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and Guochen Duan1*

1Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China, 2Graduate
School, Hebei Medical University, Shijiazhuang, Hebei, China
Objective: To explore the clinical application value of combining circulating

tumor cell (CTC) detection with the artificial intelligence imaging software “uAI

platform” in predicting the pathological nature of pulmonary nodules (PN).

Develop a joint diagnostic system based on the uAI platform and quantitative

detection of CTCs, enable simultaneous classification of pulmonary nodules as

benign or malignant and assess the degree of infiltration.

Methods: A total of 76 patients with pulmonary nodules undergoing surgical

treatment were enrolled. Preoperatively, three-dimensional nodule risk

stratification (low、medium、high risk) was performed using the uAI platform, and

CTC high-throughput detection was conducted. Key indicators were selected

through multi-group comparisons (Benign、Malignant、Invasive subgroups) and

logistic regression analysis. Amulti-dimensional nomogrammodel was constructed,

and its clinical utility was evaluated using ROC curves and clinical decision curves.

Results: Comparison between benign and malignant pulmonary nodule groups

revealed significant differences in the risk stratification of the uAI platform

(proportion of high-risk: 75.61% vs 34.29%) and in the median value of CTC

quantitative detection (P<0.001). Multivariate logistic regression analysis

demonstrated that high-risk classification by uAI and CTC quantitative detection

were independent predictors of malignancy in pulmonary nodules (P<0.05). The

nomogram model constructed based on these factors exhibited excellent

discrimination, and its combined diagnostic performance was significantly better

than that of single indicators (AUC=0.805 vs uAI 0.730/CTC 0.743).

Conclusion: The combined uAI-CTC model breaks through the limitations of

single-dimension diagnosis, enabling risk stratification of malignant pulmonary

nodules and quantitative assessment of infiltration, providing evidence-based

support for clinical treatment strategies.
KEYWORDS
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1 Introduction

Lung cancer remains a significant global public health threat,

with the latest epidemiological data from 2024 indicating that its

mortality rate continues to rank first among malignant tumors (1). In

China, the reported 5-year survival rate for lung cancer is 28.7, which

remains relatively low (2, 3). However, the prognosis of lung cancer

varies considerably depending on its stage, with the 5-year survival

rate reaching up to 92% for stage I lung cancer (4). Nevertheless, the

delayed diagnosis of pulmonary nodules (PNs) due to the absence of

typical symptoms in their early stages often leads to patients being

diagnosed at advanced stages, highlighting the urgent clinical need for

the development of precise early screening techniques.

In the field of differentiating benign and malignant PNs, significant

advancements have been made in multimodal diagnostic techniques.

With the adoption of low-dose computed tomography (LDCT) as the

primary screening modality, a 20% reduction in mortality has been

achieved among high-risk populations. However, LDCT screening is

prone to false-positive diagnoses or underdiagnosis, the baseline false-

positive rate was reported as 24% in the National Lung Screening Trial

(NLST) (5). Nevertheless, with advancements in imaging technology

and follow-up strategies, the postoperative pathological benign rate has

progressively declined from 14.5% to 6.2% (6). Radiologists

traditionally identify PNs through manual interpretation of chest CT

scans—a process that is time-consuming, labor-intensive, and

susceptible to diagnostic variability.

In this context, the “uAI platform,” a PNs intelligent diagnostic

system developed by Shanghai United Imaging Company, has

overcome the limitations of traditional computer-aided diagnosis

(CAD). This system is based on a supervised deep transfer learning

(SDTL) framework trained on high-quality annotated CT images. It

achieves a diagnostic AUC of 91.8% for pulmonary nodules ≤3 cm

in size, improves model specificity by 12.3% (7). The uAI platform

enables highly sensitive detection of PNs, providing quantitative

analysis of multidimensional parameters including PNs size,

volume, and composition. This system facilitates comprehensive

and precise evaluation of lesion characteristics while offering

intelligent prediction of PNs benign/malignant status.

