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Zhaisong Gao1†, ZhiChao Wang2 and JianZhong Guan1* 

1Nuclear Medicine Department, 971 Hospital, People's Liberation Army Navy, Qingdao, 
Shandong, China, 2Orthopaedic Department, 971 Hospital, People's Liberation Army (PLA) Navy, 
Qingdao, Shandong, China 
Background: Lung adenocarcinoma, a major subtype of non-small cell lung 
cancer, requires non-invasive diagnostic tools to improve early detection and 
differentiate primary from metastatic tumors. Napsin A, a key marker for primary 
lung adenocarcinoma, is traditionally assessed via invasive biopsy, limiting its 
utility in reflecting tumor heterogeneity. Radiomics, which extracts quantitative 
features from medical images, offers potential for non-invasive prediction of 
molecular markers like Napsin A. 

Objectives: To develop and validate a nomogram integrating radiomic features 
and clinical variables for non-invasive prediction of Napsin A expression in 
lung adenocarcinoma. 

Methods: This retrospective study enrolled 308 lung adenocarcinoma patients 
(training cohort: n = 246; validation cohort: n = 62), with contrast-enhanced CT 
images were used to extract 1,734 radiomic features, which underwent 
dimensionality reduction via t-tests, Pearson correlation, minimum redundancy 
maximum relevance (mRMR), and LASSO regression, retaining 27 final features; 
significant clinical variables (gender, smoking history, pulmonary cavity, 
spiculation sign, pleural indentation sign) were selected by logistic regression. 
A nomogram integrating radiomic and clinical predictors was developed and 
evaluated using ROC curves (AUC for Napsin A prediction), calibration curves 
(Hosmer-Lemeshow test), and decision curve analysis (DCA) for clinical utility. 

Results: The integrated nomogram model outperformed standalone radiomic 
and clinical models in predicting Napsin A expression, achieving AUC values of 
0.844 (95% CI: 0.790–0.898) in the training cohort (n = 246) and 0.845 (95% CI: 
0.724–0.967) in the validation cohort (n = 62), with balanced accuracy of 82.1% 
and 80.6%, respectively. Calibration curves showed strong agreement between 
predicted and observed outcomes (Hosmer-Lemeshow P > 0.05), and decision 
curve  analysis  confirmed  its  superior  clinical  utility  across  diverse  
threshold probabilities. 
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Conclusion: The integrated nomogram offers a reliable non-invasive method for 
predicting Napsin A expression in lung adenocarcinoma, supporting personalized 
treatment decisions and reducing reliance on invasive biopsies. 
KEYWORDS 
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Introduction 

Lung adenocarcinoma typically presents with subtle early 
symptoms, leading to late-stage diagnoses in most patients. 
Current data indicate that the overall 5-year survival rate for lung 
adenocarcinoma is approximately 19% globally. For advanced-stage 
patients, this rate is lower than 20%, underscoring the critical need 
for improved early detection methods (1–3). Given that delayed 
diagnosis of lung adenocarcinoma often results in advanced-stage 
disease, which is associated with limited therapeutic options, higher 
metastatic potential, and dismal survival outcomes, early 
identification of the disease is pivotal for enabling curative 
interventions and improving patient survival (4, 5). 

Napsin A serves as a crucial diagnostic marker for 
distinguishing primary lung adenocarcinoma from metastatic 
lung cancer, with its expression levels also linked to tumor 
differentiation. Current studies have demonstrated that 
immunohistochemical detection of Napsin A expression aids in 
the diagnosis and differentiation of lung adenocarcinoma (6–8). 
However, traditional tissue biopsy and immunohistochemical 
detection have certain limitations. Tissue biopsy is an invasive 
procedure  associated  with  significant  risks,  including  
pneumothorax (23.2–27% incidence in CT-guided lung biopsies, 
with 6–10% requiring chest tube insertion), clinically significant 
bleeding (7.9% in transbronchial cryobiopsies, linked to traction 
bronchiectasis and large vessel involvement), and infection (<1% in 
CT-guided procedures). Key risk factors for pneumothorax include 
small lesion size (≤2 cm), needle traversal of pulmonary fissures, 
and emphysema, while bleeding risk increases with traction 
bronchiectasis on imaging and histologic presence of medium-

large vessels (9). Additionally, immunohistochemistry can only 
assess a small portion of tumor tissue, which may not fully 
capture tumor heterogeneity, potentially affecting detection 
accuracy (10, 11). Therefore, exploring a non-invasive diagnostic 
method that can comprehensively reflect tumor heterogeneity is an 
urgent need. 

Radiomics enables non-invasive characterization of tumor biology 
by translating medical images into quantitative features that correlate 
with histopathological and molecular traits. For instance, radiomic 
texture features derived from CT images, such as those from gray-level 
co-occurrence matrices (GLCM), have been shown to reflect tumor 
cellularity, stromal fibrosis, and vascular density, which are directly 
linked to adenocarcinoma differentiation and Napsin A expression. 
02 
Recent studies further indicate that shape features, such as spiculation 
or margin irregularity, may correlate with invasive growth patterns 
and reduced marker expression by capturing desmoplastic reactions in 
the tumor microenvironment (12–14). 

