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Liver cancer ranks as the sixth most prevalent malignancy globally, with

Hepatocellular Carcinoma (HCC) constituting the predominant subtype,

thereby imposing a significant burden on public health and presenting limited

therapeutic options. Despite ongoing efforts to innovate treatment modalities,

anti-angiogenesis therapy continues to be the primary strategy for managing

HCC. Angiogenesis is a pivotal process within the tumor microenvironment,

characterized by the formation of new blood vessels that provide essential

nutrients and oxygen to proliferating tumors, thereby facilitating their growth

and potential metastasis. Numerous angiogenic signaling pathways become

dysregulated during this process. Targeting these aberrant pathways can yield

significant therapeutic benefits for patients and may even reverse drug

resistance. However, these signaling pathways frequently demonstrate intricate

crosstalk and interconnections. Elucidating these interactions could represent a

crucial strategy for advancing the treatment of HCC. This review provides both

mechanistic insights into angiogenic network plasticity and translational

strategies to overcome therapeutic bottlenecks in HCC management.
KEYWORDS
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1 Introduction

Liver cancer ranks as the sixth most prevalent malignancy globally and constitutes the

third leading cause of cancer-related mortality. HCC represents approximately 90% of

primary liver cancer cases, thereby exerting considerable pressure on public health (1).

While surgical intervention, conventional radiotherapy, and chemotherapy offer

therapeutic options for HCC, these traditional modalities exhibit limited efficacy in

patients with advanced and incurable HCC. Furthermore, approximately 40-70% of

patients experience disease recurrence within five years following surgical resection (2).
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Consequently, identifying novel strategies for the treatment of HCC

is of paramount importance. The 2024 EASL Clinical Practice

Guidelines highlight that first-line targeted therapies for HCC

predominantly utilize multi-tyrosine kinase inhibitors (multi-

TKIs), which exert anti-angiogenic effects primarily through

VEGF receptor blockade while demonstrating ancillary activity

against FGFR, TIE2, and MET pathways (3). Beyond these

established therapeutic targets, accumulating evidence from

preclinical studies and comprehensive reviews reveals that the

NOTCH (4), Wnt/b-catenin (5), PI3K/AKT (6), pathway are

aberrantly activated in HCC. These evolutionarily conserved

pathways have been mechanistically linked to multiple oncogenic

processes, exhibiting profound implications for tumor angiogenesis,

proliferation, metastasis, and drug resistance. This review aims to

this review aims to systematically evaluate the molecular

mechanisms underlying aberrant activation of key angiogenic

signaling pathways (NOTCH, Wnt/b-catenin, Ang/Tie, FGF,

HGF, VEGF, and PI3K/AKT) in HCC progression and

therapeutic resistance. We will critically analyze emerging

preclinical and clinical evidence regarding pathway crosstalk

within the tumor microenvironment, with particular focus on

their synergistic contributions to angiogenesis, immune evasion,

and acquired drug resistance. Furthermore, this review will assess

current therapeutic strategies targeting these pathways, including

combination approaches with immune checkpoint inhibitors, while

highlighting persisting challenges in clinical translation and

proposing rational polytherapy frameworks to overcome

compensatory signaling adaptation.
2 Notch pathway

The Notch signaling genes are highly conserved within the

human body and play a critical role in regulating cell proliferation

and differentiation, embryonic development, and tissue

homeostasis, among other processes. This signaling pathway

comprises four transmembrane receptors, Notch1 through

Notch4, which engage with five transmembrane ligands: Jagged1,

Jagged2, Dll1, Dll3, and Dll4. Upon interaction between a Notch

ligand and its corresponding receptor, the extracellular domain of

the Notch receptor undergoes proteolytic cleavage. This is followed

by additional cleavage mediated by g-secretase, resulting in the

release of the Notch intracellular domain (NICD) from the cell

membrane. The NICD is subsequently translocated into the

nucleus, where it interacts with the CSL transcription factor

complex, thereby initiating the transcription of target genes. This

process ultimately influences a range of biological outcomes,

including cell proliferation and differentiation (Figure 1) (7).

The Notch signaling pathway is markedly upregulated in HCC and

plays a significant role in the initiation and progression of

tumorigenesis (8). Consequently, conducting comprehensive research

on the mechanisms of the Notch signaling pathway in HCC and

developing specific inhibitors targeting this pathway is of paramount
Frontiers in Oncology 02
importance (Table 1). Experimental models demonstrate that

pharmacological modulation of Notch activity through g-secretase
inhibitors (e.g., DAPT) can restore cellular homeostasis by

counterbalancing EGFL8 deficiency-induced pathway hyperactivity

(9). In addition, natural compounds targeting Notch signaling

pathways exhibit multifaceted therapeutic effects. Application of

matrine demonstrates dual hepatoprotective functions: while

attenuating Notch-driven oncogenic signaling, this alkaloid promotes

hepatic oval cell differentiation into functional hepatocytes,

ameliorating histopathological features including fibrosis and

inflammatory infiltration (10). The Notch signaling pathway

contributes to chemoresistance in HCC through crosstalk with

developmental signaling networks. Cancer Stem Cells (CSCs), a

unique subpopulation of cancer cells, exhibit self-renewal capabilities,

significant heterogeneity, and drug resistance, and are the principal

contributors to tumor recurrence and metastasis (49). In liver cancer

stem cells (LCSCs), Notch1 functions downstream of Wnt/b-catenin
signaling, relying on Wnt activation to NICD, yet paradoxically

establishes a negative feedback loop suppressing b-catenin/TCF
activity—demonstrated by increased b-catenin activity upon Notch1

knockdown and reduced transcriptional output following NICD

overexpression. This bidirectional crosstalk suggests that coordinated

targeting of Notch andWnt/b-catenin signaling networks may provide

a novel therapeutic strategy to eliminate LCSCs and improve HCC

treatment (50). The application of valproic acid (VPA) was shown to

significantly inhibit the Notch/AKT signaling pathway, thereby

restoring the cells’ sensitivity to sorafenib (11). Hang et al. reported

that ZLDI-8, an inhibitor of ADAM17, effectively inhibits the cleavage

and subsequent release of the NICD, thereby suppressing the

transmission of the NOTCH signaling pathway. This inhibition leads

to a downregulation of integrin b1 and b3 expression, ultimately

restoring the sensitivity of HCC cells to sorafenib (12).

