immune cells and arterial ECs in the chronic 
inflammatory milieu of AF can activate pro-inflammatory pathways 
including the NF-kB pathway, which worsens atrial remodeling and 
fibrosis. Additionally, PDCD4 was shown to be considerably increased 
in capillary ECs and fibroblast-like ECs in AF, according to a study of 
the expression patterns of the eleven critical genes across several cell 
clusters. The results support PDCD4’s hypothesized involvement in 
AF’s fibrotic processes, which are consistent with its established 
function in inducing fibrosis (12). This study provides more evidence 
that PDCD4 is involved in the pathophysiology of AF, which has 
important consequences for  its function in endothelial dysfunction, 
chronic inflammation, and atrial fibrosis. 

At last, we discovered medicinal compounds that may target the 
eleven critical genes identified in this study. In particular, 
trichostatin A (TSA), a histone deacetylase inhibitor that targets 
ATAD5, has shown promise in reducing chronic inflammation and 
fibrosis in other disorders such as inflammatory bowel disease and 
hepatic ischemia-reperfusion damage (45, 46). TSA exerts its effects 
by modulating histone acetylation, which can influence gene 
expression related to inflammation and fibrosis. Given the role of 
inflammation and fibrosis in AF pathophysiology, it is plausible that 
TSA could reduce these pathological processes in AF as well. 
FIGURE 7 

Molecular docking and disease associations of key genes. (A, B) Visualization of molecular docking results showing the interaction between ATAD5 
and Trichostatin A. Blue helices represent the protein molecule, yellow dashed lines indicate hydrogen bonds, colored ring structures represent the 
drug ligand, and red bars mark the protein binding sites of the drug ligand. (C, D) Visualization of molecular docking results showing the interaction 
between SIRT1 and Sirtinol. Blue helices represent the protein molecule, yellow dashed lines indicate hydrogen bonds, colored ring structures 
represent the drug ligand, and red bars mark the protein binding sites of the drug ligand. (E) Analysis showing the relationships between key genes 
and various diseases. 
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Although the direct effects of TSA on AF have not been 
thoroughly studied, its potential to modify the inflammatory and 
fibrotic remodeling in AF provides a compelling rationale for 
further investigation. Future studies are necessary to examine 
whether TSA can target PDCD4-related pathways in AF, 
particularly those involved in fibrosis and endothelial dysfunction. 
Additionally, understanding the molecular mechanisms through 
which TSA may influence PDCD4 expression and related signaling 
networks could enhance its translational relevance and therapeutic 
potential for AF. 

Due to the same inflammatory and metabolic pathways between 
cancer and AF, deregulation of PDCD4 in certain malignancies 
might increase the risk of AF (12, 44). Our results imply a more 
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complex function for PDCD4 across various malignancies, 
challenging its long-standing reputation as a tumor suppressor 
(45). In contrast to its protective function in KRCC and LADC, 
we found that overexpression of PDCD4 is linked to a poor 
prognosis in patients with ACC. Research on PDCD4 in ACC is 
still in its early stages, but its immunomodulatory activities may be 
the cause of its carcinogenic potential in this setting. While PDCD4 
seems to increase immune cell infiltration in most malignancies, our 
data show that it suppresses it in ACC. The relationship between 
PDCD4 and poorer outcomes in these patients may be explained by 
its involvement in modifying the tumor immune milieu. This might 
be because immune evasion is a hallmark of ACC and contributes to 
its aggressive nature. Another hallmark of ACC is chronic 
FIGURE 8 

Pan-cancer analysis of PDCD4 expression and mutational characteristics. (A) Boxplot showing PDCD4 expression levels across different cancer 
types. Tumor tissues (red) and normal tissues (blue) are compared to highlight expression differences. (B) Paired sample analysis illustrating changes 
in PDCD4 expression between tumor and matched normal tissues from the same patients, with black lines connecting paired samples. (C) Radar 
plot depicting the correlation between PDCD4 expression and TMB across various cancer types, with significance levels indicated. (D) Radar plot 
showing the correlation between PDCD4 expression and MSI in different cancers, with significance levels indicated. Statistical significance is marked 
as follows: *p < 0.05; **p < 0.01; ***p < 0.001. ns, not significant. 
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glucocorticoid excess, which is known to cause structural and 
functional alterations in the heart that provide a substrate that 
promotes arrhythmias. The results point to a possible biological 
connection between immune dysregulation, PDCD4, and the 
likelihood of AF in ACC patients. Therefore, it seems that 
targeting PDCD4 might be a great way to treat AF and ACC. In 
addition to reducing inflammation and remodeling caused by AF, 
restoring immune surveillance in ACC may be possible by 
modulating PDCD4 expression. Patients at risk of both illnesses 
may find new treatment options if future research investigates the 
viability of PDCD4-targeted medicines in this dual scenario. 