In recent years, radiomics has emerged as a promising research 
area that has made remarkable progress in the diagnosis, 
pathological staging, and gene mutation prediction of lung 
adenocarcinoma, offering new approaches for precise tumor 
diagnosis and treatment (15, 16). Notably, no prior studies have 
integrated radiomic features with clinical variables to develop 
predictive models for Napsin A expression. This study therefore 
represents an early attempt to bridge radiomics and clinical data for 
non-invasive assessment of this critical molecular marker. Napsin A 
expression levels are linked to lung adenocarcinoma differentiation, 
potentially impacting treatment decisions and patient outcomes. 
Consequently, creating a predictive model using radiomic features 
and  clinical  variables  is  crucial  for  personalized  lung  
adenocarcinoma treatment. 

This study aimed to extract radiomic features associated with 
Napsin A expression from contrast-enhanced CT images and 
construct a nomogram model incorporating clinical variables to 
provide  a  novel  non-invasive  prediction  tool  for  lung  
adenocarcinoma diagnosis and treatment. 
Materials and methods 

Patients 

Clinical data for 308 lung adenocarcinoma patients were 
retrospectively collected from the Hospital Information System 
(HIS) and pathological archives of the 971st Hospital of the PLA 
Navy between January 2018 and July 2022. Data included age, sex, 
smoking history, and TNM staging (AJCC 8th edition), all of which 
were extracted from electronic health records (EHRs). Smoking 
status was documented based on patient self-reporting in clinical 
notes and verified through medical history entries. Radiographic 
parameters (e.g., pulmonary cavity, spiculation sign) were assessed 
by two senior radiologists (≥8 years of chest imaging experience) via 
consensus review of contrast-enhanced CT images, with 
discrepancies resolved through discussion to ensure inter-observer 
consistency. All data were de-identified to protect patient privacy. 
The study was approved by the Ethics Committee of 971 Hospital, 
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PLA Navy (Ethics Approval No. 20250321), and informed consent 
was waived due to its retrospective nature. 
Inclusion criteria 
Fron
1.	 Histopathologically confirmed lung adenocarcinoma 
according to the 2021 WHO Classification of Lung 
Tumors, verified by two senior pathologists (≥10 years of 
experience) via hematoxylin-eosin (H&E) staining (17). 

2. Underwent contrast-enhanced chest CT within 1 month 
prior to biopsy or surgery, with clear visualization of the 
primary tumor. 

3. Available immunohistochemical staining results for Napsin 
A using anti-Napsin A monoclonal antibody (Clone IP64, 
Leica Biosystems) with a positive control. 

4. Complete clinical data, including age, sex, smoking history 
(defined as ≥100 cigarettes lifetime), and AJCC 8th edition 
TNM staging. 
Exclusion criteria 
1. Prior neoadjuvant chemotherapy, radiotherapy, or targeted 
therapy before CT scanning or biopsy. 

2. Active diagnosis	 of other primary malignancies (except 
non-melanoma skin cancer). 

3.	 Unclear tumor boundaries defined as the inability to 
delineate tumor margins from adjacent atelectasis or 
inflammation via multi-planar reconstruction (MPR) by 
consensus of two radiologists (≥8 years of experience) 
through qualitative visual assessment; poor image quality 
including motion artifact score ≥3 on a 5-point scale (1 = 
minimal artifact, 5 = non-diagnostic), characterized by 
blurring or misregistration of anatomical structures 
compromising tumor contouring, or arterial phase contrast 
enhancement <20 Hounsfield Units (HU) (measured as the 
mean attenuation difference between tumor and adjacent 
normal lung tissue), indicating inadequate vascular 
enhancement for reliable radiomic feature extraction. 

4. Pathological inadequacy: Biopsy specimens with <10 viable 
tumor cells or core biopsy length <10 mm. Failed 
immunohistochemistry staining (e.g., nonspecific 
background staining or technical errors). 

5. Severe	 comorbidities (e.g., decompensated heart failure, 
active pulmonary infection) precluding curative-
intent treatment. 

Patients were randomized into training (n = 246) and 
validation (n = 62) cohorts at an 8:2 ratio using a random 
number table (Figure 1), performed by an independent 
statistician and blinded to radiologists and pathologists. 
Baseline characteristics (age, sex, smoking history, tumor 
stage) and radiological features (cavity sign, lobulation sign, 
etc.) were balanced between cohorts (P>0.05, Tables 1, 2). 
tiers in Oncology 03	
CT scanning 

All patients received contrast-enhanced CT scans with an 
Aquilion ONE 640 CT scanner (Toshiba, Tokyo, Japan).Patients 
were positioned supine with both hands raised above their 
heads.Scanning ranged from the apex of the lungs to the top of 
the adrenal glands after breath-holding at the end of inhalation. 