Although NOTCH pathway inhibitors have demonstrated

promising efficacy in preclinical models, their clinical translation

faces significant challenges. In the HCC field, the sole ongoing

clinical trial is NCT03422679—a non-randomized, open-label

Phase I/II dose-escalation study evaluating the NOTCH inhibitor

CB-103 in patients with advanced malignancies including HCC

(13). Notably, dose-limiting toxicities of NOTCH inhibitors

predominantly manifest as severe gastrointestinal adverse events,

closely linked to the pathway’s essential roles in intestinal stem cell

maintenance and epithelial barrier function (51, 52). These

toxicities frequently lead to trial discontinuation or dose

reduction, underscoring the imperative for tissue-selective

delivery systems or rational polytherapy strategies.
3 Wnt/b-catenin pathway

The Wnt signaling pathway is important in the human body,

regulating many important physiological processes in embryonic

development and tissue homeostasis (53). In the canonical WNT

signaling pathway, the WNT ligand engages with the corresponding
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Frizzled receptor and the co-receptor LRP5/6 on the cell surface.

This interaction leads to the accumulation of b-catenin in the

cytoplasm, which subsequently translocates to the nucleus.

Within the nucleus, b-catenin interacts with the transcription

factor TCF, thereby initiating the transcription of target genes

and promoting various biological effects (Figure 1) (54, 55).

Previous studies have shown that targetin Porcupine O-

acyltransferase (PORCN) or tankyrase (TNKS) may have some

effects, such as the use of Wnt3A inhibitor LGK-974, which blocks

Wnt signaling and prevents Nrf2 signaling and enhances the

radiosensitivity of HepG2 cells (14). Sang Hyun et al. reported

that the application of the DKK1 inhibitor WAY-262611 can

suppress the PI3K/AKT and Wnt/b-catenin signaling pathways

through the modulation of Glycogen synthase kinase 3 beta

(GSK-3b) activity, thereby markedly augmenting the anti-tumor

effectiveness of sorafenib (15). While therapeutic targeting of the

Wnt/b-catenin pathway shows potential in HCC, its clinical

translation faces dual biological constraints. First, the pathway’s

indispensable roles in gastrointestinal homeostasis and epithelial

regeneration render systemic inhibition prone to dose-limiting

toxicities, including intestinal stem cell depletion and impaired
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wound healing as evidenced by clinical trial data (5). Second,

genetic heterogeneity in HCC pathogenesis—particularly

CTNNB1-activating mutations and AXIN functional loss—

confers intrinsic resistance to upstream pathway inhibitors

targeting PORCN, or TNKS. These mutations establish b-catenin
signaling autonomy through distinct mechanisms: CTNNB1

mutants evade proteasomal degradation, while AXIN-deficient

tumors bypass the b-catenin destruction complex (56). In this

context, selective targeting of the CREB-binding protein (CBP)/b-
catenin nuclear transcriptional complex holds critical therapeutic

significance. PRI-724, a selective inhibitor of Wnt/b-catenin/CBP
signaling, inhibits the proliferation of cultured HCC cells (57).

Furthermore, nanoparticle-based delivery systems have shown

significant potential for HCC therapy. A study demonstrated that

niclosamide-loaded pluronic nanoparticles (NIC-NPs) enhanced

antitumor efficacy in HCC-bearing rats compared to free

niclosamide by prolonging drug release, restoring liver function,

and amplifying Wnt/b-catenin/Notch pathway inhibition and

apoptosis, while their negatively charged surface improved tumor

targeting and safety through reduced off-target uptake, supporting

nanoparticle-based strategies as a promising therapeutic avenue for
FIGURE 1

.This figure delineates the core signaling network and targeted therapeutic strategies governing angiogenesis in HCC under hypoxic tumor
microenvironment. During HCC progression, rapid tumor cell proliferation induces localized hypoxia, stabilizing HIF-1a and augmenting its
transcriptional activity. HIF-1a directly drives the expression of pro-angiogenic factors, including VEGF, FGF, and Ang-1. Concurrently, pathways such
as Notch, Wnt/b-catenin, Ang/Tie, and PI3K/AKT are hyperactivated, collectively promoting pathological angiogenesis. The resulting neovasculature
facilitates oxygen and nutrient delivery, further accelerating tumor proliferation, metastasis, and drug resistance.Critical inter-pathway cross-talk
underpins this process: The activation of the NICD is mechanistically linked to Wnt/b-catenin signaling, wherein NICD synergizes with b-catenin to
amplify transcriptional output; FGF signaling stabilizes b-catenin via GSK-3b phosphorylation, enhancing Wnt pathway activity; and the PI3K/AKT-
mTOR axis stabilizes HIF-1a, establishing a Positive feedback loop with VEGF to sustain angiogenic signaling.Therapeutic strategies target multiple
regulatory nodes: Bevacizumab neutralizes VEGF ligands to inhibit endothelial activation; Sorafenib suppresses VEGFR and FGFR kinase activity;
DZW-301 attenuates PI3K downstream signaling; ZIDI-8 inhibited g-secretase inhibitor and CB-310 disrupted NICD nuclear translocation, thereby
inhibiting notch signalling.
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HCC (16). In addition, Studies have shown that the combination of

ICG-1 and anti-PD-1 antibody can promote the infiltration of DCs

and CD8+ T cells within the TME, thereby enhancing immune cell

activity and inhibiting tumor growth. Therefore, combiningWnt/b-
catenin signaling pathway inhibitors with anti-PD-1 therapy may

represent a promising treatment strategy for HCC patients (58).

