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Background: To explore the value of intravoxel incoherent motion (IVIM)-based

habitat imaging in predicting immunohistochemistry in patients with breast cancer.

Methods: 299 patients with suspected breast cancer were randomly assigned to

a training set of 210 individuals and a test set of 89 individuals. A series of models

was constructed for human epidermal growth factor receptor 2 (HER2)/Ki-67/

hormone receptors (HR)/lymph node metastasis (LNM) prediction, including the

whole-tumor model, habitat model, conventional MRI features (CF) model and

hybrid model (incorporating habitats features and CF). The performance of

various models was evaluated with the area under the receiver operating

characteristic curve (AUC) and decision curve analysis (DCA). P (two-tailed) <

0.05 was considered statistically significant.

Results: On the test cohort, for HER2/HR/LNM, the habitats model achieved the

highest AUC values of 0.692/0.651/0.722, higher than those of the whole-tumor

model (AUC = 0.591/0.599/0.609) and the CF model (AUC = 0.598/0.603/

0.608). For Ki-67, the CF model achieved a highest AUC of 0.746. The hybrid

model achieved AUC values of 0.706/0.762/0.668/0.728 for HER2/Ki67/HR/

LNM. DeLong test showed a significant difference between habitats model and

the whole-tumor model for LNM (P = 0.006).

Conclusion:While habitat features can provide richer biological information, the

models combining habitats and CF obtained more accurate results than other

models, making them promising candidates for clinical application in breast

cancer diagnosis.
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Introduction

Breast cancer ranks among the most common cancers

impacting women globally (1). It is a diverse disease characterized by

a range of histopathological traits, molecular classifications, and clinical

patterns, necessitating ongoing research to enhance diagnostic

accuracy, prognostic assessments, and therapeutic approaches (2, 3).

Immunohistochemistry (IHC) plays a vital role in the characterization

of breast cancer, utilizing biomarkers such as hormone receptors (HR),

human epidermal growth factor receptor 2 (HER2), Ki-67, and lymph

node metastasis (LNM) to identify subtypes, predict prognosis, and

assess treatment responsiveness (4). HR-positive cancers respond well

to hormonal therapies, while HER2-positive cancers are more

aggressive but can be targeted by drugs like trastuzumab. Ki-67 levels

indicate tumor proliferation and LNM is crucial for staging and

prognosis, influencing treatment strategies (5–8).

Magnetic resonance imaging (MRI) significantly improves the

diagnosis, staging, and management of breast cancer by providing

high-quality soft tissue contrast along with comprehensive

functional insights (9). Intravoxel incoherent motion (IVIM) can

obtain multiple quantitative parameters, such as the apparent pure

diffusion coefficient (D), pseudo-diffusion coefficient (D*), and

perfusion fraction (f) from multiple diffusion weighted imaging

(DWI) images with different b-values using a biexponential fitting

algorithm (10–12). These parameters provide non-invasively

information about diffusion and perfusion simutaneously,

allowing for a better characterization of breast cancer.

Radiomics extracts quantitative features from medical images,

offering insights beyond what is visible to the human eye (13). MRI-

based radiomics aids in tumor characterization and predicting

treatment response (14). However, it is often challenging to relate

radiomics features to biological or physiological meanings. A rule of

thumb for radiomics study is that radiomics features should be

extracted from a well-mixed region, but lesions of tumor may

comprise of mesoscopically inhomogeneous regions of different

characteristics, limiting its potential for medical research and

treatment decision-making (14, 15).

Habitat analysis in radiomics addresses tumor heterogeneity by

analyzing different regions, or “habitats”, within the tumor (16).

This method takes into account the spatial complexity of tumors

and offers valuable insights into their biological characteristics (17).

IVIM imaging provides valuable parameters that describe both

perfusion and diffusion within each voxel, while diffusion

indicates the integrity and density of the cellular structure (18).

Consequently, subregions clustered by IVIM parameters

correspond to regions with different physiological characteristics.