All contrast-enhanced CT scans were acquired using a Toshiba 
Aquilion ONE 640-slice CT scanner with a standardized 120 kV 
tube voltage and automatic tube current modulation (100–400 mAs, 
adjusted based on patient characteristics such as BMI), 512×512 
matrix, 1 mm slice thickness/interval, and pitch 1.375:1. Iodixanol 
(350 mgI/mL, Visipaque, GE Healthcare) was administered at a 
fixed dose of 80–100 mL (3.5 mL/s injection rate), consistent with 
standard clinical protocols for chest CT in lung cancer patients, to 
ensure uniform contrast enhancement for radiomic feature 
extraction without weight-based adjustment. 
Immunohistochemical evaluation of napsin 
A expression 

For immunohistochemical assessment of Napsin A expression, 
lung adenocarcinoma tissue specimens were prepared in 4-micron 
thick slices and immunohistochemically stained with anti-Napsin A 
antibodies (Clone number: IP64, Leica Biosystems).Two 
experienced pathologists independently assessed the staining 
results, remaining blinded to both the clinical data of the patients 
and the Napsin A expression status. Cells with negative Napsin A 
expression showed no coloration, while cells with positive Napsin A 
expression displayed brown-yellow cytoplasm (Figure 2). 
Tumor segmentation 

CT images were exported from the PACS in DICOM format 
and underwent standardized preprocessing to ensure radiomic 
feature reproducibility, as spatial resolution and intensity 
normalization significantly impact feature stability (18). 
Preprocessing steps included: 
 

1.	 Isotropic voxel resampling: Images were resampled to 
1×1×1 mm³ isotropic resolution using 3D-Slicer, 
correcting for original slice thickness variations to 
standardize spatial sampling across patients. 

2. Grayscale normalization: Pixel values were normalized to 
the range of (–1, 1) to minimize intensity bias 
between scans. 

3. Gaussian filtering (s=1.0): Applied to reduce noise while 
preserving structural features, using PyRadiomics for 
automated processing. 
These were automated using 3D-Slicer (Version 4.11; https:// 
www.slicer.org) and PyRadiomics (Version 3.0.1; http:// 
pyradiomics.readthedocs.io). 
frontiersin.org 
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TABLE 2 Radiography parameters of patients with the expression of Napsin A in the training cohort and validation cohort. 

Radiography 
parameters Data 

Training cohort (n 246) Validation cohort (n 62) 
2 value P 

valueNapsin 
A (-) 

Napsin 
A (+) 

P 
value 

Napsin 
A (-) 

Napsin 
A (+) 

P 
value 

Pulmonary cavity 0.016 <0.001 2.368 0.124 

No 279 48 (84.21%) 178 (94.18%) 8 (57.14%) 45 (93.75%) 

Yes 29 9 (15.79%) 11 (5.82%) 6 (42.86%) 3 (6.25%) 

Vacuolar sign <0.001 <0.001 3.034 0.082 

No 239 35 (61.40%) 161 (85.19%) 4 (28.57%) 39 (81.25%) 

Yes 69 22 (38.60%) 28 (14.81%) 10 (71.43%) 9 (18.75%) 

Lobulation sign 0.945 0.271 0.956 0.328 

No 13 2 (3.51%) 7 (3.70%) 0 4 (8.33%) 

Yes 195 55 (96.49%) 182 (96.30%) 14 (100%) 44 (91.67%) 

Spiculation sign 0.529 0.169 0.549 0.459 

No 23 5 (8.77%) 12 (6.35%) 0 6 (12.50%) 

Yes 285 52 (91.23%) 177 (93.65%) 14 (100%) 42 (87.50%) 

(Continued) 
F
rontiers in Oncology 
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TABLE 1 Clinical parameters of patients with napsin A expression in training and validation cohorts. 

Clinical 
parameters Data 

Training cohort (n 246) Validation cohort (n 62) 
2 value P 

valueNapsin 
A (-) 

Napsin 
A (+) 

P 
value 

Napsin 
A (-) 

Napsin 
A (+) 

P 
value 

Age 
62.63 
± 9.61 

64.84 ± 7.52 62.26 ± 9.90 0.070 62.07 ± 10.99 61.75 ± 10.17 0.919 0.449 

Gender <0.001 0.251 3.135 0.077 

Male 165 42 (73.68%) 96 (49.21%) 8 (57.14%) 19 (39.58%) 

Female 143 15 (26.32%) 93 (50.79%) 6 (42.86%) 29 (60.42%) 

Smoking 0.001 0.031 0.548 0.459 

Yes 151 38 (66.67%) 80 (42.33%) 11 (78.57%) 22 (45.83%) 

No 157 19 (33.33%) 109 (57.67%) 3 (21.43%) 26 (54.17%) 

Primary tumor staging 0.603 0.182 1.521 0.677 

T1 63 9 (15.79%) 42 (22.22%) 3 (21.43%) 9 (18.75%) 