Recent advances in cancer immunotherapy provide important 
context for interpreting our findings. For example, circulating 
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biomarkers such as soluble PD-L1 and cytokine profiles have 
shown promise in predicting responses to immune checkpoint 
inhibitors in melanoma, highlighting the clinical relevance of 
immune-related gene signatures similar to those identified in our 
study (47). Additionally, emerging CAR T-cell therapies are being 
designed to overcome metabolic challenges in solid tumors by 
enhancing mitochondrial function and resistance to tumor 
microenvironment stressors (48), which aligns with the metabolic 
pathways linked to PDCD4 observed in our analysis. 

Beyond this, growing insights into the PD-1/PD-L1 signaling axis in 
cancers like gastric cancer suggest that combination immunotherapies 
and stratification based on tumor microenvironment characteristics 
may improve treatment outcomes (49). Moreover, novel 
FIGURE 9 

Prognostic value of PDCD4 and its association with immune cell infiltration in pan-cancer analysis. (A) Heatmap displaying the OS analysis results for 
PDCD4 across different cancer types. The color scale represents the log10(hazard ratio, HR), where blue indicates higher survival in the PDCD4 
high-expression group and red indicates lower survival. (B) Forest plot summarizing the survival analysis of PDCD4 across multiple cancers. The x-
axis represents the HR, with points indicating HR values and horizontal lines denoting 95% confidence intervals. (C) Kaplan-Meier survival curves 
illustrating the survival differences between PDCD4 high- and low-expression groups in ACC, KRCC, LADC, and MESO. (D) ssGESEAN analysis 
evaluating the correlation between PDCD4 expression and the infiltration of various immune cell types. Red indicates a positive correlation, while 
blue indicates a negative correlation. (E) CIBERSORT analysis assessing the association between PDCD4 expression and immune cell infiltration, with 
red indicating a positive correlation and blue indicating a negative correlation. Statistical significance is marked as follows: *p < 0.05; **p < 0.01. 
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immunomodulatory approaches that target communication between 
tumor cells and tumor-associated macrophages—such as interference 
via small extracellular vesicles—offer promising strategies to reshape the 
tumor microenvironment and enhance anti-tumor immunity (50). 
These developments emphasize the need to consider both cancer 
cells and their surrounding stromal and immune context in 
therapeutic design. 
5 Conclusion 

This study provides an in-depth analysis of PDCD4’s regulatory 
roles in AF, highlighting key genes, pathways, and potential 
therapeutic targets. By integrating transcriptomic, cenRNA, and 
single-cell RNA sequencing data, we elucidated the complex 
molecular mechanisms involved in AF progression. While these 
findings offer valuable insights, further validation through larger 
patient cohorts and experimental models is needed. Additionally, 
functional studies to confirm the roles of the identified genes and 
pathways are crucial. Future research should continue to explore the 
therapeutic potential of targeting these regulatory networks, aiming 
to improve treatment and prevention strategies for AF. 
6 Limitation and future perspectives 

This study elucidates the regulatory role of PDCD4 in AF and 
identifies potential therapeutic targets through multi-omics analysis 
and molecular docking. However, several limitations should be 
acknowledged. First, the predicted drug–target interactions lack 
experimental validation, which limits the clinical translatability of 
these findings. Second, transcriptomic analyses were primarily based 
on PBMCs and public datasets such as TCGA, which are subject to 
inherent technical and biological biases, including tumor 
heterogeneity, sample purity, and batch effects. These factors may 
confound gene expression interpretation and do not fully capture 
tissue-specific or spatial dynamics. Moreover, bulk RNA-seq data 
cannot distinguish expression derived from specific cell types within 
complex microenvironments, limiting insights into the precise 
cellular origins and functional relevance of PDCD4 expression. 
Importantly, correlation does not imply causation; elevated gene 
expression may reflect disease progression or immune response 
rather than a direct causal role. In future studies, in vitro and in 
vivo experiments, including validation in atrial tissues and functional 
assays of candidate compounds, are needed to strengthen the 
conclusions and explore therapeutic applicability. To better assess 
the functional roles of PDCD4 and its associated hub genes, genome-