Collectively, these findings establish a novel therapeutic

paradigm for HCC by synergistically integrating b-catenin
transcriptional inhibitors, nanoparticle-based drug delivery, and

immune checkpoint blockade to overcome biological

heterogeneity, enhance therapeutic precision, and mitigate

systemic toxicity (Table 1).
4 Ang/Tie pathway

The Angiopoietin/Tie signaling pathway comprises four

ligands, specifically ANG1 through ANG4. The Tie receptor,

characterized by its tyrosine kinase activity, is extensively

expressed in vascular endothelial cells. Angiopoietins form

multimers via the SCD domain, subsequently binding to the Tie

receptor. This interaction facilitates the autophosphorylation of Tie,

thereby activating downstream signaling pathways that culminate

in the transcription of specific target genes (Figure 1) (17). The Ang/

Tie signaling pathway is integral to vascular remodeling, mural cell

recruitment, and the maturation of the vasculature (59, 60).

Ang-1 and Ang-2 are considered the two most critical and

extensively studied ligands within the angiopoietin family. Ang-1

primarily contributes to the maintenance of barrier function and

homeostasis in vascular endothelial cells through its interaction

with the Tie2 receptor. Conversely, Ang-2 generally acts as an

antagonist to the Tie2 receptor, exhibiting variable functions

contingent upon the levels of vascular endothelial growth factor

(VEGF). In the absence of VEGF, Ang-2 may induce vascular

regression, whereas in the presence of VEGF, it facilitates

angiogenesis. Consequently, the Ang-1/Ang-2 ratio is of

paramount importance in assessing the stability of the vascular

system (61). The proliferative impact of Ang-2 on HCC is

intricately associated with VEGF. The study conducted by

Adriana et al. demonstrates that Ang-2 and VEGF synergistically

augment the invasive capacity of HCC, with the underlying

mechanism being closely linked to the induction of epithelial-

mesenchymal transition (EMT). The concurrent targeting of Ang-

2 and VEGF using Trebananib and Bevacizumab effectively inhibits

the metastatic potential of the tumor (62). Furthermore, Ang-2 has

the capability to activate the ERK-MSK signaling cascade, which

subsequently induces the expression of downstream genes

associated with drug resistance and anti-apoptosis, specifically

Survivin and Ref-1. This molecular mechanism contributes to the

resistance of HCC cells to the chemotherapeutic agent doxorubicin

(18). Targeting the Angiopoietin/Tie2 signaling pathway has

demonstrated promising efficacy in preclinical studies for the

treatment of various solid tumors, including ovarian and

gastrointestinal cancers (63). Nevertheless, research specifically

focusing on HCC remains limited. In a study conducted by
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Kyriakos P et al., a notable reduction in alpha-fetoprotein (AFP)

levels was observed in two HCC patients who maintained stable

disease following treatment with Trebananib (64). However, when

Ghassan K et al. used Trebananib in combination with sorafenib to

treat HCC, compared with sorafenib alone, it did not show better

treatment effects on HCC. The conflicting OS outcomes likely

reflect methodological artifacts, particularly small sample size and

sequential cohort accrual biasing baseline risk, rather than a true

biological dose response (65). Therefore, further research is

required to substantiate the efficacy of specifically targeting the

Ang/Tie pathway in the treatment of HCC.
5 FGF pathway

Fibroblast growth factor(FGF) is a cytokine characterized by its

multifaceted biological functions, influencing early embryonic

development, tissue repair, metabolic processes, and a variety of

physiological activities within the human body (19). The extensive

FGF family comprises approximately 18 ligands, which interact

with their primary receptors, FGFR1-4. This interaction initiates the

activation of downstream signaling pathways, including the MAPK,

PI3K/AKT, PKC, and STAT pathways, ultimately facilitating the

expression of target genes (Figure 1).

The FGF/FGFR signaling pathway is aberrantly activated in

numerous solid tumors, including ovarian, lung, and liver cancers,

thereby facilitating tumor proliferation, metastasis, angiogenesis,

and the development of drug resistance (66). Among FGF family

members, FGF1, FGF2, FGF4, and FGF8 have demonstrated pro-

angiogenic roles in various models, with FGF1 and FGF2 exhibiting

particularly prominent effects. Notably, FGFs and VEGF exhibit

compensatory interactions, such as FGF2 upregulating VEGFA

expression to promote angiogenesis. Anti-VEGF therapies may

induce compensatory activation of FGF pathways, leading to drug

resistance. Studies suggest that dual targeting of these pathways may

yield superior antitumor efficacy (67). Current research

predominantly focuses on FGFR4 in HCC, where it shows

significantly higher overexpression compared to FGFR1-3. FGFR4

emerges as the predominantly overexpressed FGFR isoform in

HCC, with minimal upregulation observed in FGFR1/2. Notably,

FGFR4-selective inhibitors circumvent hyperphosphatemia caused

by FGFR1/3 inhibition, demonstrating improved safety profiles.

