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The proton therapy facility in Dresden, Germany, has one treatment room

equipped with a rotating gantry where patients are treated and an

experimental room equipped with two horizontal beamlines for translational

research. The present work describes the technical characteristics and provides

measured beam data of these two complementary beamlines, one delivering

scanned beams with quasi-clinical parameters and the other one stationary

continuous and pulsed pencil beams with parameters exceeding the clinically

used range. Features of the facility are the large scale of the experimental room

enabling the development and installation of large devices and the parallel beam

operation with the clinical room allowing irradiation experiments on weekdays

and during daytime. An overview of past and ongoing physics and biology

experiments performed at the facility by internal and external researchers from

academia and industry is given, demonstrating its versatile experimental

capabilities. This includes the development of novel proton therapy

approaches and technology as well as elaborate in-vitro and in-vivo small

animal experiments for which the necessary infrastructure is available in the

same building.
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1 Introduction

Over the last few decades proton therapy has developed from a

niche radiotherapy application, being offered at only a few centers

worldwide, to a radiotherapy modality frequently employed to treat

several indications. Today there are more than 100 proton therapy

centers in operation worldwide and many more are planned or

under construction. However, to this day the field of proton therapy

is strongly shaped by innovations in all disciplines involved such as

accelerator and beamline development, improvements in treatment

planning and beam application, dosimetry and detector

development, integration of image guidance and verification

systems as well as radiobiological research. While there are

proton therapy centers that focus solely on patient treatment,

other facilities also have their own research programs (1),

especially those connected to universities or university hospitals.

There are many examples of proton (and also heavy ion) therapy

centers that use their beamlines for research (2–12). Some of these

centers have dedicated experimental rooms while at others the

beamlines located in the treatment rooms are shared between

researchers and patient treatment.

Besides the proton accelerator (isochronous cyclotron) and the

beam transport system, the Dresden proton therapy facility has two

treatment rooms: a room for clinical treatments with a 360° gantry

system and an experimental room with two horizontal beamlines, of

which one is equipped with a dedicated pencil beam scanning (PBS)

nozzle. The clinical part of the proton facility is operated as University

Proton Therapy Dresden (UPTD) by the Carl Gustav Carus University

Hospital Dresden. It has been in operation since 2014 and is one out

of five clinical particle therapy centers in Germany. The experimental

room is operated by OncoRay - National Center for Radiation

Research in Oncology, a research platform that is jointly operated

by Carl Gustav Carus university hospital, the medical faculty of the

Technical University Dresden and the Helmholtz Center Dresden-

Rossendorf. The research program at OncoRay has a strong

translational focus and covers all levels, from basic research (e.g. in-

vitro radiobiology experiments) and pre-clinical studies (e.g.

radiobiological in-vivo tests in small animals) toward actual clinical

application in patients (e.g. development of prompt gamma based

range verification systems).

The exceptionally large experimental room (length: 19.4 m, width:

14.3 m, height: 5.0 m, about 250 square meter usable area) allows the

testing and development of large-scale devices (e.g. in-beam MRI

scanner prototypes). Inside this experimental room, two horizontal

proton beamlines are available. The first beamline has provided static

pencil beams (fixed beam beamline, FB-BL) for experiments since

2014. Dedicated hard- and software for this beamline were developed

in-house. A software with a user interface tomake a beam request (e.g.

specific energy and beam current) is connected to the main control

system of the proton therapy system and allows the use of the full

beam parameter range. The second beamline is equipped with a PBS

nozzle (pencil beam scanning beamline, PBS-BL) and has been in

operation since 2019. The irradiation at the PBS-BL is done via the

beam control system of the manufacturer.
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This article describes the technical characteristics of the two

beamlines available in the experimental room of the Dresden

proton therapy facility as well as the available infrastructure,

referred to together as the experimental area. Furthermore,

measured beam data that are relevant for users are provided and

examples of past and ongoing experimental activities are presented.
2 Overview of experimental area

