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Neuregulin 4 levels for
hyperthyroidism in type II
diabetes mellitus
Huilan Gu and Ye Lu*

Department of Endocrinology, Suzhou Ninth People’s Hospital, Suzhou, China
Background: Neuregulin 4 (NRG4) is a novel metabolic regulator closely

associated with insulin resistance and thyroid dysfunction. However, its role in

the pathogenesis of comorbid type 2 diabetes mellitus and hyperthyroidism

(T2DM-FT) remains to be systematically elucidated. Given the complex clinical

characteristics of T2DM-FT patients, traditional statistical methods are often

insufficient to effectively analyze nonlinear relationships among multiple

variables. Machine learning techniques have garnered widespread attention

due to their advantages in modeling high-dimensional, heterogeneous data.

Objective: This study was to evaluate the predictive capability of a support vector

machine (SVM) model based on serum NRG4 combined with a convolutional

neural network (CNN) and long short-term memory network (LSTM)-based

ultrasound feature classification (SVM-CNN+LSTM) model for predicting the

occurrence of FT in patients with T2DM.

Methods: Studied 500 T2DM patients (60 with FT, 440 without), and 200 healthy

controls. Collected data on demographics, disease characteristics, NRG4, and

thyroid indices. Pearson correlation was used to identify features correlated with

NRG4. A parameter-optimized SVM model (C=1, linear kernel) was constructed

for structured data modeling. Additionally, a CNN+LSTM network was employed

to extract spatial (thyroid morphology) and temporal (hemodynamics) features

from ultrasound sequences. These features were then fused with biochemical

indicators, such as NRG4, to develop the final SVM-CNN+LSTM multimodal

predictive model.

Results: Serum NRG4 levels in T2DM+FT patients were significantly higher than

those in the healthy Ctrl group (4.44 ± 1.25 vs. 2.17 ± 0.48 mg/L, P< 0.05). NRG4

levels were positively correlated with HOMA-IR (r = 0.593), FT3 (r = 0.773), FT4 (r

= 0.683), thyroid volume (r = 0.652), and the resistance index (RI) (r = 0.473) (P<

0.05). The optimized SVMmodel demonstrated a sensitivity of 86.23%, specificity

of 90.33%, and an area under the curve (AUC) of 0.887. In contrast, the fusion

model SVM-CNN+LSTM outperformed the SVM model across all metrics,

achieving a sensitivity of 91.32%, specificity of 94.18%, and an AUC of 0.943

(P< 0.05).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1595553/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1595553/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1595553/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1595553/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1595553/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1595553&domain=pdf&date_stamp=2025-07-16
mailto:1287260252@qq.com
https://doi.org/10.3389/fonc.2025.1595553
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1595553
https://www.frontiersin.org/journals/oncology


Gu and Lu 10.3389/fonc.2025.1595553

Frontiers in Oncology
Conclusion: The SVM-CNN+LSTM multimodal model, which integrates serum

NRG4 levels with ultrasound features, significantly enhances the predictive

accuracy of hyperthyroidism in T2DM patients. This approach effectively

reveals the multifactorial mechanisms underlying T2DM-FT comorbidity,

providing a powerful tool for early clinical intervention.
KEYWORDS

SVM, CNN+LSTM model , Nrg4, T2DM compl icated by FT, u ltrasound
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1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic

disorder characterized by insulin resistance and hyperglycemia,

with its global prevalence rapidly increasing. According to recent

statistics, over 450 million people worldwide are affected by

diabetes, the vast majority of whom have T2DM. This imposes a

significant socioeconomic burden and notably increases the risk

of cardiovascular diseases, renal failure, and premature mortality

(1–4). In addition to glucose metabolism disorders, T2DM

is frequently accompanied by various endocrine system

complications, with hyperthyroidism (FT) being the most

common. Epidemiological studies indicate that approximately

6–50% of T2DM patients may develop FT, further exacerbating

metabolic imbalance and worsening disease prognosis (5, 6). There

are multiple shared pathological mechanisms between T2DM and

FT, including chronic inflammation, autoimmune dysregulation,

and insulin resistance (7–9). Research suggests that excessive

thyroid hormones in the FT state can promote hepatic

gluconeogenesis, impair insulin sensitivity, further disrupting

blood glucose control, and exacerbating diabetic complications

such as neuropathy and retinopathy (10). This bidirectional

interaction underscores the urgent need for early prediction of FT

in T2DM patients to reduce the risk of adverse outcomes.