T2 103 21 (36.84%) 61 (32.28%) 7 (50.00%) 14 (29.17%) 

T3 68 14 (24.56%) 43 (22.75%) 2 (14.29%) 9 (18.75%) 

T4 74 13 (22.81%) 43 (22.75%) 2 (14.29%) 16 (33.33%) 

Lymph node 
metastasis staging 

0.540 0.814 0.393 0.942 

N0 138 25 (43.86%) 85 (44.97%) 7 (50.00%) 21 (43.75%) 

N1 109 19 (33.33%) 69 (36.51%) 4 (28.57%) 17 (35.42%) 

N2 60 12 (21.05%) 35 (18.52%) 3 (21.43%) 10 (20.83%) 

N3 1 1 (1.75%) 0 
Age was shown as mean ± standard deviation, and other data were the number of patients with the percentage in parentheses. The P value marked bold indicated statistical significance. 
Napsin A (-) indicated negative expression of Napsin A, while Napsin A (+) indicated positive expression of Napsin A. 
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Two experienced radiologists, each with over five years in chest 
CT imaging diagnosis, manually segmented tumor regions of 
interest (ROIs) using 3D-Slicer software (Version 4.11, https:// 
www.slicer.org, USA)  (Figure 3). To ensure an unbiased 
assessment, both radiologists were blinded to the patients’ clinical 
data and Napsin A expression status. 

To assess inter-observer and intra-observer reproducibility, two 
radiologists independently outlined ROIs on 30 randomly chosen CT 
Frontiers in Oncology 05 
images, followed by the extraction of radiomic features using 
PyRadiomics (v3.0.1, http://pyradiomics.readthedocs.io).Agreement 
was evaluated using intraclass correlation coefficients (ICC).Two 
weeks later, one radiologist repeated the delineation on the same 30 
CT images to assess intra-observer reproducibility. Radiomic 
features with ICC values exceeding 0.75 in both inter- and intra
observer evaluations were deemed stable and selected for 
further analysis. 
= =

TABLE 2 Continued 

Radiography 
parameters 

Data 

Training cohort (n 246) Validation cohort (n 62) 
2 value P 

valueNapsin 
A (-) 

Napsin 
A (+) 

P 
value 

Napsin 
A (-) 

Napsin 
A (+) 

P 
value 

Pleural indentation sign 0.023 0.510 0.127 0.722 

No 128 16 (28.07%) 85 (44.97%) 5 (35.71%) 22 (45.83%) 

Yes 180 41 (71.93%) 104 (55.03%) 9 (64.29%) 26 (54.17%) 

Air bronchogram sign 0.840 0.721 1.871 0.171 

No 261 48 (84.21%) 157 (83.07%) 13 (92.86%) 43 (89.58%) 

Yes 47 9 (15.79%) 32 (16.93%) 1 (7.14%) 5 (10.42%) 

Vascular convergence sign 0.412 0.150 0.365 0.546 

No 114 18 (31.58%) 71 (37.57%) 8 (57.14%) 17 (35.42%) 

Yes 194 39 (68.42%) 118 (62.43%) 6 (42.86%) 31 (64.58%) 
fron
All data were the number of patients with the percentage in parentheses. The P value marked bold indicated statistical significance. 
Napsin A (-) indicated negative expression of Napsin A, while Napsin A (+) indicated positive expression of Napsin A. 
at a ratio of 8:2 

Lung adenocarcinoma patients underwent lung 
contrast-enhanced CT scan and Napsin A 
immunohistochemistry examination 

Exclusion criteria: 
ķPrevious anti-tumor treatments such as radiotherapy and 
chemotherapy; 
ĸHistory of other malignant tumors; 
ĹCT images cannot accurately delineate tumor boundaries; 
ĺCT images cannot be segmented and signatures extracted. 

A total  of  308  patients  were  
included in this study 

Training cohort 
(n=246˅ 

Validation cohort 
(n=62˅ 

Napsin A (-) 
(n=57˅ 

Napsin A (+) 
(n=185˅ 

Napsin A (-) 
(n=14˅ 

Napsin A (+) 
(n=48˅ 

FIGURE 1 

Flowchart of patient selection. Exclusion criteria and corresponding excluded patient numbers are clearly labeled [① prior anti-tumor treatment, 
(n=12); ② history of other malignancies, (n=15); ③ unclear tumor boundaries,(n=21); ④ unsegmentable CT images, (n=18)], ensuring transparency in 
cohort construction. 
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Radiomic feature extraction 

Radiomic features were extracted from the segmented tumors 
using PyRadiomics (v3.0.1, http://pyradiomics.readthedocs.io), an 
open-source library adhering to the guidelines of the Image 
Biomarker Standardization Initiative. Each patient’s venous phase 
CT images yielded 1,734 radiomic features. These features were 
classified into intensity, shape, and various matrix types, including 
grey level co-occurrence, gray level run-length, grey level zone size, 
and neighborhood gray-tone difference matrices. 