These attributes position FGFR4 as a promising therapeutic target

in HCC (68). The FGF19/FGFR4 axis contributes to HCC resistance

to sorafenib by inhibiting ROS-related apoptosis induced by the

drug (69). The signaling pathway facilitates the expression of ETV4,

which subsequently enhances the expression of death-ligand 1 (PD-

L1) and CCL2. This upregulation leads to increased infiltration of

tumor-associated macrophage (TAM) and myeloid-derived

suppressor cells (MDSC), while concurrently inhibiting the

accumulation of CD8+ T cells, thereby promoting an

immunosuppressive environment. In addition,ETV4 is capable of

enhancing the transcription and translation of FGFR4, thereby

facilitating the formation of the FGFR4-ERK1/2-ELK1 positive

feedback pathway. In this study, the combined application of the
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FGFR4 inhibitor BLU-554 and anti-PD-L1 therapy was shown to

significantly suppress HCC metastasis (70, 71). A clinical study

demonstrates that FGF401 (roblitinib) is a highly efficient and

specific inhibitor targeting FGFR4. It exhibits a favorable

therapeutic effect when used either as a monotherapy for HCC or

in combination with a PD-1 inhibitor (20). Lenvatinib has been

demonstrated to decrease PD-L1 expression in HCC and inhibit the

differentiation of regulatory regulatory T cells (Tregs) through the

blockade of FGFR-4. These mechanisms contribute to an

augmented therapeutic efficacy of anti-PD-1 inhibitors (21).

Overall, targeting the FGF/FGFR axis—particularly FGFR4—

represents a promising therapeutic strategy for HCC. Emerging

evidence underscores the necessity of combination approaches,

including co-targeting FGFR4 with other pathways or immune

checkpoint inhibitors, to overcome compensatory mechanisms

and enhance clinical efficacy (Table 1).
6 HGF pathway

Hepatocyte Growth Factor(HGF)is a multifunctional cytokine

that serves as a mitogen for various epithelial cells. The receptor for

HGF is C-MET, a transmembrane receptor tyrosine kinase. Upon

specific binding of HGF to C-MET, phosphorylation of the tyrosine

residues on C-MET occurs, subsequently activating multiple

downstream signaling pathways via SRC. This activation leads to

the expression of target genes, influencing tissue regeneration,

ameliorating fibrosis and inflammatory responses, and

modulating the expression of vascular-related growth factors,

such as VEGF (Figure 1) (22, 23, 72).

Aberrant expression of HGF often exerts tumor-promoting

effects (73). HGF has been demonstrated to drive the initiation

and progression of multiple cancers, including HCC, with its

mechanisms extensively studied. Under physiological conditions,

the HGF/c-MET signaling pathway is tightly regulated and

maintained at stable levels. However, in HCC, this pathway

becomes abnormally activated. Compared to normal liver tissues,

C-MET mRNA levels are significantly elevated in HCC tissues (74).

A substantial body of preclinical studies has validated the feasibility

of targeting the HGF/c-MET pathway for HCC treatment. For

instance, Ming et al. showed that Deguelin suppresses VEGF

secretion by targeting the HGF/c-MET pathway, thereby

inhibiting angiogenesis in HCC (75). Similarly, Fangchinoline

negatively regulates the c-MET/HGF axis and its associated

downstream signaling pathways, leading to HCC proliferation

inhibition (76). Yong et al. demonstrated that DCN-derived

peptides(DCN-PS) competitively bind to c-MET, blocking the

HGF/c-MET signaling pathway and impeding HCC progression

(25). CRI9, a novel synthetic compound, inhibits c-MET

phosphorylation, thereby suppressing the downstream PI3K/

AKT/mTOR pathway. This mechanism has shown significant

anti-tumor effects in murine models (26). AMG337 has been

shown to potently inhibit the proliferation of HCC cells with

elevated c-MET expression (27). The HGF pathway regulates

HCC resistance through multiple mechanisms. For example, it
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reduces HCC sensitivity to sorafenib by modulating the AKT/

ERK1/2-ERG1 axis (58). Additionally, c-MET activates the

MAPK signaling cascade, upregulating NF-kB mediated PD-L1

expression, thereby enhancing immune evasion and drug

resistance (28). H11, a novel c-MET degrader, induces c-MET

ubiquitination-proteasome degradation and demonstrates anti-

tumor activity while overcoming drug resistance (29).

Despite promising preclinical results, clinical trials of HGF/c-

MET inhibitors have yielded mixed outcomes. In a Phase 1b/2 trial

involving systemic anticancer treatment-naive Asian patients with

MET-overexpressing advanced hepatocellular carcinoma, tepotinib

demonstrated improved independently assessed time to progression

and a lower rate of grade ≥3 treatment-related adverse events

compared to sorafenib, supporting its potential efficacy and

tolerability in this population (77). Capmatinib, a highly selective

inhibitor of C-MET, demonstrated promising anti-tumor efficacy in

a phase II clinical trial targeting HCC characterized by high C-MET

expression levels (30). However, its lack of FDA approval may stem

from intrinsic resistance mechanisms linked to immune adaptation.

DeAzevedo et al. further demonstrated that type I MET inhibitors,

including capmatinib, induce compensatory PD-L1 elevation in

HCC models, rendering tumors resistant to MET-targeted therapy

but sensitized to PD-1 blockade. This mechanistic synergy

underscores the potential of combining capmatinib with anti-PD-

1 agents to simultaneously disrupt MET-driven oncogenesis and

immune evasion (31). Tivantinib, a selective c-MET inhibitor, failed

to meet primary endpoints in a Phase III trial, showing no

significant improvement in overall survival (OS) or progression

free survival (PFS) compared to placebo. Its high toxicity profile,

including ascites, anemia, abdominal pain, and neutropenia, may

reflect the physiological roles of HGF/c-MET in multiple

organs (32).