Neuregulin 4 (NRG4) is a novel regulatory factor secreted by

adipose tissue that plays a key role in the regulation of glucose

homeostasis and lipid metabolism. A substantial body of clinical

and basic research has demonstrated that NRG4 enhances insulin

sensitivity, inhibits hepatic gluconeogenesis, and performs various

other metabolic regulatory functions. Its serum levels are negatively

correlated with obesity and the severity of T2DM (11, 12). In T2DM

patients, NRG4 levels are significantly reduced, suggesting its

potential as a biomarker for metabolic dysfunction (13). However,

there is currently no research systematically investigating the

expression profile and mechanisms of NRG4 in T2DM

complicated by FT. Given the high degree of overlap in metabolic

pathways between T2DM and FT, NRG4 may serve as a critical hub

in their interaction, warranting further investigation.

In recent years, machine learning (ML) techniques have made

breakthrough progress in disease prediction, demonstrating
02
significant potential in the management of T2DM through the

integration of multimodal data to uncover complex pathological

patterns. Existing studies have applied ML models to integrate

clinical indicators, genetic markers, and imaging data, achieving

improved risk stratification, complication prediction, and

optimization of individualized treatment for T2DM (14, 15). For

instance, support vector machines (SVM) and convolutional neural

networks (CNN) have been used for the automated detection of

diabetic retinopathy in fundus images, while random forest (RF)

models have predicted cardiovascular event risks by analyzing

electronic health records (16, 17). However, few studies have

combined biochemical markers, such as NRG4, with dynamic

imaging features for the prediction of endocrine complications in

T2DM, such as FT. Traditional predictive models often rely on

static clinical indicators, which struggle to capture the complex,

multifactorial mechanisms between T2DM and FT, resulting in

limited predictive accuracy (18).

To address the aforementioned limitations, this study proposed

a multimodal machine learning-based predictive framework that

integrates serum NRG4 levels with spatiotemporal features from

ultrasound imaging to construct a predictive model for T2DM

complicated by FT. This model combines the metabolic

information of NRG4 with ultrasound morphological and

hemodynamic features extracted using a CNN and long short-

term memory (LSTM) network, aiming to improve prediction

accuracy, enhance early diagnostic capabilities, and further

elucidate the potential mechanisms of NRG4 in thyroid

dysfunction and T2DM progression. This approach offers a novel

strategy for early clinical intervention.
2 Research methodologies

2.1 Research design

This study employed a prospective cohort design, conducting a

12-month longitudinal follow-up of all enrolled T2DM patients,

with follow-up time points at baseline, 3 months, 6 months, and 12

months. Data were collected through telephone or outpatient

follow-up visits, with a dropout rate of 4.2% (21/500), primarily
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due to patient migration or refusal to continue participation.

Treatment plans for all patients (oral hypoglycemic agents or

insulin injection) were standardized according to the Chinese

Guidelines for the Prevention and Treatment of Type 2 Diabetes

(2017 Edition) (19) to minimize the impact of treatment

heterogeneity on the results. The detailed study flowchart is

shown in Figure 1.
2.2 Research object

Patients diagnosed with T2DM admitted to the Ninth People’s

Hospital of Suzhou from May 1, 2023, to April 30, 2024 were

recruited, with specific inclusion and exclusion criteria as follows:

Inclusion criteria: i) diagnosis of T2DM regarding the

diagnostic criteria outlined in the Chinese Guideline for the

Prevention and Treatment of Type II Diabetes Mellitus (2017

Edition); ii) patients with FT were diagnosed according to the

diagnostic criteria outlined in the Chinese Guideline for the

Diagnosis and Treatment of Thyroid Diseases-Hyperthyroidism

(20), confirmed by thyroid color Doppler ultrasound, and

excluded cases of acute or subacute thyroiditis and Hashimoto’s

thyroiditis; iii) patients aged between 18 and 65 years old; iv)

patients confirmed with FT had not received treatment with anti-

thyroid medications prior to study participation.
Frontiers in Oncology 03
Exclusion criteria: i) patients with severe cardiovascular,

cerebrovascular, or vascular diseases; ii) patients with severe

organ dysfunction, including liver or kidney impairment; iii)

patients who received treatment for relevant diseases within the

three months prior to study participation, including treatment with

iodine preparations for FT; iv) patients who experienced acute

metabolic disorders such as diabetic ketoacidosis within the three

months prior to study participation; v) patients with malignant

tumors, immune system disorders, or other endocrine disorders; vi)

patients with psychiatric disorders; vii) patients with

infectious diseases.