Feature selection and model development 
To balance feature relevance and model simplicity, we employed 

a hybrid mRMR-LASSO pipeline, prioritizing interpretability and 
biological plausibility over purely dimensionality-reduction-focused 
methods like principal component analysis (PCA). Unlike PCA, 
which transforms features into orthogonal components that may 
obscure biological interpretability, mRMR retains features with 
maximal relevance to the outcome (Napsin A expression) and 
minimal inter-feature redundancy, while LASSO introduces 
sparsity to identify a parsimonious set of predictors. This approach 
ensures that selected features have direct statistical and biological 
Frontiers in Oncology 06
links to the target variable, aligning with radiomics best practices for 
molecular prediction. 

To assess the impact of feature selection methods, we conducted 
a parallel analysis using PCA to reduce features to the same 
dimensionality (27 features) and compared model performance. 
The PCA-derived model achieved an AUC of 0.781 (95% CI: 0.723– 
0.839) in the training cohort and 0.779 (95% CI: 0.658–0.900) in the 
validation cohort, significantly lower than the mRMR-LASSO 
model’s AUC of 0.844 and 0.845, respectively (P<0.05, DeLong 
test). This suggests that the mRMR-LASSO pipeline better preserves 
feature relevance for Napsin A prediction, likely due to its focus on 
outcome-driven feature selection rather than global variance 
maximization. The LASSO model’s optimal  l value was 
determined using 10-fold cross-validation, focusing on 
minimizing error. The final model included 27 features, selected 
based on non-zero coefficients at the optimal l value of 0.02. 

The selected 27 radiomic features were utilized in multiple 
machine learning algorithms, such as logistic regression, support 
vector machine, K-Nearest Neighbor, decision tree, random forest, 
extra trees, extreme gradient boosting, light gradient boosting 
machine, and multilayer perceptron. The optimal radiomic model 
was identified through 5-fold cross-validation. 
FIGURE 2 

Immunohistochemical staining of Napsin A in lungs of non-small cell lung cancer patients (200×). (A) Cells without stained indicated negative 
expression of Napsin (A, B) cytoplasm stained tan indicated positive expression of Napsin A. 
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Clinical variables underwent one-way ANOVA, and those with 
P<0.05 were further examined using multivariate analysis. 
Significant clinical variables (P<0.05) were selected to construct a 
clinical model using the optimal algorithm identified in the 
radiomic model development. 
Nomogram construction and evaluation 

A nomogram model was developed by combining radiomic and 
clinical models. This nomogram visually represents the relationship 
between individual predictors and the probability of Napsin A 
expression. The contribution of each variable is displayed as a 
point scale, allowing for straightforward calculation of the total 
score and corresponding predicted probability. 

The nomogram’s performance was assessed through receiver 
operating characteristic (ROC) curves, with area under the curve 
(AUC) values computed for both the training and validation 
cohorts. Calibration was evaluated using the Hosmer-Lemeshow 
test to compare predicted probabilities with observed outcomes. 
Decision curve analysis (DCA) assessed the clinical utility of the 
nomogram model in comparison to the standalone radiomic and 
clinical models. 
Statistical analysis 

SPSS 25.0 software was used for statistical analyses. 
Independent sample t-tests were applied to variables with normal 
distribution, whereas Mann-Whitney U tests were utilized for those 
Frontiers in Oncology 07 
without. Categorical data were analyzed using c² tests. Results are 
presented as mean ± standard deviation (x ± s), with statistical 
significance set at P<0.05. 
Results 

Patient characteristics 

The study included 308 lung adenocarcinoma patients with a 
mean age of 63.2 ± 8.9 years and a sex distribution of 53.6% male. 
Patients were randomized into a training cohort (n = 246) and a 
validation cohort (n = 62). In the training cohort, Napsin A 
positivity was observed in 189 patients (76.9%), with females and 
non-smokers showing significantly higher positivity rates (P<0.05). 
Key clinical and radiological characteristics were balanced between 
cohorts (P>0.05), as detailed in Tables 1, 2. 

In the training cohort, Napsin A positivity was notably more 
prevalent in female and non-smoking patients than in their male 
and smoking counterparts (P<0.05). The radiographic features 
analyzed in Table 2 were selected based on their established 
associations with tumor biology and Napsin A expression in prior 
studies. For example, pulmonary cavity is rarely observed in pure 
adenocarcinoma and is more characteristic of squamous cell 
carcinoma, aligning with our finding that its absence correlated 
with Napsin A positivity. Spiculation sign and pleural indentation, 
markers of desmoplastic reactions, have been linked to tumor 
invasiveness and reduced differentiation in EGFR-mutant 
adenocarcinomas (19), which may explain their association with 
Napsin A negativity in our cohort. The vacuolar sign, indicative of 
FIGURE 3 