Overall, the HGF/c-MET pathway remains a valid therapeutic

target for HCC. The limited success of clinical trials is attributed to

inconsistent detection standards, unresolved molecular

heterogeneity, and underestimated immune evasion mechanisms.

Future directions include optimizing diagnostic techniques,

stratifying patients for targeted therapy, and exploring

combination immunotherapy. Further prospective studies are

warranted to validate c-MET as a therapeutic target (Table 1).
7 VEGF pathway

TheVEGF signaling pathway plays a pivotal role in normal vascular

development and growth, as well as in tumor angiogenesis. The VEGF

family comprises several members, including VEGF-A, VEGF-B,

VEGF-C, VEGF-D, and PGF. The primary VEGF receptors include

VEGFR1, VEGFR2, and VEGFR3, each serving distinct functional roles.

VEGFR2 is principally responsible for mediating angiogenesis, while

VEGFR3 predominantly regulates lymphangiogenesis (77, 78). Upon

ligand-induced dimerization, the activated receptor triggers a sequence

of downstream signaling pathways, including RAS/MAPK, SRC, and

PI3K/AKT, culminating in the activation of relevant angiogenic gene

expression (Figure 1) (79).
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TABLE 1 Current status of chemicals that affect the angiogenic pathway of hepatocellular carcinoma.

Chemical
Signaling
pathway

Role Type of study Reference

DAPT NOTCH g-secretase inhibitor; blocks NICD release preclinical study (9)

Matrine NOTCH Promotes HOC differentiation into hepatocytes preclinical study (10)

Valproic acid NOTCH Restores the cells' sensitivity to sorafenib preclinical study (11)

ZLDI-8 NOTCH NICD release blocker, restores sorafenib sensitivity preclinical study (12)

CB-103 NOTCH NICD-CSL interaction blocker;inhibits downstream transcriptional activation
NCT03422679
(Phase I)

(13)

LGK-974 Wnt/b-catenin Wnt3A inhibitor; enhances HepG2 cell radiosensitivity preclinical study (14)

WAY-262611 Wnt/b-catenin
DKK1 inhibitor; suppresses Wnt/b-catenin signaling via GSK3b modulation;
enhances sorafenib efficacy

preclinical study (15)

PRI-724 Wnt/b-catenin
Selective CBP/b-catenin interaction disruptor; inhibits HCC proliferation
and stemness

preclinical study (16)

ICG-001 Wnt/b-catenin Selective CBP/b-catenin interaction disruptor; inhibits HCC proliferation Preclinical study (17)

Trebananib Ang/tie Angiopoietin-neutralizing agent; normalizes tumor vasculature, reduces metastasis
NCT00872014
(Phase II)

(18, 19)

BLU-554 FGF
FGFR4 inhibitor; synergizes with anti-PD-L1 to suppress metastasis via
immune remodeling

NCT02508467
(Phase I)

(20, 21)

FGF401 FGF FGFR4 inhibitor; shows monotherapy efficacy and PD-1 combination potential
NCT02325739(Phase
I/II)

(22)

Lenvatinib FGF,VEGF
Multikinase inhibitor;iinduces anti-angiogenic and pro-apoptotic effects,enhances
anti-PD-1 response

NCT01761266
(Phase III)

(23, 24)

Deguelin FGF Suppresses angiogenesis and tumor-stroma interactions preclinical study (25)

Fangchinoline HGF Inhibits HCC proliferation and metastasis preclinical study (26)

DCN-PS HGF Competitive c-MET binder; inhibits invasion preclinical study (27)

CRI9 HGF C-Met inhibitor;induces apoptosis in sorafenib-resistant HCC preclinical study (28)

AMG337 HGF C-Met inhibitor;induces proliferation preclinical study (29)

H11 HGF
C-Met degrader; induces ubiquitination-dependent c-MET degradation to overcome
drug resistance

preclinical study (30)

Tepotinib HGF C-Met inhibitor;suppresses proliferation and metastatic
NCT01988493(Phase
Ib/II )

(31)

Capmatinib HGF selective inhibitor of C-MET; induces angigenesis
NCT01737827
(Phase II)

(32)

Tivantinib HGF C-Met inhibitor;suppresses proliferation
NCT01755767
(Phase III)

(33)

Sorafenib VEGF, FGF Multikinase inhibitor;suppresses angiogenesis
NCT00105443
(Phase III)

(34)

Bevacizumab VEGF Anti-VEGF monoclonal antibody; reducing tumor vascularization
NCT00162669
(Phase II)

(35)

Ramucirumab VEGF VEGFR2inhibitor; suppresses angiogenesis
NCT02435433
(Phase III)

(36)

Cabozantini VEGF, HGF Multikinase inhibitor; suppresses angiogenesis
NCT01908426
(Phase III)

(37)

Apatinib VEGF VEGFR2inhibitor; blocks angiogenesis and EMT
NCT02329860
(Phase III)

(38, 39)

LY294002 PI3K/AKT PI3K inhibitor; enhances sorafenib sensitivity preclinical study (40)

DZW-310 PI3K/AKT
PI3Ka isoform-selective inhibitor; disrupts HIF-1a/VEGFA axis and tumor
vascular remodeling

preclinical study (41)

(Continued)
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VEGF, as the most critical factor in tumor angiogenesis, has

become the primary therapeutic target for antiangiogenic strategies.