For example, regions with high cell density and high perfusion may

correspond to areas of active tumor growth, whereas regions with

low cell density and low perfusion may correspond to less aggressive

or necrotic tissue (19). At the same time, integrating habitat features

with clinical factors may contribute to a more comprehensive

understanding of the biology of diseases and promote the

development of precision medicine (20, 21). This study aims to

explore the value of IVIM-based habitat imaging in predicting IHC

in patients with breast cancer.
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Materials and methods

Study setting and timeframe

This retrospective study included patients with suspected breast

cancer treated at Fujian Provincial Hospital from July 2019 to August

2023. The study protocol was approved by the hospital’s ethics

committee (approval code: K2021-05-007, May 2019), and all

methods adhered to relevant guidelines and regulations (22). Written

informed consent to participate was obtained from all the patients. The

inclusion criteria were: (I) no needle biopsy, radiotherapy, or

chemotherapy before MRI examination; (II) availability of complete

MRI review data with good image quality; (III) availability of complete

pathological data; and (IV) without multicentric tumor. The process of

patient selection and grouping has been illustrated in Figure 1.

The whole dataset was split into training and test cohorts at a

7:3 ratio. The training cohort was utilized for constructing the

diagnostic model, while the test cohort was set aside for model

evaluation. The study workflow was illustrated in Figure 2.
Immunohistochemical analysis

HR-positive status was defined as ≥1% of tumor cell nuclei

staining positively for either ER or PR, while HR-negative status was

indicated by <1% positivity for both. Tumors with an HER2

membrane immunostaining score of 3+ were classified as

HER2-positive, whereas a score of 2+ necessitated in situ

hybridization to confirm HER2 amplification. Ki67 positivity

required ≥30% of tumor cell nuclei to stain positively for Ki67.

LNM positivity was defined as the presence of cancer cells in one or

more lymph nodes, as determined through histopathological

examination. Tissue examination was conducted by a pathologist

(Y.H.) with two decades of expertise in breast tumor diagnosis.
Imaging studies

MRI scans were conducted using a 3T scanner (MAGNETOM

Prisma, Siemens Healthcare, Erlangen, Germany). To reduce noise and

minimize anxiety-related motion, patients were provided earplugs

prior to the examination. Scanning was conducted in a prone

position, allowing the breasts to rest naturally within the

coil. Detailed sequence parameters are provided in Supplementary

Table S1. For the contrast-enhanced scans, patients were administered

gadopentetate meglumine (Magnevist, 0.2 mmol/kg; GEHealthcare). A

high-pressure syringe was used to inject the contrast agent into a dorsal

hand vein at a flow rate of 1.5–2.0 mL/s, followed by a flush with

15–20 mL of normal saline to remove any remaining agent.

Voxel-wise fitting of diffusion-weighted imaging data was

performed to produce IVIM maps, incorporating parameters D, f,

and D*, using the Body Diffusion Toolbox software (Siemens

Healthcare, Erlangen, Germany). The IVIM parameters D, f, and D*

were estimated using a segmented fitting approach. Based on previous

studies, a b-value threshold of 200 s/mm² was used to separate the

perfusion and diffusion components (11). The D parameter was first
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obtained by linear fitting of the logarithmic signal at b-values above 200

s/mm². Subsequently, D and the full signal were used in a nonlinear

biexponential fitting to estimate f and D*.

Conventional MRI features

The tumor on the MR images was evaluated and annotated

based on the 2013 Breast Imaging - Reporting and Data System
Frontiers in Oncology 03
(BI-RADS) guidelines for MRI. This was done by two radiologists:

M.H., with 14 years of experience in breast imaging, and Y.Z., with

5 years of experience. They focused on conventional MRI features

(CF), such as fibroglandular tissue (FGT), background

parenchymal enhancement (BPE), high T2 signal, mass shape,

mass margin, internal enhancement pattern, non-mass internal

enhancement pattern, architectural distortion, and time-

intensity curve.
FIGURE 2

Workflow of the study.
FIGURE 1

Flowchart depicting patient selection and grouping.
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Tumor segmentation

The IVIM images were analyzed using 3D Slicer (v4.10.2,

www.slicer.org) for segmentation. The first radiologist, M.H., with

14 years of experience in breast imaging, performed the

segmentation by outlining a three-dimensional volume of interest

(VOI) that covered the solid tumor component, based on dynamic

contrast-enhanced MRI scans. A second radiologist, Y.Z., with 5

years of experience, independently segmented 30 randomly chosen

tumors from the training set. The repeated VOIs were used to

evaluate the feature robustness.
Habitat analysis and feature extraction

For whole-tumor analysis, we used the open-source FAE

(v0.5.7) based on PyRadiomics to extract features from the VOI

in images of each sequence (23). These radiomic features include

shape, first order, and texture features based on gray-level co-

occurrence matrix (GLCM), gray-level size zone matrix (GLSZM),

gray-level run length matrix (GLRLM), neighborhood gray tone

difference matrix (NGTDM) and gray-level dependence matrix

(GLDM). The specific image preprocessing procedures include Z-

score normalization and equal frequency discretization. The

complete feature extraction procedure is performed following the

guidelines provided by the imaging biomarker standardization

initiative (IBSI) to ensure that the extracted features are

reproducible (Supplementary Methods) (24).