2.1 Overview of the Dresden proton
therapy facility

The Dresden proton therapy facility is equipped with a

ProteusPLUS proton therapy system (IBA, Louvain-la-Neuve,

Belgium), shown schematically in Figure 1A. It is based on a 230

MeV isochronous cyclotron (IBA C230) (14, 15) that provides beam

currents up to 500 nA which is the radiation protection limit of the

facility. The primary 230 MeV protons are guided through a

degrader-based energy selection system (aluminum, carbon or

beryllium degraders depending on the energy) with achromatic

dipoles and slits that are used to adjust the emittance and energy

spread of the degraded proton beams (16). This allows the selection

of energies in the range of 70 − 226.7 MeV which are then

transported via a beamline to the gantry treatment room or

steered directly into the experimental room. Inside the

experimental room one of two beamlines (FB-BL or PBS-BL) can

be selected for irradiation. Figure 1B shows a photo of these two

beamlines inside the experimental room with example setups.
2.2 Beam operation

A unique feature of the Dresden proton therapy facility is that

experimental activity using the proton beam is possible in parallel

with the clinical operation (17, 18). Therefore irradiation

experiments are possible from Monday to Friday from 6:30 am

until 11:30 pm and on Saturdays from 6:30 am until 9:30 pm.

Because only a single gantry room is used for patient treatment and

a considerable fraction of the treatment time is used for patient

preparation and setup changes between the fields, there is a high

beam availability for experiments throughout the day. The

irradiation in the experimental room only needs to be interrupted

when a patient is ready for treatment and can be continued

immediately afterwards. Figure 2 shows an example of how the

experimental room shares the proton beam with the clinical

operation in the gantry room.
2.3 Research beamlines

The experimental room of the Dresden proton therapy facility

has two beamlines as shown in Figure 1. Table 1 compares the

relevant technical characteristics of the two beamlines.
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2.3.1 Characteristics of FB-BL
The FB-BL was the first beamline that was installed in the

experimental room of the Dresden proton therapy facility and has

been used for experiments since 2014. It provides static pencil

beams covering the energy range used for proton therapy at the

gantry room (100 − 225 MeV) plus lower energies down to 70 MeV.

The beam current can be set to the entire range available from the

proton therapy system and is energy-dependent due to the

reduction of the transmission through the energy-selection system

with decreasing energy. An example transmission curve for the FB-

BL is shown in ref (19). Dedicated hardware and software were in-

house developed (17, 20), including the beam monitor system

employing a segmented transmission ionization chamber (model

34058, PTW, Freiburg, Germany) with appropriate readout
Frontiers in Oncology 03
electronics, a dedicated current loop module for fast beam pulsing

and range setting, a software library to communicate with the IBA

system using the available XML-RPC interface and a user-friendly

control software (High Energy Beam Control, HEBC). A priority

system terminating the irradiation automatically if the gantry room

requests the beam has been implemented in order to ensure a

smooth parallel operation without disturbing the clinical workflow.

The FB-BL has a high transmission efficiency from cyclotron to

beamline exit of about 40% at 225 MeV. This is about a factor 3

higher than for typical beamlines with a PBS nozzle because the

divergence slits are completely open, however, at the expense of

slightly reduced quality of the beam properties like spot size. This

together with the possibility of pulsing the beam with very accurate

and reproducible timing, makes the FB-BL especially well-suited for
FIGURE 1

(A) Layout of the Dresden proton therapy facility including the cyclotron, the energy selection system, the gantry treatment room and the
experimental room with its two beamlines (FB-BL and PBS-BL). (B) Photo of the beamline section in the experimental room. A water phantom for
3D dosimetry is set up at the PBS-BL while at the FB-BL a double scattering setup (13) used for irradiation of cell culture flasks can be seen. At the
PBS-BL a large water tank (black tank, in yellow cage) used as beam dump is visible as well. At both beamlines quadrupole magnets are used to
focus the proton beam. The scanning dipole magnets at the PBS-BL that steer the beam horizontally and vertically are hidden in the white frame
upstream of the nozzle.
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experiments in the ultra-high dose rate (UHDR) regime (21). The