Current antiangiogenic multi-kinase inhibitor, revolutionized HCC

treatment by significantly improving median OS in advanced

disease, as demonstrated in the SHARP trial. This marked a

paradigm shift in liver cancer treatment, transitioning from

traditional approaches (surgery, locoregional therapies) to

targeted therapies. Bevacizumab inhibits tumor growth by

neutralizing VEGF-VEGFR interactions (80, 81). Ramucirumab, a

VEGFR2-targeted monoclonal antibody, showed efficacy in AFP-

high HCC patients (82). Furthermore, agents such as lenvatinib and

cabozantinib have shown efficacy in HCC management (34, 35).

These successes underscore the pivotal role of VEGFR inhibition in

HCC therapy. Inhibition of the VEGF/VEGFR axis confers multiple

therapeutic benefits, including enhanced efficacy of ICIs.

Antiangiogenic agents transiently improve vascular architecture

by enhancing pericyte coverage and reducing vascular leakage,

thereby increasing tumor perfusion and oxygenation to create a

vascular normalization window. This window alleviates hypoxia,

enhances immune cell infiltration, and improves drug delivery

efficiency (36). Clinical studies demonstrate that combining

antiangiogenic TKIs with ICIs during this window synergistically

enhances antitumor efficacy. For instance, the combination of

bevacizumab and atezolizumabhas shown promising survival

benefits in advanced HCC, as evidenced by recent clinical trials (24).

The VEGF/VEGFR signaling axis remains central to

antiangiogenic therapy in HCC, supported by decades of clinical

success and emerging synergies with immunotherapy (83, 84)

(Table 1). While challenges such as tumor heterogeneity and

resistance persist, ongoing research into novel agents and

combination strategies continues to refine this paradigm,

solidifying the pathway’s enduring relevance in HCC management.
8 PI3K/AKT pathway

PI3K is a heterodimer composed of a catalytic subunit, p110, and

a regulatory subunit, p85 [98]. AKT, also referred to as protein kinase
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B, functions as a serine/threonine kinase. The PI3K/AKT signaling

pathway frequently serves as a mediator, modulating diverse cellular

processes including proliferation, metabolism, and angiogenesis,

upon activation by various upstream signals. (Figure 1) (37).

The PI3K/AKT pathway drives oncogenesis through multi-

layered regulatory mechanisms (Table 2). A key example is AKT-

mediated phosphorylation of HIF-1a at serine/threonine residues,

which prevents its VHL-dependent ubiquitination and degradation.

This stabilizes HIF-1a under hypoxic conditions, enabling its

accumulation and subsequent transcriptional activation of

VEGFA to induce angiogenesis (89). Notably, HIF-1a
orchestrates both angiogenic and metabolic reprogramming in

hypoxia. Beyond activating VEGFA, HIF-1a upregulates

glycolytic enzymes such as GLUT1 and LDHA, forcing cancer

cells to adopt the Warburg effect for energy production. This

metabolic shift enhances glucose uptake and lactate secretion,

supporting tumor proliferation even in oxygen-deprived

microenvironments. Critically, the accumulated lactate further

stabilizes HIF-1a by inhibiting prolyl hydroxylase (PHD) activity,

thereby creating a self-reinforcing feedforward loop that

perpetuates glycolysis and angiogenesis. HIF-1a overexpression
TABLE 1 Continued

Chemical
Signaling
pathway

Role Type of study Reference

Ophiopogon PI3K/AKT PI3K/AKT inhibitor; suppresses proliferation, migration, and angiogenesis preclinical study (42)

ASP PI3K/AKT
Downregulates HIF-1a/VEGF to suppress hypoxia-driven migration, invasion,
and angiogenesis

preclinical study (43)

Salvigenin PI3K/AKT
PI3K/AKT/GSK-3b inhibitor; enhances 5-FU sensitivity by suppressing glycolysis
and promoting apoptosis

preclinical study (44)

Anhydroicaritin PI3K/AKT Natural flavonoid derived from Epimedium; suppress proliferation and metastasis preclinical study (45)

Rapamycin PI3K/AKT mTOR inhibitor; suppresses angiogenesis and proliferation
NCT00467194
(Phase I)

(46)

Temsirolimus PI3K/AKT mTOR inhibitor; suppresses angiogenesis and proliferation
NCT00321594(Phase
I/II)

(47)

Sirolimus PI3K/AKT mTOR inhibitor; suppresses angiogenesis, proliferation, metastasis NCT00355862 (48)
TABLE 2 PI3K/AKT-mediated signaling crosstalk with VEGF and WNT/b-
catenin pathways in cancer progression.

Interaction Mechanism Function Reference

PI3K/
AKT&VEGF

VEGF/VEGFR/
PI3K/AKT

forming a positive
feedback loop that

promotes angiogenesis
EMT, metastasis, and

drug resistance

(80, 85)
PI3K/AKT/HIF-
1/VEGF

PI3K/AKT/NF-
KappaB/VEGF

Angiogenesis,
inflammation

(86)

VEGF/PI3K/
AKT/eNOS/NO

angiogenesis (87)

PI3K/
AKT&WNT/
b-catenin

PI3K/AKT/
GSK-3b/
b-catenin

angiogenesis,
proliferationmetastasis,

metastasis,drug
resistance,EMT

(57, 88)
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also enhances tumor aggressiveness by promoting EMT, facilitating

genetic instability, suppressing apoptosis, and exacerbating resistance

to chemotherapy and radiotherapy (90, 91). In addition to HIF-1a
regulation, PI3K/AKT signaling activates NF-kB, which

transcriptionally upregulates VEGF expression, amplifying

angiogenic signaling (38). Concurrently, the PI3K/AKT axis

modulates angiogenesis via the eNOS/NO pathway, where AKT

phosphorylates and activates endothelial nitric oxide synthase

(eNOS) to boost nitric oxide production, thereby enhancing

angiogenesis (39). Moreover, crosstalk between PI3K/AKT and

Wnt/b-catenin pathways contributes to malignant progression.