For habitat analysis, the intensity of D and f of each voxel in the

VOI was combined into a two-dimensional vector, and K-means

clustering, an unsupervised clustering method, was used to cluster

all vectors in the VOI into clusters. By assigning all voxels in the

same cluster to a same subregion, the whole VOI was divided into

subregions. To determine the optimal K value for K-means

clustering, we utilized the calinski-harabasz (CH) Score (25)

(Supplementary 1). For each subregion within the VOI, we

calculated its volume and volume fraction, and extracted first-

order histogram features from D-map and f-map.
Feature selection and model construction

Based on the original whole-tumor features, habitat features,

and CF, we developed four types of IHC models. After conducting

feature selection and model training, we constructed the whole-

tumor model, habitat model, and CF model to predict each type of

IHC. Further, we combined the habitats features and the CF

features to construct the hybrid model.

To enhance model robustness, interobserver reproducibility

was evaluated using the two-way random absolute agreement

intraclass correlation coefficient (ICC). Features with an ICC

below 0.75 were excluded, retaining only those deemed stable.

We normalized the features in the training set using Z-scores

and eliminated redundant features based on the Pearson correlation
Frontiers in Oncology 04
coefficient (PCC). For pairs of features with a PCC greater than 0.99,

one was randomly removed. For whole tumor radiomics models

utilizing a large number of features, feature selection was conducted

using least absolute shrinkage and selection operator (LASSO)

regression, where the alpha parameter was set between 5–3 to 5–2

(26). For the final model construction, we combined four feature

selection algorithms and two classifiers, selecting the optimal model

based on the highest cross-validation area under the curve (AUC)

during 5-fold cross-validation on the training cohort. The feature

selection algorithms employed were recursive feature elimination

(RFE), the Kruskal-Wallis (KW) test, analysis of variance

(ANOVA) and Relief, while the classifiers used were support

vector machine (SVM) and logistic regression (LR). Additional

details are provided in Supplementary 2 and Supplementary 3.
Statistical analysis

Statistical analysis was conducted using SPSS v28.0.1.1. The

normality of continuous variables was tested with the Shapiro-Wilk

test, while Levene’s test was used to assess homogeneity of variance.

Variables with a normal distribution were expressed as mean ±

standard deviation and compared using the independent

samples t-test. For non-normally distributed data, variables were

reported as median (interquartile range) and analyzed using the

Mann-Whitney U test. Categorical data were presented as

frequency (percentage) and compared using the Pearson

chi-square test or the continuity-corrected chi-square test. The

predictive performance of the models was evaluated through

receiver operating characteristic (ROC) curves and several

classification metrics, including AUC, sensitivity (Sen), specificity

(Spe), positive predictive value (PPV), negative predictive value

(NPV), accuracy (Acc), and Matthews correlation coefficient

(MCC). Decision curve analysis (DCA) was conducted to

visualize the net benefit rate versus the threshold for IHC

prediction. Feature importance was evaluated using the

Shapley Additive Explanations (SHAP) method to assess the

contribution of each feature to the model’s predictions. DeLong

test was performed to statistically compare the models and a post

hoc power analysis was conducted to assess whether the sample size

was sufficient to detect a meaningful difference in model

performance. A p-value of less than 0.05 (two-tailed) was

considered statistically significant.
Results

Characteristics of the study sample

Based on the selection criteria, 299 women diagnosed with

breast cancer were included in this study. The patients were

randomly assigned to a training set of 210 individuals and a test

set of 89 individuals. No significant differences (p > 0.05) in IHC

results were found between the two sets (Table 1).
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Habitat clustering

According to the CH index, the best clustering result was

achieved when K=4 (Figure 3a), which means that the tumor was

split into four regions: Part-1 with low D and mediate f, Part-2 with

high D, Part-3 with high f, and Part-4 with low D and low

f. (Figure 3b)
Performance of the models and model
comparison

We constructed the whole-tumor model, habitat model, CF

model and hybrid model for HER2/Ki67/HR/LNM. The

performance of all models is outlined in Table 2. ROC curves and

DCA curves of all models were shown in Figure 4. Histogram

analysis of the predicted case of the habitat model is shown

in Figure 5.