dose rate range that has been achieved in previous experimental

setups ranged from 10−6 Gy/s to 600 Gy/s. Over the years, different

dedicated irradiation setups for different purposes were developed

for the FB-BL: for instance a double-scattering setup for
Frontiers in Oncology 04
homogeneous large fields (Exponat-O) with a transmission

efficiency of 30% (13), a setup for irradiation of partial volumes

of mouse brains with a sharply collimated proton beam (22) as well

as a UHDR spread-out Bragg peak setup using a 3D-printed range

modulator (19).

Figure 3A shows Bragg curves for selected energies over the

energy range available, measured with a Bragg peak chamber

(model 34070-2,5, PTW, Freiburg, Germany) in a water phantom

(23) and Figure 3B shows the spot size at the room laser position as

a function of energy (1s of the Gaussian profiles, in the horizontal

and vertical directions) measured using a scintillating screen

detector (LynxPT, IBA Dosimetry, Schwarzenbruck, Germany).
2.3.2 Characteristics of PBS-BL
The flexibility of the FB-BL allows a wide range of experiments.

However, for certain types of experiments it is beneficial to replicate

the clinical beam parameters of scanned proton beams. Therefore,

the PBS-BL was installed in the experimental room and is used for

experiments since 2019. The PBS-BL is a research beamline that

offers the full functionality and beam parameter range used for

patient treatment with scanned protons. It is equipped with a

dedicated pencil beam scanning nozzle (IBA, Louvain-la-Neuve,

Belgium) (24) employing an IC2/3 detector (IBA, Louvain-la-

Neuve, Belgium) (25) for monitoring of the beam position and

intensity and for controlling the irradiation treatment plans and

spot patterns via the PBS technique (16). While the FB-BL is

operated using an in-house developed dedicated hardware and

software interface connected to the main control system from

IBA, the PBS-BL beam delivery relies fully on IBA hardware and

software. Irradiation of fields and treatment plans can be performed

using different software tools (all by IBA, Louvain-la-Neuve,

Belgium): using the adaPT deliver software with DICOM RT files

as input, via the BMS standalone software with input files in PLD

(PBS Layer Dose) format or using the pristine beam tool for

experiments using static pencil beams if needed (e.g. QA or base

data measurements). Treatment plans for the PBS-BL can be

optimized and dose calculation can be performed using the
FIGURE 2

Example diagram showing the sharing of the proton beam the Dresden proton therapy facility between the gantry treatment room and the
experimental room. Most patients are treated with multiple fields (in this example the first one with two fields and the next two patients with three
fields). In between the fields, gaps of 1 − 2 minutes can be used for an irradiation in the experimental room. The gaps in between the patients are
typically 10 min or more (depending how complicated the patient setup is) which can be used for an irradiation in the experimental room as well.
TABLE 1 Comparison of relevant parameters of fixed beamline (FB-BL) and
beamline equipped with dedicated pencil beam scanning nozzle (PBS-BL).

Parameters FB-BL PBS-BL

Proton energy
(at laser position)

70–225 MeV 70 – 226.7 MeV

Proton range in water
(at laser position)

4.10 – 31.70 g/cm2 4.10 – 32.16 g/cm2

Time to change
proton energy

no automatic
energy change

2–6 s

Maximum transmission
from cyclotron to
beamline exit

~ 42% ~ 13%

Beam current at
beamline exit

0.001–210 nA 0.1–5 nA

Beamline height 125 cm 125 cm

Positioning room lasers 1 horizontal, I vertical 2 opposite horizontal,
2 vertical

Vacuum exit to
laser position

205 cm 63 cm

Beam spot size at laser
position (1s)