Circulating tumor cells (CTCs) are tumor cells that detach from

the primary or metastatic lesions and enter the bloodstream or

lymphatic system. These cells have potential value in the diagnosis

and monitoring of malignant tumor progression, particularly

exhibiting unique advantages in the early diagnosis of lung

adenocarcinoma. Studies have already utilized CTCs for the

diagnosis of lung adenocarcinoma and lung cancer subtyping (8, 9).

However, no research has described their association with the degree

of lung cancer invasion. Additionally, the techniques for capturing

and isolating CTCs are diverse, and the sensitivity of detection is often
Abbreviations: CTC, circulating tumor cell; PN, pulmonary nodules; CEA,

carcinoembryonic antigen; NSE, neuron-specific enolase; CYFRA21-1,

cytokeratin 19 fragment; SCC, squamous cell carcinoma antigen; LDCT, Low-

dose computed tomography; CAD, computer-aided diagnosis; SDLT, supervised

deep transfer learning; CIC, Clinical Impact Curve; DCA, Decision Curve

Analysis; AUC, under the curve.
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limited by the volume of blood samples, such as the use of EpCAM

for positive or negative enrichment (10, 11). The GILUPI

CellCollector, an in-vivo examination technology equipped with a

fully automated operating system, enables the counting of CTCs and

the detection of tumor-specific protein subtypes, significantly

improving the efficiency and accuracy of detection (12).

This study innovatively integrates the PNs risk stratification of

the uAI platform with quantitative detection of CTCs, constructing

a PNs diagnostic model. It is the first to confirm the synergistic

effect of the combined strategy of artificial intelligence and liquid

biopsy on the stratification of malignant risk in PNs, providing a

practical solution for advancing the early diagnosis and treatment of

lung adenocarcinoma.
2 Study cohort and methods

2.1 Study cohort

This study included patients with PN who were treated at our

hospital from January 2018 to July 2023. The inclusion criteria were

as follows: 1. Patients who underwent radical surgical treatment for

complete resection of PN; 2. The patient’s most recent preoperative

CT was analyzed by the uAI platform. PNs have a direct range of 8

mm to 30 mm, including part-solid nodules and solid nodules; 3.

The postoperative pathological diagnosis was clear, and the type

was LUAD; 4. Complete clinical information of the patient was

available; 5. No history of lung cancer or other malignancies in the

past 5 years; 6. No clinical symptoms at the time of consultation.

The exclusion criteria were: 1. Preoperative CT images of patients

could not be recognized and analyzed by artificial intelligence

software; 2. History of other pulmonary diseases; 3. Pathologically

confirmed metastatic tumors or other types of lung cancer such as

squamous cell carcinoma and small cell lung cancer; 4. Patients with

distant metastasis; 5. Patient has not undergone surgery or

identified pathology by other means (e.g., needle biopsy). After

screening, a total of 76 patients were included in this study.

This is a retrospective study conducted at Hebei Provincial

People’s Hospital. We obtained approval from the Hospital’s Ethics

Committee, waiving the need for informed consent from patients

(Ethics No.2023125). We ensured the confidentiality of patient

information, and all procedures were in accordance with the

Declaration of Helsinki.

Comprehensive clinical data were collected from the patients,

including gender, age, family history, smoking history, and tumor

markers [such as carcinoembryonic antigen (CEA), squamous cell

carcinoma antigen (SCC), cytokeratin 19 fragment (CYFRA21-1),

and neuron-specific enolase (NSE)].
2.2 Methods

2.2.1 Detection of CTCs in vivo using
CellCollector

For the detection of CTCs in peripheral blood, the CellCollector

system was employed. This system utilizes a medically graded
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stainless steel wire probe as its core component, with the functional

domain coated with EpCAM antibodies and hydrogel. The probe

was inserted into the elbow vein via a 20G intravenous catheter,

ensuring that the functional segment was fully exposed to blood

flow for 30 minutes. This allowed for the capture of CTCs via

specific EpCAM-antibody binding. Upon completion of sampling,

the probe was processed according to a standard staining protocol.