For HER2, the habitats model achieved an AUC of 0.692 (95%

CI: 0.581-0.803), higher than those of the whole-tumor model

(AUC = 0.591, 95% CI: 0.458-0.725) and the CF model (AUC =

0.598, 95% CI: 0.472-0.724). The hybrid model achieved an AUC of

0.706 (95% CI: 0.596-0.816), but not significantly higher than the

habitats model. Figure 4e shows that the net benefits of hybrid

model were higher than other models when the threshold was in the

range of 0.2-0.6, but when the threshold value was above 0.6, CF

models provides more benefits.
Frontiers in Oncology 05
For Ki-67, the CF model achieved an AUC of 0.746 (95% CI:

0.640-0.853), higher than those of the whole-tumor model (AUC =

0.680, 95% CI: 0.562-0.798) and habitats model (AUC = 0.685, 95%

CI: 0.567-0.803). The hybrid model achieved the highest AUC of

0.762 (95% CI: 0.658-0.867). Figure 4f shows that the net benefit of

hybrid model was higher than other models when the threshold was

in the range of 0.4-0.8.

For HR, the AUC of habitats model (0.651, 95% CI: 0.531-

0.771) was higher than the whole-tumor model (AUC = 0.599, 95%

CI: 0.467-0.732) and the CF model (AUC = 0.603, 95% CI: 0.455-

0.751). The hybrid model achieved an AUC of 0.668 (95% CI: 0.518-

0.819), but not significantly higher than the habitats model.

Figure 4g shows that the net benefit of hybrid model was higher

than other models when the threshold was in the range of 0.6-1.0.

For LNM, the habitats model achieved an AUC of 0.722 (95%

CI: 0.615-0.829), significantly (p < 0.05) higher than the whole-

tumor model (AUC = 0.609, 95% CI: 0.487-0.731) and CF model

(AUC = 0.608, 95% CI: 0.488-0.728). The hybrid model achieved an

AUC of 0.728 (95% CI: 0.624-0.832). Figure 4h shows that the net

benefit of habitats model was higher than other models when the

threshold was in the range of 0.6-1.0.

The SHAP visualization is shown in Figure 6. The feature details

for all models are provided in Supplementary Tables S2-S5, the

model performance on the training set is presented in

Supplementary Table S6, the DeLong test results for the different

models are included in Supplementary Table S7, and the power

analysis results are included in Supplementary Table S8.
TABLE 1 Characteristics of patients in the training and test sets (n = 299).

CF/IHC Training set (n = 210) Test set (n = 89) P value

Age 50.1 ± 10.2 50.7 ± 12.1 0.657

FGT 0.541

a/b 176 (84) 72 (81)

c/d 34 (16) 17 (19)

BPE 0.822

a/b 95 (45) 39 (44)

c/d 115 (55) 50 (56)

High T2 signal 0.867

Positive 57 (27) 25 (28)

Negative 153 (73) 64 (72)

Masses 139 (66) 56 (63) 0.587

Mass shape (%) 0.040

Round/Oval 33 (24) 6 (11)

Irregular 106 (76) 50 (89)

Mass margin (%) 0.240

Spiculated 69 (50) 33 (59)

Non-spiculated 70 (50) 23 (41)

(Continued)
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Discussion

In this study, we explored the features from the whole tumor,

habitats region and clinical characters, and found that the hybrid

model combining habitat features and CF performs best in the

prediction of these four IHC.

Compared to whole-tumor analysis, more refined habitat VOIs

can better reflect tumor heterogeneity. In our study, the tumor was

subdivided into four subregions: Part-1 (low D, moderate f) likely

represents regions of high cellular density with preserved perfusion.

Part-2 (high D) suggests regions of reduced cellularity, where

elevated water diffusion (high D) aligns with necrotic or

edematous zones (27). Part-3 (high f) reflects hyperperfused

subregions, indicative of active angiogenesis (28). These areas

may correlate with highly vascularized tumor fronts or
Frontiers in Oncology 06
inflammatory microenvironments, often associated with rapid

growth or immune infiltration. Part-4 (low D, low f) denotes

densely packed, hypoxic niches with restricted diffusion and poor

perfusion. Such habitats are histologically consistent with high-

grade tumors, which drive metastasis and chemoresistance (29). By

analyzing these subregions, our study provided a more in-depth

understanding of tumor heterogeneity.