8.1 mm at 150 MeV 4.2 mm at 150 MeV

Maximum field size pencil beam double
scattering setup:
10 × 10 cm2

pencil beam scanning:
40 cm (horizontal)
× 30 cm (vertical)

Dose homogeneity double scattering setup:
± 2%

pencil beam scanning:
± 1%

Beam pulsing duration period flexible
between 100 ms
and minutes

scanned beam (~ ms per
spot with ~ ms pauses
between spots, ~ s pauses
between energy layers)
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RayStation treatment planning software (RaySearch Laboratories,

Stockholm, Sweden) (26). As shown in Table 1 the PBS-BL is not as

flexible as the FB-BL regarding some parameters (e.g. the beam

current range), but it can perform a volume conformal irradiation

using the PBS technique in a manner that is comparable to the

gantry in the neighboring treatment room. This is for the benefit of

research projects that are already in an advanced translational stage,

such as the development of an online range verification system

using the prompt gamma ray timing method or the development of

magnetic resonance imaging (MRI) guided proton therapy. When

the beam is requested for patient treatment, priority is given to the

gantry. An automatic shutoff of the irradiation like at the FB-BL is

not implemented for the PBS-BL.

The PBS-BL has a defined isocenter as reference point (even

though the beamline cannot rotate), located 63 cm from the vacuum

exit window (24). The isocenter plane is used for calibrating the

horizontal and vertical deflection lengths of the scanning magnets

and for setting the focusing of the beam optics. A model of the

magnetic scanning system of the PBS-BL based on finite element

methods combined with Monte Carlo transport simulations was

created (27).

Regular machine QA checks, following the clinical practice at

the gantry beamline, are performed at the PBS-BL in the

experimental room as well. These QA checks control the spot

sizes and positions as well as the scanned field homogeneity,

proton ranges and absolute dose output, and the stability of these

parameters over time.

Figure 4A shows Bragg curves for selected energies over the

energy range available and Figure 4B shows the spot size at the

isocenter position as a function of energy.

While the Bragg curves are almost identical to those measured

at the FB-BL (compare with Figure 3), the reported spot sizes at the

PBS-BL are smaller and more symmetrical. The smaller spots as

well as the better symmetry of the proton beams at the PBS-BL in

comparison to the FB-BL are mainly due to its more advanced ion

optical design and additionally due to the isocenter point of the
Frontiers in Oncology 05
PBS-BL being closer to the beam exit window than the reference

point defined by the positioning lasers for the FB-BL (see Table 1).

Figure 5 shows the beam spot size (1s) in horizontal and vertical

direction as a function of distance from the vacuum exit window for

selected energies between 70 and 225 MeV for both beamlines. Close

to the vacuum exit, the convergence of the proton beams due to

focusing by the beamline magnets can still be noticed for some

energies while with increasing distance the beams diverge due to the

angular spread caused by multiple Coulomb scattering in the vacuum

exit window, nozzle detectors and air. These scattering effects and

thus the widening of the beams are more pronounced for the small

proton energies. The spots are perfectly round only at the reference

distances used for the ion optical setting while before and after they

become slightly elliptic. The PBS beamline has a rather short focus

setting while at the FB-BL a smaller convergence angle is set.
3 Instrumentation and dosimetry
equipment

The experimental area is equipped with a large pool of beam

instrumentation devices and dosimetry equipment that can be used

to characterize the proton beams.