As controls, NK92 cells (negative control) and SK-BR-3 cells

(positive control) were simultaneously set up. The staining

antibodies included CD45 (EXBIO, Clone MEM-28-Alexa Fluor

647) and Cytokeratin CK7/19/panCK antibody (EXBIO Praha,

Clone A53-B/A2-Alexa Fluor 488) (Figure 1).

2.2.2 Risk stratification of patient PN using the
uAI platform

The Siemens Somatom Definition Flash system (Siemens

Healthineers, Erlangen, Germany) was utilized for CT imaging

with a collimation width of 80 mm (128 × 0.625 mm) and a slice

thickness of 1 mm. Patients were instructed to hold their breath

after inhalation during the scanning process, which covered the

range from the superior margin of the thoracic inlet to the adrenal

gland level. The complete chest CT images of the patients were

uploaded to the uAI platform, where the SDTL was employed to

quantitatively analyze multi-dimensional information such as

nodule size, volume, density, and composition. This facilitated

precise risk stratification of lung nodules into low, medium, high,

and very high-risk categories, providing a basis for comprehensive

and accurate lesion analysis (Figure 2).
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2.3 Statistical methods

This study used the t-test and chi-square test to accurately

describe the association between clinical features and benign and

malignant tumors. The “pROC” package in R was utilized to

generate ROC curves and calculate the area under the curve

(AUC) to evaluate the accuracy of the model. The “rms” package

was used to perform univariate and multivariate logistic regression

analyses on patients, establish prediction models, and construct

nomograms to guide clinical decision-making. GraphPad Prism was

employed to analyze the differences in CTC counts among different

infiltration groups. The version of R used was 4.3.0, and the version

of GraphPad software was 9.4.1.
3 Results

3.1 Clinical characteristics of subjects

A retrospective analysis was conducted on 76 patients

with PN who underwent surgical treatment in our department.

Table 1 describes the clinicopathological characteristics of the

study subjects. The study evaluated 43 (56.6%) female and 33

(43.4%) male participants, with a mean age of 59 ± 8 years.

Postoperative pathological diagnosis revealed that 35 (46.1%)

cases of PN were benign lesions, while 41 (53.9%) cases were

lung adenocarcinoma (20 (48.8%) cases of microinvasion and 21

(51.2%) cases of invasion). The uAI platform, through deep
FIGURE 1

Circulating tumor cell test report: Determination of tumor cells by CK7/19/panCK (green channel). Hoechst was used for nuclear counterstaining
(blue channel), and white cells were determined by CD45 staining (red channel). OPEN indicates a reserved blank channel. Scale bar: 10 mm.
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learning to quantify nodule features, identified 10 (13.1%) low-

risk patients, 23 (30.3%) medium-risk patients, and 43 (56.6%)

high-risk patients.
3.2 Quantitative detection of CTCs

A differential analysis was conducted on the CTC counts

between the benign and malignant groups, revealing a significant

difference between the two groups (P<0.001) (Figure 3A). The

diagnostic performance of CTC counts in PN diagnosis was

evaluated using the ROC curve, with an AUC of 74.3%

(Figure 3B). Further analysis of CTC counts among different

degrees of infiltration showed a difference between microinvasion

and invasion (P<0.05) (Figure 3C).
3.3 Risk stratification using the uAI
platform

The results showed that there were significant differences

between benign and malignant groups using the uAI platform

(P=0.04, Figure 4A). The diagnostic performance of uAI Platform

count in PN diagnosis was evaluated using the ROC curve, yielding

an AUC of 73.0% (Figure 4C). Further analysis of different degrees

of infi ltration showed a significant difference between

microinvasion and invasion (P=0.01, Figure 4B). These results

suggest that risk stratification using the uAI platform is an

effective predictive indicator of PN pathological properties.