Based on the aforementioned criteria, 500 T2DM patients were

included. Of which, 60 patients developed FT and were categorized

into T2DM+FT group, while the remaining 440 patients did not

develop FT and were categorized into T2DM group. Additionally,

200 healthy individuals undergoing routine health examinations

during the same period were recruited as controls. Sample size

calculation was based on previous studies (21), setting a significance

level of a = 0.05 and a power of 1-b = 0.8. The expected incidence of

FT in T2DM patients was 12%, and the estimated total sample size

required was 480 cases. A total of 500 T2DM patients (including 60

with T2DM+FT) were actually enrolled, meeting the statistical

requirements. Although the sample size in the T2DM+FT group

was relatively small, the risk of overfitting was reduced through

LASSO regression and cross-validation. All participants provided
FIGURE 1

Research flowchart.
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informed consent and agreed to participate in this work. This

research adhered to the ethical standards outlined in the Helsinki

Declaration and was approved by the Ethics Committee of the Ninth

People’s Hospital of Suzhou (Approval Number: KY2023-029-01).
2.3 Data collection

Basic information (including age, gender, height, and weight),

disease characteristics (including duration of diabetes), and details

of diabetes treatment (including types of medication) were collected

through clinical records and other data sources for all patients.
2.4 Blood sample collection

Fasting venous blood samples of approximately 5 mL were

collected from each patient. Following blood collection, samples

were centrifuged at 4,000 rpm for approximately 3 minutes using an

Eppendorf 5418R centrifuge (Eppendorf AG, Germany, Catalog

No: 5401000516). After centrifugation, serum portion was

separated using pipettes and stored at -80°C in a Thermo

Scientific Forma 900 freezer (Thermo Fisher, USA, Catalog No:

900-005) for subsequent research.
2.5 Blood glucose level detection

The serum samples prepared in Section 2.4 were analyzed

employing an automated biochemica l ana lyzer wi th

corresponding reagents (Beckman Coulter AU480, Beckman

Coulter, USA, Catalog No: A11857) to measure fasting blood

glucose (FBG), 2-hour postprandial blood glucose (2hPBG), and

hemoglobin A1c (HbA1c) levels for all patients. The normal value

for FBG was defined as 5.6 mmol/L, with a diagnostic threshold for

diabetes set at 7.0 mmol/L. The normal value for 2hPBG was below

7.8 mmol/L, while a value above 11.1 mmol/L was used as the

criterion for diagnosing diabetes. Additionally, fasting insulin levels

were measured using an automated electrochemiluminescence

immunoassay (Roche Cobas e411, Roche Diagnostics,

Switzerland, Catalog No: 07027742190) to calculate the

homeostasis model assessment of insulin resistance (HOMA-IR).
2.6 Measurement of serum NRG4 levels

Serum samples collected in Section 2.4 were analyzed for serum

NRG4 levels using the enzyme-linked immunosorbent assay

(ELISA). The NRG4-ELISA kit was purchased from R&D Systems

(USA Catalog No: EK713197), and experiments were conducted

strictly regarding the manufacturer ’s instructions. The

concentration of NRG4 in samples was calculated using the

standard curve method.
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2.7 Thyroid function indicators

Serum samples prepared in Section 2.4 were analyzed

employing automated electrochemiluminescence immunoassay to

measure thyroid hormone levels, including free triiodothyronine

(FT3), FT4, and thyroid-stimulating hormone (TSH) levels. The kit

was Roche Diagnostics, Switzerland, Catalog No: 07027742190.
2.8 Thyroid tissue sampling and processing

After the informed consent was signed by the patients, a

preoperative assessment was conducted to ensure that the

patients were suitable for thyroid puncture. Thereafter, thyroid

tissue was obtained under ultrasound guidance using fine-needle

aspiration biopsy (FNA), with an adequate amount of tissue

samples (1–2 mL) being collected. An ultrasound-guided

procedure was performed using a GE Logiq E9 ultrasound

diagnostic device (GE Healthcare, USA).