This comprises standard ionization chambers of essentially all

different types (Farmer, Semiflex, Advanced Markus, Roos,

PinPoint, micoDiamond, Bragg peak chambers), mostly by PTW

Dosimetry (Freiburg, Germany) as well as several precision

electrometers for readout (PTW UNIDOS Tango and Keithley

model 6514). For 2D dose measurements a LynxPT detector (IBA

Dosimetry, Schwarzenbruck, Germany) as well as an Octavius

ionization chamber array (model 1500XDR, PTW, Freiburg,

Germany) are available. Measurements with these detectors can

be performed in air, using various types of plastic phantoms or in

water. The proton facility is equipped with commercial water

phantoms (model T41051 by PTW and Blue Phantom by IBA

Dosimetry) as well as a 3D water phantom developed in-house
FIGURE 3

(A) Measured laterally integrated depth dose profiles normalized to the entrance measured at the FB-BL. The numbers above the curves are the
corresponding proton energies in MeV. (B) Measured beam spot size (1s) in horizontal (x) and vertical (y) direction as a function of proton energy at
the laser position of the FB-BL.
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(suitable for use in magnetic fields). For quick measurements of

Bragg peaks with a single irradiation, for example to determine the

water equivalent thickness of objects and materials, the multi-layer

ionization chambers Giraffe and Zebra (IBA Dosimetry,

Schwarzenbruck, Germany) (23) are available.

Both beamlines are equipped with monitor ionization chambers

which provide monitor units that are proportional to the irradiated

number of protons.
4 Experiment infrastructure

The proton irradiation is conducted from a dedicated experiment

control room, directly next to the experimental room itself. Separate
Frontiers in Oncology 06
computers are used to control the FB-BL and PBS-BL. Only one

beamline can be operated at a time, which is controlled by the IBA

therapy safety system (TSS) software. A TSS switch key must be

inserted to activate the beamline that should be operated.

Next to the control room, an experiment preparation room is

located which can be used, for example, to mount the setups or

prepare samples or animals. Furthermore, a mechanical workshop

is located in the same building where experimental equipment,

holders, phantoms, setup components, etc., can be produced. All

large-scale devices and equipment are on rolls or air-cushion

platforms and freely movable in the room to maximize the

experimental flexibility.

For radiobiological experiments, laboratories with standard

equipment for cell culture (sterile bench, autoclave, centrifuges,
FIGURE 5

(A) Beam spot size (1s) in horizontal (x) and vertical (y) direction measured as a function of distance from the vacuum exit window for selected
energies at the FB-BL. The red dotted line marks the reference point indicated by room lasers. (B) Beam spot size (1s) in horizontal (x) and vertical (y)
direction measured as a function of distance from the vacuum exit window for selected energies at the PBS-BL. The red dotted line marks the beam
isocenter indicated by room lasers.
FIGURE 4

(A) Measured laterally integrated depth dose profiles normalized to the entrance measured at the PBS-BL. The numbers above the curves are the
corresponding proton energies in MeV. (B) Measured beam spot size (1s) in horizontal (x) and vertical (y) direction as a function of proton energy at
the beam isocenter position of the PBS-BL. The data was measured with the same detectors like the data in Figure 3.
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microscopes, etc.) and histology are available in house at OncoRay