Clinically, the AI software from Shanghai United Imaging

Company, has been utilized to assist our department’s physicians

in PN diagnosis and treatment.
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3.4 Logistic regression analysis

Logistic regression analysis was conducted incorporating

patients’ clinical information, CTC count, and uAI platform risk

stratification. Predictors with P<0.1 in univariate analysis, including

nodule location, CTC count, and uAI platform risk stratification,

were included in the multivariate analysis. The results revealed that

CTC count (OR 2.12, 95%CI 1.16-3.87, P=0.015) and uAI platform

risk stratification (OR 11.15, 95%CI 1.18-105.47, P=0.035) served as

independent predictors for benign and malignant PN diagnosis

(Table 2). These findings are consistent with our previous

differential analysis.
3.5 Development of the nomogram

Multi-factor Logistic regression analysis identified CTC count

and uAI platform risk stratification as independent predictors of PN

status. Based on logistic regression analysis, a nomogram was

developed to predict PN characteristics (Figure 5).

The nomogram was built using the “rms” package in R, and its

accuracy was verified through ROC curves and calibration curves.

Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC)

analysis were employed to evaluate clinical utility. The constructed

nomogram demonstrated excellent discrimination, with an AUC of

80.5% (Figure 6A). Internal validation was conducted using 1000

bootstrap replications, confirming the good stability of the

nomogram model (Figure 6B). The study further assessed the

model’s accuracy through 200 iterations of 10-fold cross-

validation, achieving an average AUC of 94%, indicating the

model’s superiority. Corresponding DCA and CIC analyses

(Figure 7) revealed that the nomogram provided a superior
FIGURE 2

The uAI platform detects PN on thoracic computed tomography (CT) images and conducts artificial intelligence-driven risk stratification of the
identified lesions.
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overall net benefit within the practical range, highlighting the

model’s significant predictive value. For the nomogram, the AUC

value was 0.805, and the diagnostic performance was higher than

that of the uAI platform of 0.743 and CTC of 0.730 (Figure 8).

However, the AUC difference between different groups was not

statistically significant when using bootstrap (Nomogram model/

uAI platform P=0.102; Nomogram model/CTC P = 0.058), which

may be related to the lower number of patients included in

the study.
4 Discussion

In recent years, the incidence and mortality rates of lung

malignancies have ranked first globally. Studies indicate that the

recurrence rate of early-stage lung cancer is only 10% five years after

surgery, highlighting the importance of early detection and surgical

intervention in the treatment of lung cancer (13). Early-stage lung

cancer does not exhibit specific clinical manifestations, and its

initial presentation may merely be an isolated pulmonary nodule.

Based on the solid components within the nodule, isolated nodules

can be categorized into solid nodules and subsolid nodules. Solid

nodules refer to those where the nodule density is sufficient to

obscure the small bronchi and blood vessels within, while subsolid

nodules are characterized by unclear or indefinite boundaries, and

the nodule density does not obscure the small bronchi and blood

vessels passing through it (14, 15).

Studies have demonstrated that compared to non-small cell lung

cancer (NSCLC) presenting as subsolid nodules on imaging,

pulmonary lesions manifesting as pure solid nodules exhibit higher

rates of lymph node metastasis, greater malignant potential, and

poorer prognosis (16, 17). However, the radiological characteristics of
FIGURE 3

(A) Comparative analysis of CTC quantitative detection between benign and malignant groups. (B) ROC curve of CTC in differentiating benign and
malignant pulmonary nodules, with an area under the curve (AUC) of 74.3%. (C) Differential analysis of CTC quantification across varying degrees of
invasiveness. (*P<0.05, ***P<0.005).
TABLE 1 Association of clinicopathological characteristics in 76
PN patients.