The acquired thyroid tissue samples were immediately placed in

a 10% formalin fixative (Fisher Scientific, USA, catalog number:

102-097-121) for a fixation period of 24 hours. After fixation, the

samples underwent dehydration and clarification processes before

being embedded in paraffin to prepare tissue sections (4-5mm) for

hematoxylin-eosin (H&E) staining and immunohistochemistry

(IHC) examination.
2.9 H&E staining

Paraffin-embedded tissue sections were retrieved and

deparaffinized using a graded series of hydration. Subsequently,

the sections were stained with HE staining, beginning with

placement in hematoxylin solution (Sigma-Aldrich, USA, catalog

number: H3136) for 10 minutes, followed by rinsing with deionized

water. The sections were then differentiated in hydrochloric acid

alcohol (Sigma-Aldrich, USA, catalog number: 320501) for 1–3

seconds, rinsed again with deionized water, and transferred to eosin

staining solution (Sigma-Aldrich, USA, catalog number: E4009) for

1–3 minutes, followed by a gentle rinse with deionized water.

Finally, the sections underwent dehydration, clarification (using

xylene, Sigma-Aldrich, USA, catalog number: Xylene), and

mounting. The stained sections were observed under a light

microscope (Olympus BX53, Japan) to record the morphology,

size, and arrangement of the observed tissue cells.
2.10 IHC detection

The sections were baked in an oven (Thermo Scientific, USA,

model: Heratherm OGS) at 60°C for one hour, deparaffinized with

xylene (Sigma-Aldrich, USA, catalog number: Xylene) and ethanol

(Fisher Scientific, USA, catalog number: A956-1), and then rinsed
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with distilled water. After being placed into 0.01 M citrate buffer

(Sigma-Aldrich, USA, catalog number: C9427, pH 6.0), the sections

were heated in a pressure cooker until boiling and maintained for 15

minutes. They were then quickly cooled in ice water for 5–10

minutes to terminate the reaction. After antigen retrieval, the

sections were washed three times with PBS (Gibco, USA, catalog

number: 10010-031) to remove unbound substances. A specific

NRG4 antibody (Cell Signaling Technology, USA, catalog number:

13167S) was selected and diluted with antibody dilution solution

(Beyotime, China, catalog number: P0013) at a ratio of 1:500,

incubation at room temperature for one hour. The sections were

then incubated with the diluted antibody in a 4°C refrigerator

overnight, washed three times with PBS, and incubated with

horseradish peroxidase-labeled goat anti-rabbit IgG secondary

antibody (Cell Signaling Technology, USA, catalog number:

7074S) at room temperature for one hour, followed by another

three washes with PBS. According to the instructions of the IHC

detection kit, the DAB substrate (Zhongshan, China, catalog

number: ZLI-9018) was added for the color development reaction

for 5–10 minutes at room temperature. The sections were rinsed

with tap water and finally mounted. The sections were observed

under an optical microscope, and the expression of NRG4 was

quantitatively analyzed by recording the proportion of positive cells.
2.11 Thyroid ultrasound examination

All patients underwent examination using a color Doppler

ultrasound diagnostic device (GE Logiq E9, GE Healthcare, USA),

with a high-frequency transducer (7.5–10 MHz) employed for both

longitudinal and transverse scanning of the thyroid to assess its

volume (calculated using the equation: Volume = Length ×Width ×

Height × 0.52). Blood flow in the thyroid was evaluated, with blood

flow velocity and resistance index (RI) recorded for various parts,

and the blood supply to the thyroid was analyzed.
2.12 Machine learning algorithms

2.12.1 Model structure
(1) Data collection and preprocessing: clinical data, serum

NRG4 levels, thyroid function-related indicators (such as TSH,

T3, T4), and imaging data of T2DM patients were collected. The

data were cleaned, and missing or outlier values were addressed.

Standardization (Z-score normalization) was applied to the features

to ensure that all features have the same dimensional scale.

(2) Feature selection: Pearson correlation coefficient was first

used to calculate the linear or nonlinear relationships between

features and the target variable (FT) to identify features related to

the target variable. Subsequently, LASSO regression was applied for

feature selection to prevent overfitting and improve the model’s

generalization ability.

(3) SVM prediction model: In this study, SVM was used to

classify patients into two groups: “Diabetes with FT” and “Diabetes

without FT”. Given the training set {(ci),}, where ci∈Ri represents
Frontiers in Oncology 05
the input features, and g∈{−1,+1} represents the class label. The

objective function is given in Equation 1

min

b , b
1
2

b2
�
�

�
�   subject   to   yi((b , xi)) + b ≥ 1   ∀ i (1)

Where b is the normal vector of the hyperplane, b is the bias

term, and <b>+=0 represents the equation of the hyperplane.