and also within collaborations for external users. Furthermore, the

handling and proton irradiation of genetically modified cell cultures

is feasible. Approved workflows and setups enable the irradiation of

adherent and three-dimensional cell cultures (28), whereby an

angulated setup (29) allows for the irradiation of sensitive

samples that cannot be positioned upright as necessary at

horizontal beamlines. In-vivo experiments with proton beams

using mice are regularly performed at the OncoRay experimental

room. An animal facility on the same floor together with a laminar

flow box for clean handling in the preparation room next to the

experimental room assure short distances and waiting times for the

mice before proton irradiation. Inside the animal facility, an

imaging platform consisting of the open-source small animal

image-guided radiation therapy (SAIGRT) system for cone-beam

CT (30) and a combined nanoScan PET/MRI scanner (1 T, Mediso

medical imaging systems, Hungary, Budapest) can be applied for

pre-treatment and follow-up imaging of irradiated mice. A

dedicated setup (31) allows for positioning of mice at the

respective imaging devices and the proton beam while keeping

the mice at the same position. In the experimental room, a proton

radiography setup based on a CMOS flat panel detector (model

C9320DK-02, Hamamatsu Photonics K.K., Hamamatsu City,

Japan) can be used for image guidance in small animal

experiments (32). It provides projection images that can be used

to locate anatomical features (e.g. the skull of a mouse) for aiming

with a collimated proton beam exactly at the anatomical area of

interest (e.g. the hippocampus in a mouse brain). Another device

that can be used for image-guidance of proton irradiation of small

animals by means of x-ray computed tomography is the small

animal irradiator SmART+ IB (Precision X-Ray Inc., Madison,

Connecticut, USA) which is located in the experimental room as

well and can be moved on rolls in front of the FB-BL (33). For

reference irradiation, several 200 kV x-ray tubes (Maxishot200,

Comet Yxlon GmbH, Hamburg, Germany) and dedicated setups

for in-vitro and in-vivo experiments are available in house.

Moreover, clinically relevant reference beams, i.e., MV photons

and MeV electrons, can be used at the linear accelerators of the

radiation therapy department of the Dresden University hospital

located in the same building.
5 Past and ongoing experimental
activities

A large variety of radiobiology experiments have been and are

performed at both beamlines (FB-BL and PBS-BL) in the OncoRay

experimental room. The existing setups can be applied at both

beamlines providing some flexibility to perform in-vitro studies in

parallel to other (non-biological) experiments. Certain types of

biological irradiation can be performed more efficiently at the

PBS-BL than at the FB-BL. The larger and flexible field size and

the less problematic activation of components, compared to the

double scattering system based on lead scatterers and brass

collimators used at the FB-BL (13), favor the PBS-BL for in-vitro
Frontiers in Oncology 07
studies with many samples and high doses. Examples of recent in-

vitro studies dealt with the comparison of radiation response of

pancreatic 3D cultures to photon and proton irradiation (34) or the

differences in tumor cell plasticity after both treatments (35).

In-vivo experiments using mice (22, 36) and zebrafish embryos

(37) are only performed at the FB-BL in different settings. The static

proton pencil beam is of sufficient size for the partial irradiation of

mouse brains (22, 36) or even homogeneous treatment of

subcutaneous tumors on mouse ears (38) or legs (31). The

extended beam parameters of the FB-BL in combination with the

controlled delivery of short pulses allowed for the investigation of

ultra-high dose rate effects necessary for FLASH radiotherapy,

where dose rates greater than 100 Gy/s result in reduced side

effects compared to irradiation at conventional dose rates (39–

41). Therefore, the FB-BL in the OncoRay experimental room is

part of the Dresden platform for ultra-high dose rate

radiobiology (21).

The large size of the experimental room enables research

activities to be carried out with large-scale devices. This is a

crucial prerequisite for the research project on the technical

integration of magnetic resonance imaging (MRI) and proton

therapy which started in 2015 (42). As initially only the FB-BL

was available for this purpose, first experiments with a compact 0.95

T permanent magnet were performed to measure magnetic field-

induced effects on proton beams in a tissue equivalent material (43).

These studied the electron return effect for proton beams (44) and

characterized a high-resolution silicon strip detector under the

influence of a magnetic field (45). As a next step, an open,

compact 0.22 T MRI scanner was placed in the beam path of the

FB-BL to demonstrate a first proof-of-concept for simultaneous

proton pencil beam irradiation and MR image acquisition (46).

Because the FB-BL enables the use of very high beam currents and

dose-rates, the first-ever experiments for proton beam visualization

were performed with this in-beamMRI scanner (47). After the PBS-

BL became available, experiments with the 0.22 T in-beam MRI

scanner were performed to quantify interference effects on the MR

magnetic field and image quality during active proton pencil beam

scanning (48). After a second open in-beam MRI scanner with a

field strength of 0.32 T was installed in the beam path of the PBS-BL

in 2020, a first systematic characterization of magnetic field-

induced dose distortions was performed (49). In 2023, a 0.5 T

whole-body, rotatable in-beam MRI scanner was installed, which is

capable of real-time imaging (50). With this third in-beam MRI

prototype, initial imaging and irradiation experiments are currently

being carried out aiming for the characterization and

commissioning of this device.