N
Benign LUAD

P-value
35 41

Gender (%)
Female 17 (48.57) 26 (63.41) 0.285

male 18 (51.43) 15 (36.59)

Age [mean (SD)] 56 (8) 59 (8) 0.275

Family
History (%)

No 29 (82.86) 35 (85.37) 1.000

Yes 6 (17.14) 6 (14.63)

Smoking
(%)

No 26 (74.29) 23 (56.10) 0.158

Yes 9 (25.71) 18 (43.90)

CEA [median (IQR)] 1.87 [1.35, 2.68] 2.52 [1.42, 3.69] 0.216

NSE [median (IQR)]
10.53
[9.29, 14.22]

12.13 [10.73, 13.53] 0.193

CYFRA21-1
[median (IQR)]

1.81 [1.44, 2.67] 1.84 [1.33, 2.35] 0.431

SCC [median (IQR)] 0.97 [0.75, 1.36] 0.98 [0.78, 1.35] 0.790

CTC [median (IQR)] 0.00 [0.00, 1.00] 1.00 [1.00, 2.00] 0.0001

Position
(%)

Left 18 (51.43) 12 (29.27) 0.082

Right 17 (48.57) 29 (70.73)

Risk (%)

Low 9 (25.71) 1 (2.44) 0.0004

Medium 14 (40.00) 9 (21.95)

High 12 (34.29) 31 (75.61)
LUAD, Lung Adenocarcinoma; CEA, Carcinoembryonic Antigen; NSE, Neuron-Specific
Enolase; CYFRA21-1, Cytokeratin 19 Fragment; SCC, Squamous Cell Carcinoma Antigen;
CTC, Circulating Tumor Cell.
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pulmonary nodules (PNs) with diameters ≤1 cm are often

inconspicuous, leading to interobserver variability in interpretation

due to differences in clinical experience (18, 19). In recent years,

numerous studies have explored the clinical application of AI-based

radiological models for early lung cancer prediction, providing

valuable assistance in characterizing PNs. Catelli et al. utilized high-

resolution computed tomography (HRCT) features (e.g., spiculation,
Frontiers in Oncology 06
size, and density) to differentiate benign from malignant nodules,

offering clinicians a clearer reference for determining the nature of

PNs and formulating surgical strategies (20). Pan et al. proposed an

innovative approach by integrating binary and ternary classification

models with a pruning decision strategy to resolve classification

conflicts, thereby improving the accuracy of predicting the

invasiveness of lung adenocarcinoma and demonstrating its
TABLE 2 Univariate and multivariate logistic regression analysis.

Characteristics Univariate logistic analysis Multivariate logistic analysis

OR 95%CI P-value OR 95%CI P-value

Age 1.03 0.98-1.09 0.272 NA NA NA

CEA 1.17 0.86-1.59 0.327 NA NA NA

CTC 2.5 1.45-4.33 0.001 2.12 1.16-3.87 0.015

CYFRA21-1 1.01 0.77-1.33 0.929 NA NA NA

Gender 0.54 0.22-1.36 0.195 NA NA NA

Family History 0.83 0.24-2.85 0.765 NA NA NA

NSE 1.1 0.92-1.31 0.293 NA NA NA

Position 2.56 1-6.58 0.051 2.42 0.79-7.42 0.12

Risk

Medium vs Low Risk 5.79 0.62-53.76 0.123 2.64 0.25-27.39 0.42

High vs Low Risk 23.25 2.65-203.77 0.004 11.15 1.18-105.47 0.035

SCC 0.71 0.34-1.48 0.362 NA NA NA

Smoking 2.26 0.85-6.01 0.102 NA NA NA
LUAD, Lung Adenocarcinoma; CEA, Carcinoembryonic Antigen; NSE, Neuron-Specific Enolase; CYFRA21-1, Cytokeratin 19 Fragment; SCC, Squamous Cell Carcinoma Antigen; CTC,
Circulating Tumor Cell.
FIGURE 4

(A) Comparative analysis of uAI platform-based risk stratification between benign and malignant groups (P = 0.004). (B) Differential analysis of uAI
platform-derived risk stratification across varying degrees of tumor invasiveness (P = 0.01). (C) ROC curve of uAI platform-based risk stratification in
differentiating benign and malignant pulmonary nodules, with an AUC of 73.0%.
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potential for CT-based risk stratification in lung cancer (21).