Delineation of Region of Interest (ROI) in a 65-Year-Old Male Patient (Validation Cohort). Delineation of region of interest (ROI) in a 65-year-old 
male patient (validation cohort) using portal venous phase CT scan exported from 3D Slicer software. Axial, coronal, and sagittal views with three-
dimensional ROI reconstruction (green area) are shown. 
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lepidic growth, correlates with well-differentiated adenocarcinoma 
subtypes and higher Napsin A expression (20, 21), consistent with 
its prevalence in Napsin A-positive cases. These features were 
prioritized for their potential to reflect tumor microenvironment 
and differentiation status, which are biologically linked to Napsin A 
expression as a marker of alveolar epithelial origin. 
Radiomic feature selection 

After the multi-step feature selection process, 27 radiomic 
features with the highest predictive value for Napsin A expression 
were retained (Figures 4A, B).The optimal l value in the LASSO 
model was 0.02, and the corresponding coefficients for each feature 
were calculated (Figure 4C).The Rad-score was calculated by 
Frontiers in Oncology 08
summing the selected features, each weighted by its respective 
coefficient (Table 3). 
Model performance 

Logistic regression (LR) demonstrated optimal performance 
among the tested machine learning algorithms for both radiomic 
and clinical models. The radiomic model attained an AUC of 0.80 in 
both the training (95% CI, 0.73-0.87) and validation cohorts (95% 
CI, 0.68-0.93) as shown in Table 4. The clinical model, which 
includes gender, smoking history, pulmonary cavity, spiculation 
sign, and pleural indentation sign, demonstrated AUC values of 
0.72 (95% CI: 0.65-0.80) in the training cohort and 0.82 (95% CI: 
0.68-0.96) in the validation cohort. 
FIGURE 4 

Radiomics signatures associated with Napsin A expression were selected using LASSO regression models. (A) Cross-validation curve. An optimal l 
value (l=0.02) was selected by 10-fold cross validation, and 27 non-zero coefficients signatures were chosen. (B) LASSO coefficient profiles of the 
1734 radiomics signatures against the deviance explained. (C) Histogram shows the contribution of the selected signatures with their regression 
coefficients in the signature construction. 
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Nomogram model and predictive utility 

The combined nomogram model, incorporating both radiomic 
features and clinical variables, showed enhanced performance with 
an AUC of 0.84 (95% CI: 0.79–0.90) in the training cohort 
(Figure 5A) and 0.85 (95% CI: 0.72–0.97) in the validation cohort 
(Figure 5B). Table 5 indicates that the nomogram model 
outperformed other models in balanced accuracy, achieving 
77.5% in the training cohort and 78.0% in the validation cohort, 
compared to the radiomic model’s 72.9% and 74.1%, and the 
clinical model’s 68.7% and 82.2%, respectively. 

The nomogram visually represented the contribution of each 
predictor to Napsin A expression probability (Figure 6), facilitating 
individualized patient assessment. Calibration curves demonstrated 
strong concordance between predicted and observed Napsin A 
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expression, with Hosmer-Lemeshow test P-values of 0.148 (training 
cohort) and 0.398 (validation cohort) (Figures 6). Decision curve 
analysis (DCA) indicated that the nomogram model offered greater 
net benefit across a broader range of threshold probabilities than 
standalone radiomic or clinical models (Figure 6), confirming its 
superior clinical utility. 
Discussion 

Napsin A serves as a critical biomarker for differentiating 
primary lung adenocarcinoma from metastatic lesions, with its 
expression levels closely linked to tumor differentiation and 
prognosis. However, traditional immunohistochemical assessment 
requires invasive biopsy, which carries procedural risks (e.g., 
TABLE 3 Image omics feature list. 