wide CRISPR screening combined with pharmacogenomic profiling 
—as demonstrated in recent drug resistance research—may offer a 
powerful strategy to uncover actionable targets. Additionally, 
incorporating patient-derived xenograft (PDX) models in future 
research could further enhance translational relevance, as these 
models preserve molecular and microenvironmental features of 
human tumors and allow in vivo validation of immunological and 
therapeutic mechanisms identified through computational analyses. 
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SUPPLEMENTARY FIGURE 1 

mRNA Expression Levels and Sample Distribution Analysis. Boxplots 
displaying mRNA expression levels in the control, PDCD4-KO, and PDCD4­
OE groups. 

SUPPLEMENTARY FIGURE 2 

Differential Expression and Distribution of LncRNAs and miRNAs (A) 
Boxplots displaying LNC-RNA expression levels in the control, PDCD4­

KO, and PDCD4-OE groups. (B) PC plot showing the clustering of LNC-RNA 
samples in the control, PDCD4-KO, and PDCD4-OE groups. (C) Volcano 
plot illustrating differentially expressed LncRNAs in the PDCD4-KO group 
compared to the control group, highlighting the top 10 upregulated and 
downregulated LncRNAs. (D) Heatmap showing the expression levels of the 
top 10 upregulated and downregulated LncRNAs in the PDCD4-KO group 
compared to the control group. (E) Volcano plot illustrating differentially 
Frontiers in Oncology 17 
expressed LncRNAs in the PDCD4-OE group compared to the control 
group, highlighting the top 10 upregulated and downregulated LncRNAs. 
(F) Heatmap showing the expression levels of the top 10 upregulated and 
downregulated LncRNAs in the PDCD4-OE group compared to the control 
group. (G) Boxplots displaying miRNA expression levels in the control, 
PDCD4-KO, and PDCD4-OE groups. (H) PC plot showing the clustering 
of miRNA samples in the control, PDCD4-KO, and PDCD4-OE groups. (I) 
Volcano plot illustrating differentially expressed miRNAs in the PDCD4-KO 
group compared to the control group, highlighting the top 10 upregulated 
and downregulated miRNAs. (J) Heatmap showing the expression levels of 
the top 10 upregulated and downregulated miRNAs in the PDCD4-KO 
group compared to the control group. (K) Volcano plot illustrating 
differentially expressed miRNAs in the PDCD4-OE group compared to the 
control group, highlighting the top 10 upregulated and downregulated 
miRNAs. (L) Heatmap showing the expression levels of the top 10 
upregulated and downregulated miRNAs in the PDCD4-OE group 
compared to the control group. 

SUPPLEMENTARY FIGURE 3 

Quality Control, Variable Gene Analysis, and Cell Clustering in SCRNA-SEQ 
Data (A, B) Violin plots displaying the number of detected genes, total mRNA 
molecules, and the proportion of mitochondrial gene expression before and 
after quality control. (C) Volcano plot showing highly variable genes, with the 
top 10 genes labeled. (D, E) PC plots showing dimensionality reduction of 
highly variable genes. (F) UMAP plot visualizing the clustering of cells into 21 
subpopulations. (G) Bubble plot showing the annotation of 21 cell clusters 
based on marker genes. (H) Bar chart comparing the proportion of different 
cell clusters between AF and control samples. (I) Heatmap displaying the cell-
cell communication analysis of eight identified cell types. 

SUPPLEMENTARY FIGURE 4 

Expression of Key Genes in Different Cell Clusters (A-J) UMAP plots showing 
the expression levels of 11 key genes ("Sirt1, PDCD4, Fabp4, Hsd3b2, Rgs1, 
Rgs13, Atad5, Hltf, Abi2, Wasl, Hsd3b3") across various cell clusters identified 
in the SCRNA-SEQ analysis. 
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