Nevertheless, CT radiological characteristics alone cannot fully

distinguish benign from malignant PNs. Previous studies have

indicated that combining radiological features with additional and

more sensitive molecular markers can enhance the diagnostic

positivity rate for lung cancer (22–24). Therefore, in this study, we

employed uAI platform and CTC assisted analysis to uniformly assess

the malignancy risk of patients’ PNs.

Relevant studies have indicated that certain tumor markers in

serum can also aid in the diagnosis of lung cancer. However,

traditional tumor markers such as CEA, NSE, and CA199

demonstrate limited specificity and sensitivity in the early diagnosis

of lung cancer (24–27). In recent years, the emergence of liquid

biopsy techniques, represented by CTCs, has provided a novel
Frontiers in Oncology 07
approach for the early diagnosis of lung cancer. CTCs refer to

tumor cells that detach from primary or metastatic lesions and

enter the bloodstream. The number of CTCs in peripheral blood is

extremely low, and specific CTC markers are crucial for improving

CTC detection rates. Folate receptor positivity, as a specific marker

for CTCs, exhibits high sensitivity and specificity and is highly

expressed in tumor cells. The folate receptor is minimally expressed

in the cells of the fallopian tube, renal tubules, alveolar walls, choroid,

and uterus, and is not expressed in blood cells. Its expression in lung

cancer cells exceeds 78%. Furthermore, the folate receptor can

identify active CTCs, unaffected by the transition from epithelial to

mesenchymal cells. In this study, the CellCollector (GILUPI

CellCollector, GILUPI) was used for in-vivo detection of peripheral

CTCs before surgery. CTC assessment analysis were performed using
FIGURE 5

Nomogram prediction model for differentiating benign and malignant pulmonary nodules.
FIGURE 6

(A) ROC curve of Nomogram prediction model, with an AUC of 80.5%. (B) The calibration curves Nomogram prediction model.
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immunofluorescence staining. Additionally, CTCs captured by the

CellCollector sampling probe were isolated for whole-genome

amplification and quality assessment. In 2010, the American Joint

Committee on Cancer (AJCC) Cancer Staging Manual proposed that

CTCs could serve as a new indicator to assist pathologists in

pathological staging. Clinically, CTCs have begun to be used to

better develop treatment plans for lung cancer patients (28–30).
Frontiers in Oncology 08
Previous attempts have been made to combine CTC assessment

with established screening methods, focusing on improving

specificity by integrating low-dose CT screening programs with

subsequent CTC evaluations. CTC enumeration assessments were

conducted on patients with identified “ground-glass” lung nodules

and healthy controls. CTCs were only present in the blood of some

patients with nodules. Based on subsequent molecular analysis, these

CTCs were found to have a “malignant tendency” (31). However, the

study did not establish a model to predict the pathological nature of

nodules and lacked a unified set of diagnosis codes. We

retrospectively evaluated the diagnostic efficacy of combining liquid

biopsy with artificial intelligence in 76 patients suspected of having

lung cancer. The results demonstrated the superior predictive

performance of this forecasting model.

This study has several limitations. Firstly, the pulmonary

nodules detected in this study were exclusively focused on lung

adenocarcinoma; future research should incorporate pathological

data from other types of malignant nodules. Second, due to the

retrospective nature of this study and the relatively small sample

size collected, prospective validation of the hypotheses was

unattainable. Further large-scale, multicenter studies are

warranted for conclusive verification.
5 Conclusion

This study developed a pulmonary nodule prediction model

integrating uAI platform and CTCs, demonstrating robust accuracy,

stability, and clinical applicability through internal validation. In the

future, we will verify it through large-sample, multi-center studies.
FIGURE 7

(A) Decision curve analysis for the nomogram. The Y-axis shows the net benefit. The X-axis shows the corresponding risk threshold. (B) Clinical
impact curve for the risk model. Of 1000 patients, the red solid line shows the total number who would be deemed at high risk for each risk
threshold. The blue dashed line shows how many of those would be true positives cases.
FIGURE 8

AUC comparison between different groups (Red: Nomogram;
Yellow: uAI platform; Blue: CTC).
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