Feature name coefficient Feature type 

lbp_3D_k_ghim_RmLengthNonUniformityNormalized_A -0.013737 GLRLM 

lbp_3D_m2_glszm_GrayLevelVariance_A +0.005512 GLSZM 

original_shape_MajorAxisLength_A -0.002549 Shape 

square_gldm_SmallDependenceHighGrayLevelEmphasis_A -0.035210 GLDM 

squarroot_glcm_ClusterProminence_A -0.019069 GLCM 

wavelet_LILI_firstorder_10Percentile_A +0.007258 Wavelet 

wavelet_LILI_firstorder_Mnimrum_A +0.052376 Wavelet 

lbp_3D_k_glcm_Imc2_P -0.009993 GLCM 

lbp_3D_k_ghlm_RmLengthNonUniformityNormalized_P -0.008154 GLRLM 

lbp_3D_m2_firstorder_Skewness_P +0.028505 First Order 

log_sigma_1_0_nm_3D_glcm_ClusterShade_P -0.012343 GLCM 

log_sigma_3_0_nm_3D_firstorder_Kurtosis_P -0.039497 First Order 

square_firstorder_Skewness_P +0.037324 First Order 

wavelet_HHL_glszm_GrayLevelNonUniformityNormalized_P -0.030927 GLSZM 

wavelet_HHL_glszm_GrayLevelVariance_P +0.007324 GLSZM 

wavelet_HLH_firstorder_Maximum_P -0.034408 First Order 

wavelet_HLH_glcm_ClusterShade_P -0.018865 GLCM 

wavelet_LILI_firstorder_Mnimrum_P +0.005854 Wavelet 

wavelet_LILI_glcm_ClusterShade_P +0.015338 GLCM 

exponential_gldm_DependenceNonUniformityNormalized_V -0.039399 GLDM 

exponential_glszm_LargeAreaLowGrayLevelEmphasis_V -0.000192 GLSZM 

exponential_glszm_SmallAreaLowGrayLevelEmphasis_V -0.021068 GLSZM 

exponential_glszm_ZoneVariance_V -0.022050 GLSZM 

lbp_3D_m1_gldm_GrayLevelVariance_V +0.009984 GLDM 

lbp_3D_m2_glcm_ClusterShade_V +0.003619 GLCM 

log_sigma_3_0_nm_3D_glcm_Autocorrelation_V +0.016929 GLCM 

logarithm_glszm_SmallAreaHighGrayLevelEmphasis_V -0.033070 GLSZM 
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pneumothorax, bleeding) and may miss tumor heterogeneity due to 
limited sampling (22). Radiomics, by extracting quantitative 
features from CT images, offers a non-invasive alternative to 
characterize tumor biology comprehensively. This study aimed to 
bridge this gap by developing a nomogram integrating radiomic and 
clinical variables to predict Napsin A expression, addressing the 
unmet need for non-invasive molecular phenotyping in 
lung adenocarcinoma. 

Our finding that female sex and non-smoking status correlate 
with higher Napsin A positivity (P<0.05) mirrors epidemiological 
studies linking these factors to adenocarcinoma histology. For 
example, Koezuka et al. (2022) demonstrated that non-smoking 
female patients exhibit a higher prevalence of lepidic-predominant 
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adenocarcinoma, a well-differentiated subtype strongly associated 
with Napsin A expression. Similarly, Ren et al. (2022) reported that 
female gender correlates with TTF-1/Napsin A co-expression in 
adenocarcinoma, supporting the role of sex-specific biological

pathways in alveolar epithelial differentiation (23). These 
similarities validate the clinical variables included in our model, 
as they reflect fundamental drivers of Napsin A expression. 

The association between Napsin A negativity and spiculation 
sign/pleural indentation (P<0.05) aligns with Park et al. (2016), who 
linked these features to aggressive tumor phenotypes and reduced 
differentiation in EGFR-mutant adenocarcinomas (24). Conversely, 
the vacuolar sign—a marker of lepidic growth—was more prevalent 
in Napsin A-positive tumors, consistent with its association with 
TABLE 4 The performance of different machine learning algorithms in prediction of Napsin A expression in lung adenocarcinoma. 

Machine learning 
algorithms 

AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Logistic regression 

Training cohort 0.798 0.731 - 0.865 82.9 70.4 75.4 83.0 82.6 

Validation cohort 0.804 0.676 - 0.932 82.3 62.5 85.7 82.5 80.0 

Support vector machine 

Training cohort 0.899 0.836 - 0.962 85.4 91.0 87.7 84.0 100 

Validation cohort 0.741 0.591 - 0.891 77.4 60.4 78.6 77.4 0 

K-NearestNeighbor 

Training cohort 0.846 0.799 - 0.894 81.7 85.7 66.7 82.4 75.0 

Validation cohort 0.508 0.343 - 0.673 79.0 100 12.5 78.7 100 

Decision tree 

Training cohort 1.000 0.999 - 1.000 99.2 98.9 100 99.5 98.2 

Validation cohort 0.482 0.355 - 0.610 62.9 100 0 76.6 20.0 

Random forest 

Training cohort 0.997 0.993 - 1.000 95.5 98.9 100 95.4 96.0 

Validation cohort 0.593 0.434 - 0.752 77.4 22.9 100 78.3 50.0 

Extra trees 

Training cohort 1.000 0.999 - 1.000 99.2 98.9 100 99.5 98.2 

Validation cohort 0.573 0.407 - 0.739 71.0 68.8 66.7 75.9 0 

Extreme gradient boosting 

Training cohort 0.998 0.994 - 1.000 98.8 98.4 100 98.9 98.2 

Validation cohort 0.707 0.516 - 0.898 80.6 97.9 50.0 80.0 100 

Light gradient boosting machine 

Training cohort 0.970 0.952 - 0.989 78.5 92.6 93.0 78.1 100 

Validation cohort 0.693 0.520 - 0.867 77.4 68.8 71.4 77.4 0 

Multilayer perceptron 

Training cohort 0.826 0.765 - 0.887 82.1 93.7 54.4 81.4 93.3 

Validation cohort 0.789 0.667 - 0.911 80.6 56.3 92.9 80.0 100 
AUC, area under the curve; 95%CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
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well-differentiated subtypes in pure ground-glass nodules. These 
findings reinforce the radiomic model’s ability to capture 
microstructural characteristics indicative of Napsin A expression, 
bridging imaging phenotypes with molecular status. 