PI3K/AKT phosphorylates GSK-3b at Ser9, inhibiting its kinase

activity and preventing b-catenin degradation (92). This

stabilization of b-catenin activates Wnt signaling, which drives

cancer stem cell proliferation and confers therapeutic resistance.

Therefore, the development of inhibitors and combination

therapies targeting this pathway has become a research focus.

Preclinical studies demonstrate that the PI3K inhibitor

LY294002 suppresses the AKT/GSK-3b signaling pathway,

enhancing the VEGFR2-targeting effect of sorafenib. This

combination promotes vascular normalization and reverses drug

resistance (93). DZW-310, a novel PI3K inhibitor, disrupts the HIF-

1a/VEGFA axis by inhibiting the PI3K/AKT pathway, thereby

attenuating angiogenesis in HCC (94). Additionally, several plant-

derived components exhibit inhibitory effects on the PI3K/AKT

pathway. Ophiopogonin-B suppresses the PI3K/AKT pathway via

downregulation of protein tyrosine phosphatase 1B (PTP1B) while

activating the AMP-activated protein kinase (AMPK) pathway,

leading to inhibition of HCC cell proliferation, migration, and

angiogenic capabilities (95). ASP, a significant phytoextract,

downregulates HIF-1a/VEGF expression by inhibiting PI3K and

MAPK signaling pathways, suppressing hypoxia-induced

migration, invasion, and angiogenesis in HCC cells (85).

Salvigenin impedes aerobic glycolysis and enhances sensitivity to

5-fluorouracil(5-FU) in HCC cells by inhibiting the PI3K/AKT/

GSK-3b pathway, restraining tumor growth in nude mice and

promoting apoptosis (86). Anhydroicaritin(AHI), derived from

traditional Chinese medicine, has been shown in vitro to

effectively inhibit the PI3K/AKT pathway, suppressing HCC cell

proliferation and metastasis (87).

In a Phase I study of rapamycin plus bevacizumab for advanced

HCC, early efficacy was demonstrated, with 1 complete response

(lasting 4.5 months) and 2 partial responses observed among 20

evaluable patients, alongside manageable toxicity (88). For

temsirolimus, an mTOR inhibitor, a Phase I/II trial in

unresectable advanced HCC did not meet the primary endpoint

of PFS (95). The SiLVER trial investigated sirolimus for preventing

HCC recurrence after liver transplantation, but the primary

endpoint of improved disease-free survival (DFS) was not

achieved. However, subsequent multivariate analysis revealed that

everolimus improved outcomes in a subgroup with high tumor

activity indicated by AFP levels, advocating its use in this

population (41). A Phase II study of temsirolimus combined with

sorafenib in advanced HCC showed favorable safety and improved

OS, though outcomes fell short of expectations (42).
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As a pivotal downstream signaling node, PI3K/AKT plays

critical roles in HCC angiogenesis, proliferation, and other

oncogenic processes. Preclinical studies targeting PI3K/AKT show

robust antitumor effects, though clinical trials have yielded mixed

results. Future strategies may require combination therapies and

biomarker-guided approaches to optimize PI3K/AKT-targeted

interventions in HCC (Table 1).
9 Biomarker for personalized anti-
angiogenic therapy

The molecular and phenotypic heterogeneity of HCC,

evidenced by tumor microenvironmental variations and divergent

angiogenic pathway activation patterns, fundamentally limits the

efficacy of anti-angiogenic regimens, underscoring the urgent need

to identify predictive biomarkers.

early reductions in circulating VEGF levels predict favorable

responses to sorafenib, while sustained elevation correlates with

treatment resistance and adverse prognosis in sorafenib-treated

patients (43, 44). The serum concentration of Ang-2 may serve as

a biomarker for evaluating the therapeutic efficacy of systemic

treatment agents, such as sorafenib and regorafenib, in patients

with advanced HCC (45, 46). Notably, baseline Ang-2/VEGF

synergy has been validated as a personalized prognostic tool for

lenvatinib-treated patients, where combined low Ang-2/high VEGF

profiles portend accelerated Child-Pugh deterioration (47). Elevated

serum DKK-1, a Wnt signaling modulator, serves as a prognostic

biomarker in HCC by driving tumor stemness, angiogenesis, and

invasion (48). Elevated Notch1 and Notch4 expression

independently predicts shorter recurrence-free and disease-

specific survival in HCC patients post-curative resection, as

demonstrated by Soomin Ahn et al., positioning these receptors

as dual prognostic biomarkers and potential therapeutic targets for

anti-angiogenic strategies (96). Studies by Xiang et al. demonstrated

a potential association between MET expression and HCC patient

responses to sorafenib therapy, revealing that HCC patients with

elevated phosphorylated MET (p-MET) levels exhibited resistance

to adjuvant sorafenib treatment, suggesting that MET activation in

HCCmay serve as a promising predictive biomarker for therapeutic

response (97). High FGFR4 expression and tumor-infiltrating Tregs

synergistically predict enhanced therapeutic response to lenvatinib

plus anti-PD-1 combination therapy in HCC, positioning these

biomarkers for clinical stratification of patients likely to benefit

from this regimen (21).