Our study revealed several distinct associations between IVIM-

derived habitat features and breast cancer molecular subtypes. In

the high-D and low-f subregion (Part-2), a higher 10th percentile

value of D was associated with HER2-positive tumors. This suggests

that in HER2-positive tumors, even the most diffusion-restricted

voxels within this subregion exhibit relatively higher diffusivity.

Such a pattern may reflect a structurally loose and infiltrative

growth pattern characteristic of HER2-positive breast cancers,
TABLE 1 Continued

CF/IHC Training set (n = 210) Test set (n = 89) P value

Internal enhancement pattern (%) 0.379

Rim enhancement 84 (60) 30 (54)

No rim enhancement 55 (40) 26 (46)

Non-mass enhancement 71 (34) 33 (37)

Non-mass internal enhancement pattern (%) 0.176

Clustered ring 60 (85) 31 (94)

Homogeneous/Heterogeneous 11 (15) 2 (6)

Architectural distortion 0.037

Positive 39 (19) 8 (9)

Negative 171 (81) 81 (91)

Time-intensity curve 0.867

I 57 (27) 25 (28)

II/III 153 (73) 64 (72)

HER2 status, n (%) 0.845

Positive 67 (32) 28 (31)

Negative 143 (68) 61 (69)

Ki67 index, n (%) 0.080

High 101 (48) 33 (37)

Low 109 (52) 56 (63)

HR status, n (%) 0.174

Positive 144 (69) 68 (76)

Negative 66 (31) 21 (24)

LNM status, n (%) 0.667

Positive 117 (56) 52 (58)

Negative 93 (44) 37 (42)
CF, conventional magnetic resonance imaging features; IHC, immunohistochemistry; FGT, fibroglandular tissue; BPE, background parenchymal enhancement; FGT: a. Almost entirely fat b.
Scattered fibroglandular tissue c. Heterogeneous fibroglandular tissue d. Extreme fibroglandular tissue; BPE: a. Minimal b. Mild c. Moderate d. Marked; Time-intensity curve: I. Persistent II.
Plateau III. Washout; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; LNM, lymph node metastasis.
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where even the densest parts of low-perfusion regions are less

compact. This finding aligns with the known aggressive and

spatially invasive behavior of HER2-positive tumors (30).

Furthermore, in the same subregion (Part-2), a higher median

value of D was associated with Ki-67 positivity. This may be

related to the rapid proliferation of tumors with high Ki67 and

the occurrence of necrosis. Such regions may correspond to loosely

structured stromal areas or infiltrative tumor margins, where low

cellular packing density allows for increased water mobility despite
Frontiers in Oncology 07
reduced vascularization. This finding may reflect a distinct tumor

microenvironment in highly proliferative breast cancers,

characterized by rapid cellular turnover in structurally less

constrained regions (31, 32). We also found that the proportion

of tumor volume characterized by both D and low f (Part-4) was

significantly higher in HR-positive tumors. This may reflect the

relatively slow-growing and fibrotic nature of HR-positive tumors,

which tend to accumulate more structurally stable, hypoperfused,

and diffusion-restricted regions (33). In contrast, HR-negative
TABLE 2 Performance of models over the test cohort.