Notably, most prior radiomics studies focus on predicting gene 
mutations (e.g., EGFR, ALK) rather than protein expression (21). 
This distinction may explain differences in feature importance; for 
instance, our model prioritizes texture features related to tumor

stroma interaction (e.g., GLCM cluster shade), whereas mutation-

prediction models often emphasize vascular or metabolic 
parameters. Additionally, our single-center design with 
standardized CT protocols may yield more homogeneous 
radiomic features compared to multi-center studies, potentially 
affecting feature reproducibility (25). 

The alignment between our clinical/radiographic findings and 
prior literature underscores the nomogram’s biological plausibility. 
However, differences in contrast administration protocols (e.g., 
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fixed-dose vs. weight-based dosing) across institutions and 
reliance on manual segmentation in our study may limit direct 
comparability. Future multi-center studies with automated feature 
extraction are needed to validate these associations across diverse 
populations and imaging platforms. 

The observed associations between radiographic features and 
Napsin A expression reinforce biological plausibility. Spiculation 
and pleural indentation, markers of fibrotic stromal response, were 
more prevalent in Napsin A-negative tumors, consistent with their 
role in tumor invasiveness and dedifferentiation. Conversely, the 
vacuolar sign, indicative of lepidic growth, was enriched in Napsin 
A-positive cases, supporting its link to well-differentiated subtypes. 
These findings extend prior radiomics research on tumor 
phenotyping, demonstrating its potential to non-invasively reflect 
molecular status. 

The nomogram’s calibration (Hosmer-Lemeshow P > 0.05) and 
decision curve analysis (DCA) validate its clinical utility across 
TABLE 5 Predictive performance of the three models in training cohort and validation cohort. 

Models AUC 95% CI Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Radiomics signature model 

Training cohort 0.798 0.731 - 0.865 82.9 70.4 75.4 83.0 82.6 

Validation cohort 0.804 0.676 - 0.932 82.3 62.5 85.7 82.5 80.0 

Clinical signature model 

Training cohort 0.722 0.646 - 0.798 78.9 73.0 64.3 79.7 66.7 

Validation cohort 0.818 0.682 - 0.955 82.3 87.5 76.9 83.6 71.4 

Nomogram model 

Training cohort 0.844 0.790 - 0.898 82.1 84.7 70.2 81.9 84.2 

Validation cohort 0.845 0.724 - 0.967 80.6 91.7 64.3 80.0 100 
AUC, area under the curve; 95%CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
A B 

FIGURE 5 

Comparison of the performance of three models for predicting Napsin A expression in lung adenocarcinoma. ROC curves for radiomics signature 
model, clinical signature model and nomogram model in training cohort (A) and validation cohort (B). 
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threshold probabilities, surpassing traditional models. This aligns 
with advances in radiomic prediction of EGFR mutations and 
underscores its potential to reduce biopsy reliance, particularly in 
early-stage patients where non-invasive diagnosis is critical (26). 
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Clinical implications and limitations 

With balanced accuracy exceeding 80% in both cohorts, the 
nomogram could optimize preoperative workflows by triaging 
FIGURE 6 

Nomogram model for prediction of Napsin A expression and evaluation of predictive utility. Nomogram model combined the radiomics signature 
models and clinical signature models. Calibration curves were used to evaluate the consistency between the predicted outcomes and the actual 
observations of Napsin A expression in training cohort and validation cohort. Decision curves analysis for the prediction of Napsin A expression in 
lung adenocarcinoma. The horizontal axis represents the threshold probability, and the vertical axis represents the net benefit rate corresponding to 
the threshold probability. 
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patients for biopsy. For example, those with high predicted Napsin A 
positivity might avoid invasive procedures, while low-prediction cases 
could prioritize tissue sampling to confirm molecular status (22). 
However, single-center data and a small validation cohort (n=62) 
limit generalizability, necessitating multi-center validation across 
diverse imaging platforms (27). Manual ROI segmentation, Although 
verified by ICC (≥0.75), remains a potential source of variability, 
warranting future adoption of automated algorithms (28). 

While our study presents promising findings, several limitations 
warrant consideration. First, the sample size, particularly in the 
validation cohort (n=62), was relatively small. Second, radiomic 
feature reproducibility can be influenced by scanning parameters and 
segmentation methods, necessitating standardized protocols. Third, we 
acknowledge the challenge of potential overfitting, given that our 
model included 27 features while having only 57 Napsin A-negative 
patients in the training cohort. Future studies should consider more 
rigorous feature selection approaches to further reduce dimensionality 
while maintaining predictive performance. Fourth, we did not explore 
the combined predictive value of Napsin A with other molecular 
markers, such as EGFR mutations. Finally, all images were acquired 
at a single center using a single scanner, which may limit the model’s 
generalizability across different institutions and imaging platforms. 
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