Another example, highlighting the necessity of diverse and

variable beam parameters within translational research, is the

development of a treatment verification system for clinical use in

proton therapy (51). Prompt Gamma-Ray Timing (PGT) (52)

utilizes the temporal distribution of prompt gamma radiation

generated through nuclear interactions within the patient to infer

the range of therapeutic protons. A clinical-grade detector system

was developed (53), which was systematically characterized under a

wide variety of beam parameters (54) available at the FB-BL. The
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granular adjustability of beam currents over several orders of

magnitude and the capability to apply flexible beam pulsing at

this beamline enabled a detailed understanding of the load and

amplification behavior (55), as well as other properties of the PGT

detectors (53, 54, 56). The flexibly adjustable beam energies,

currents, and pulsing were also indispensable for the development

and characterization of new proton bunch monitors (57, 58), which

are employed as independent timing references for the PGT

method. As part of the clinical translation of the PGT system, the

experimental setups were progressively adapted to better reflect

clinical conditions. For this purpose, the PBS-BL, with its dedicated

scanning nozzle and clinical beam control system, provides an ideal

foundation. Furthermore, the large experimental room is also used

for experiments to determine proton-induced nuclear reaction cross

sections and to measure prompt gamma-ray yields. Such

experiments require substantial space due to the numerous

detectors and shielding used and demand stable and reproducible

beam conditions from day to day.

The two examples illustrate that, with its two beamlines, the

OncoRay experimental room allows the entire spectrum of medical

physics translational research - from initial laboratory experiments

to realistic clinical irradiation scenarios - to be covered.

The facility is also frequently used by external users. Examples of

experiments by external users performed in the OncoRay

experimental room include a group from the German national

metrology institute (Physikalisch-Technische Bundesanstalt, PTB,

Braunschweig) who measured spectra of secondary neutrons

produced by the proton beam in experiments performed at the FB-

BL (59, 60). Researchers from the German Cancer Research Center

(DKFZ) in Heidelberg irradiated water samples at the FB-BL to

characterize the oxygen depletion rate by proton beams at different

dose rates (61). The company ADVACAM from Prague, Czech

Republic, has made use of the FB-BL to test their detectors for

proton out-of-field dosimetry at conventional and ultra-high dose

rates (62). Scientists from Helmholtz-Zentrum Dresden-Rossendorf

make regular use of the FB-BL to test and calibrate their instruments

used for beam diagnostics in laser-plasma acceleration experiments

(63–65). Researchers from Technical University and Helmholtz

Center Munich designed a proton minibeam setup and

implemented it at the FB-BL for radiobiological experiments (66).

In addition to that, radiation hardness of electronic components was

studied by developers from academia and industry using dedicated

experimental setups at the FB-BL. Furthermore, practical training

sessions for future medical physics experts enrolled in OncoRay’s

Medical Radiation Sciences Master course are held in the

experimental room of the Dresden proton therapy facility.
6 Summary and outlook

This article describes the beamlines in the experimental room of

the Dresden proton therapy facility, their characteristics and the

available infrastructure for experiments.
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The facility has unique features, providing two complementary

beamlines with different capabilities (a clinical-like beamline with

pencil beam scanning option and another one providing static

pencil beams with an extended parameter range) installed in a

large experimental room that provides enough space for the

installation of large-scale devices. The close vicinity to the clinical

gantry room creates an ideal environment for future translation of

developed methods and devices to application in patients.

Future plans for the facility include the installation of a beam

gating interface for the PBS-BL. The experimental capabilities for

UHDR experiments at the FB-BL should be further improved by

increasing the available maximum beam current and improving the

beam monitor systems.

Besides use by OncoRay researchers, the proton beams are also

available for external researchers from academia and industry

within collaboration projects. The experimental beam data

presented in this article will be useful for the planning and

preparation of future experiments.
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