IHC Model AUC (95% CI) Acc Sen Spe NPV PPV MCC

HER2

Whole-tumor 0.591 (0.458, 0.725) 0.584 0.586 0.583 0.745 0.405 0.159

Habitat 0.692 (0.581, 0.803) 0.584 0.793 0.483 0.829 0.426 0.265

CF 0.598 (0.472, 0.724) 0.584 0.517 0.617 0.726 0.395 0.127

Hybrid 0.706 (0.596, 0.816) 0.584 0.828 0.467 0.849 0.429 0.286

Ki67

Whole-tumor 0.680 (0.562, 0.798) 0.652 0.697 0.625 0.778 0.523 0.311

Habitat 0.685 (0.567, 0.803) 0.640 0.451 0.750 0.700 0.517 0.211

CF 0.746 (0.640, 0.853) 0.700 0.667 0.714 0.784 0.579 0.372

Hybrid 0.762 (0.658, 0.867) 0.697 0.636 0.732 0.774 0.583 0.363

HR

Whole-tumor 0.599 (0.467, 0.732) 0.573 0.559 0.619 0.302 0.826 0.151

Habitat 0.651 (0.531, 0.771) 0.551 0.471 0.810 0.321 0.889 0.242

CF 0.603 (0.455, 0.751) 0.685 0.838 0.191 0.267 0.770 0.033

Hybrid 0.668 (0.518, 0.819) 0.629 0.618 0.667 0.350 0.857 0.243

LNM

Whole-tumor 0.609 (0.487, 0.731) 0.629 0.692 0.541 0.556 0.679 0.234

Habitat 0.722 (0.615, 0.829) 0.640 0.789 0.432 0.593 0.661 0.237

CF 0.608 (0.488, 0.728) 0.629 0.692 0.541 0.556 0.679 0.234

Hybrid 0.728 (0.624, 0.832) 0.685 0.615 0.784 0.592 0.800 0.396
AUC, area under the curve; CI, confidence interval; Acc, accuracy; Sen, sensitivity; Spe, specificity; NPV, negative predictive value; PPV, positive predictive value; MCC, matthews
correlation coefficient.
*Bold face indicates the models with the highest AUC values for the specific tasks.
FIGURE 3

(a) Change of calinski-harabasz (CH) score with number of clusters (K) values. The CH score reached its peak at K = 4, indicating the optimal
number of clusters. (b) Voxel distribution in volume of interest in the D and f maps (K = 4). The tumors were subdivided into four subregions: a low
D-value region (part 1), a high D-value region (part 2), a high f-value region (part 3), and a region with both low D-value and low f-value (part 4).
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FIGURE 5

Habitat imaging and histogram of correctly predicted cases whose predicted probabilities are closest to their ground truth labels (Note that the best
results for HER2-Neg and HR-Pos prediction occur in the same case). (a) Habitat imaging of HER2/Ki-67/HR/LNM positive cases. For HER2/Ki-67/
HR/LNM, voxels in positive lesions are predominantly in part 2/4/4/4. (b) Habitat imaging of HER2/Ki-67/HR/LNM negative cases. For HER2/Ki-67/
HR/lymph node metastasis, voxels in negative lesions are predominantly in part 4/1/2/2,3. (c) Histogram of D values for both HER2/Ki-67/HR/LNM
positive and negative cases. (d) Histogram of F values for both HER2/Ki-67/HR/LNM positive and negative cases.
FIGURE 4

Receiver operating characteristic curves and decision curve analysis of the performance of all models on test cohort.
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tumors, including triple-negative breast cancer (TNBC), are often

more heterogeneous and rapidly proliferative, resulting in

fragmented or necrotic cores with unstable D/f patterns (34, 35).

In the low-D and low-f subregion (Part-4), both D entropy and f

energy were found to be significantly associated with LNM status. A

higher entropy of D reflects increased heterogeneity in water

diffusion, potentially indicating a complex microenvironment

comprising necrosis, inflammation, fibrosis, and heterogeneous

cell density. Such microstructural complexity has been correlated

with more aggressive tumor behavior and higher metastatic

potential (36). Similarly, a higher energy of f in the same region

suggests the presence of repetitive, spatially organized perfusion

signals, possibly representing residual microcirculation or

neovascular structures within necrotic or fibrotic areas (37, 38).

The elevated energy of perfusion-related features in low-perfusion

regions underscores the role of organized microvascular structures

in supporting tumor progression and metastasis. In addition,

among clinical features, rim enhancement showed a notable

association with Ki-67 positivity and HR negativity. Rim

enhancement is characterized by peripheral contrast uptake with

central hypoenhancement on DCE-MRI, often reflecting a

combination of central necrosis and peripheral angiogenesis (39).

This enhancement pattern is more frequently observed in tumors

with high Ki-67 expression, as rapid tumor proliferation tends to

outpace central vascular supply, leading to necrotic cores

surrounded by viable, actively growing tumor rims (40).

Furthermore, rim enhancement is commonly associated with

hormone receptor-negative breast cancers, especially TNBC (41).
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It is worth noting that habitat models constructed in this study

used only first-order histogram features, which greatly improved

the interpretability of the model. Besides, first-order histogram

features are influenced only by the intensity values of the voxels,

leading to greater stability in the analysis (42). This inherent

stability enhances the robustness and reproducibility of habitat

models, making them less susceptible to noise and variations in

image acquisition parameters (43). In contrast, traditional

radiomics used a bunch of texture features, which are not only

difficult to interpret, but also readily influenced by image

preprocessing steps, including image discretization and re-

segmentation. Furthermore, the hybrid model, constructed with

clinical and habitat features, improved the performance without

compromising the interpretability, thus could be more readily

accepted by radiologists.