Collectively, these findings underscore the imperative to develop

multi-dimensional biomarker panels that address HCC’s biological

complexity while enabling real-time therapeutic adaptation.
10 Tumor microenvironment and
therapeutic implications in HCC

Tumor neovasculature sustains tumor growth by delivering

oxygen and nutrients while removing metabolic waste products.
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However, structural abnormalities (e.g., high permeability and poor

perfusion) create a hypoxic and acidic tumor microenvironment

(TME), which stimulates the secretion of pro-angiogenic factors

(e.g., VEGF and Ang-2). This process further establishes a self-

perpetuating “angiogenesis-hypoxia-immunosuppression” vicious

cycle (98). The TME comprises a dynamic network of tumor

cells, endothelial cells, immune cells (e.g., TAMs, Tregs), cancer-

associated fibroblasts (CAFs), and extracellular matrix (ECM),

along with soluble factors such as cytokines and growth factors.

These components engage in bidirectional crosstalk to promote

tumorigenesis. For instance, CAFs secrete VEGF, and matrix

metalloproteinases (MMPs) to remodel the ECM, facilitating

angiogenesis and tumor invasion. Hypoxic polarization of TAMs

toward the immunosuppressive M2 phenotype enhances their

secretion of PD-L1, arginase-1 (ARG1), and interleukin-10 (IL-

10), thereby suppressing CD8+ T-cell function while reinforcing

angiogenesis via VEGF-A and fibroblast growth factor-2 (FGF-2)

(99, 100). Notch signaling increases the secretion of inflammatory

factors interleukin-6 (IL-6) and (Inducible Nitric Oxide Synthase)

iNOS, decreases the release of IL-10, and polarizes macrophages

toward M1 (101). Concurrently, Wnt/b-catenin activation in tumor

cells triggers paracrine Wnt ligand secretion, polarizing

macrophages toward the M2 phenotype and establishing a

protumor immunoprivileged niche (54). Moreover, the HGF/c-

MET and FGF19/FGFR4 axes synergize via the ERK1/2-ETV4

axis to upregulate PD-L1 and CCL2 expression in TAMs and

MDSCs, suppressing CD8+ T-cell activity and driving HCC

metastasis (70). This interconnected TME network not only

fosters tumor progression but also induces resistance to

antiangiogenic therapies, underscoring the imperative for

combinatorial targeting of TME components in HCC therapy.

While antiangiogenic drugs disrupt tumor blood supply, their

efficacy is often limited by compensatory signaling pathways and

immunosuppressive feedback loops mediated by CAFs and TAMs.

Therefore, integrating TME-modulating therapies may offer

multifaceted solutions to overcome drug resistance and improve

outcomes in these aggressive malignancies. For instance, FAP-

targeted vaccines have demonstrated antitumor activity in

preclinical models, modulating the immunosuppressive

microenvironment while reducing tumor growth and

angiogenesis (90). The integration of anti-angiogenic agents with

immune checkpoint inhibitors has emerged as a transformative

strategy in advanced HCCmanagement. The landmark IMbrave150

trial demonstrated that combining the anti-PD-L1 agent

atezolizumab with the anti-VEGF monoclonal antibody

bevacizumab significantly improved median OS to 19.2 months

compared to 13.4 months achieved by sorafenib monotherapy,

establishing this dual-mechanism regimen as the first-line

standard of care. This synergy arises from VEGF blockade

normalizing tumor vasculature while PD-L1 inhibition reverses

T-cell exhaustion, creating a permissive microenvironment for

immune-mediated tumor control. Subsequent combinations have

shown comparable efficacy, including the anti-PD-1 agent

sintilimab paired with bevacizumab, which achieved a median OS
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of 20.2 months and a 21% objective response rate in the ORIENT-

32 trial (102). Phase II-tested combination of the anti-PD-1 agent

camrelizumab with the VEGFR2 inhibitor apatinib, yielding a 20.1-

month median OS (103). The remarkable clinical successes of

angiogenesis-immune checkpoint combinations represent more

than incremental progress-they herald a new era of rationally

designed multi-mechanistic therapies for HCC.
11 Conclusions and perspectives

The interplay of multiple signaling pathways drives HCC

progression by promoting angiogenesis, immune evasion, and

therapeutic resistance. However, monotherapies face significant

limitations: compensatory mechanisms rapidly reactivate

angiogenesis, while pathway-specific inhibitors blockers cause

severe toxicities that restrict clinical application. These challenges

highlight the adaptive resilience of HCC and underscore the urgent

need for innovative strategies. Nanoparticle-based delivery systems

emerge as a transformative solution, enabling precise drug delivery

to overcome toxicity barriers and enhance therapeutic efficacy. The

TME drives resistance by creating a self-sustaining cycle where

angiogenesis and immune evasion mutually reinforce each other.

This interplay underscores the clinical success of combining anti-

angiogenic TKIs with ICIs, as demonstrated by the survival benefit

of atezolizumab-bevacizumab in advanced HCC.in addition,

Integrating TME-modulating agents may provide a multifaceted

solution to overcome resistance and improve outcomes in this

lethal malignancy.

Future therapeutic strategies should prioritize the utilization of

predictive biomarkers to mitigate efficacy limitations caused by the

molecular and phenotypic heterogeneity of HCC, while

emphasizing rational polytherapy approaches—including multi-

targeted therapies, TKI-ICI combinations, TME-modulating

agents, and nanoparticle-enhanced drug delivery systems. These

strategies aim to simultaneously disrupt angiogenesis, restore

immune surveillance, improve therapeutic efficacy and safety

profiles, and overcome compensatory signaling pathways in HCC.
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