The clinical relevance of IVIM-based habitat imaging lies in

its ability to non-invasively map tumor heterogeneity by

identifying subregions with distinct biological characteristics. By

clustering voxels based on D and f parameters, habitat imaging

can differentiate areas of high cellularity, necrosis, or active

angiogenesis within tumors. This spatial resolution offers a deeper

understanding of tumor biology, which is critical for predicting

immunohistochemical markers such as HER2, Ki-67, HR, and

LNM. These insights could guide clinicians in tailoring treatment

strategies, such as prioritizing HER2-targeted therapies for tumors

with high-D habitats or intensifying surveillance for patients with

low-D/low-f subregions suggestive of aggressive behavior.

Integrating habitat imaging into clinical workflows could enhance
FIGURE 6

The impact of each feature on the hybrid model’s predictions in HER2 (a), HR (b), Ki67 (c) and LNM (d).
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diagnostic accuracy and therapeutic planning. For example, during

preoperative MRI evaluations, habitat maps could help surgeons

target biopsy sites to regions of high proliferative activity,

improving diagnostic yield. In radiation oncology, identifying

hypoxic or perfusion-deficient subregions might enable dose

escalation to radioresistant zones. Additionally, habitat features

could supplement existing BI-RADS criteria to refine risk

stratification, potentially reducing unnecessary interventions. The

hybrid model, which combines habitat features with conventional

MRI characteristics, further improves predictive performance,

offering radiologists a tool to automate IHC predictions during

routine image interpretation. This could streamline decision-

making in settings where rapid biomarker assessment is

critical, such as neoadjuvant therapy monitoring. Despite these

advantages, several barriers may hinder clinical adoption.

Technical standardization remains a challenge, as variations in

MRI protocols (e.g., b-value selection, IVIM fitting algorithms)

across institutions could compromise reproducibility. The clinical

integration of IVIM-based habitat imaging requires a structured,

multi-phase approach to ensure feasibility and reliability. First,

standardization of MRI acquisition protocols is critical. This

involves consensus-driven guidelines for b-value selection,

IVIM fitting algorithms, and segmentation methodologies. At the

same time, it is important to develop user-friendly software

that enables automated habitat clustering and feature extraction.

Integrating such tools into existing PACS or AI platforms

could help streamline clinical workflows. These tools should

emphasize interpretability by offering radiologists intuitive

visualizations, such as color-coded habitat maps overlaid on

MRI images, along with quantitative summaries like subregion

volumes or perfusion metrics to support clinical decision-making.

As habitat imaging remains in a developmental phase, the

external validity of IVIM-based habitat models continues to be

uncertain, thereby impeding their integration into standard

clinical workflows.

However, there are also several limitations in our study that

need to be acknowledged. The relatively small sample size (n = 299),

with only 210 cases used for training, raises concerns regarding

potential overfitting. Although internal cross-validation was

performed to mitigate this risk, such an approach may not fully

reflect the model’s generalizability to unseen data. Future studies

should incorporate larger, multicenter datasets and external

validation cohorts to better evaluate the robustness and clinical

applicability of the model across different populations and imaging

conditions. Additionally, we did not explore the specifics of IVIM

reconstruction parameters. For example, the selection of b-values

and the approach used to fit diffusion and perfusion components.

While intraclass correlation coefficients (ICCs >0.75) were used to

ensure feature robustness, segmentation discrepancies between

radiologists, particularly in heterogeneous tumors with ill-defined

margins, could affect habitat clustering and feature extraction.

Furthermore, large-scale pathological studies, including animal

experiments, may be needed to reflect the global spatial

consistency of tumors.
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In conclusion, compared with traditional radiomics models, the

model combining habitats and CF features can achieve better

performance and better interpretability. It can potentially help to

improve the image-based diagnosis, and help doctors formulate

personalized treatment plans for breast cancer patients. Habitat

radiomics based on IVIM can help to better understand the biology

of tumors, providing more information and support for clinical

decision-making. Future research will further improve and validate

the models to further improve their applicability and effectiveness

in clinical settings.
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