Subsequently, the study selected an appropriate kernel function to

enhance the classification ability of the SVM model and adapt to

different data distributions.

(4) Ultrasound image feature extraction based on deep learning: a

CNN combined with a long short-term memory network (LSTM) was

employed for automatic feature extraction from ultrasound images. In

this approach, CNN is used to extract local spatial features from the

ultrasound image data, which primarily includes convolutional layers

(Conv2D), pooling layers (MaxPooling2D), batch normalization

(BatchNorm), and fully connected layers (Dense), among others. The

input shape is 224×224×3 (i.e., color ultrasound images with a

resolution of 224×224), and standard preprocessing is applied to

normalize the pixel values within the range of 0 to 1 to enhance

model stability. The convolutional layers (Conv2D) utilize multiple 3×3

filters for feature extraction, with the activation function being the

ReLU non-linear activation function. The pooling layers apply 2×2

max pooling (MaxPooling) to reduce the image dimensions, decreasing

computational complexity while retaining key features. The output of

the convolutional layers is then batch-normalized to accelerate

convergence and improve training stability. The Flatten layer

converts the final feature map into a one-dimensional vector,

preparing it for input into the LSTM network.

LSTM networks are a specialized type of recurrent neural network

(RNN) capable of learning temporal sequence features from ultrasound

images. In this study, LSTMwas used to process continuous ultrasound

frame sequences, capturing the disease progression trend and

enhancing the temporal consistency of predictions. The LSTM

network structure takes as input data with the dimensions

(batch_size, time_steps, features), where “batch_size” represents the

number of samples, “time_steps” refers to the number of frames in the

sequence, and “features” corresponds to the number of features

extracted by the CNN. The time step is set to 5–10 frames, meaning

each input group contains 5–10 consecutive ultrasound images. The

LSTM unit’s computational flow involves the Forget Gate, Input Gate,

Cell State, and Output Gate, where the gating mechanism enables

selective information transmission and memory retention. The feature

vector processed by the LSTM is then passed through a fully connected

layer (Dense) and subjected to binary classification using a Softmax

activation function.

2.12.2 Training and optimization
The performance of SVM prediction models under different C

parameters and kernel functions was evaluated using accuracy,

Recall, and F1 score metrics. Hyperparameter tuning was

primarily conducted through cross-validation to obtain the

optimal model performance.

For each hyperparameter combination, k-fold cross-validation

was employed. The 350 examples in the training set were divided
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into 50 subsets, with each iteration using 50−1 subsets for training

and one subset for validation. This process was repeated 50 times

for cross-validation, and the average was taken as the evaluation

result. The calculation methods for accuracy, Recall, and F1-score

are detailed in Equation 2–4:

Acc =
TP + TN

TP + FP + FN + TN
(2)

Re call =
TP

TP + FN
(3)

F1 =
2� ( TP

TP+FP )� Re call

( TP
TP+FP ) + Re call

(4)

TP represents correctly predicted positive instances, FP

represents incorrectly predicted positive instances, FN represents

incorrectly predicted negative instances, and TN represents

correctly predicted negative instances.

Classification performance evaluation of CNN+LSTM: to assess

the performance of the CNN+LSTM model in classification tasks,

this study employed an ablation study to validate the model’s

effectiveness. The model structure ablation is as follows:

CNN model: the LSTM layer is removed, using only the CNN

for feature extraction and classification.

LSTM model: the CNN layer is removed, and only LSTM is

used to process the time-series data.

CNN+LSTM model: the complete CNN+LSTM model,

combining the spatial feature extraction capability of CNN with

the temporal sequence modeling ability of LSTM.

The evaluation metrics include accuracy, recall, and F1 score,

with training and validation performed similarly to the SVMmodel.
2.13 Statistical analysis

Statistical analysis was performed using SPSS 22.0 (IBM

Corporation, USA). Categorical variables (expressed as percentages)

were compared using the chi-square test (c2 test). For continuous
Frontiers in Oncology 06
variables that followed a normal distribution, one-way analysis of

variance (ANOVA) was used, and pairwise comparisons between

groups were conducted using Tukey’s post hoc test. To account for the

risk of Type I errors due to multiple comparisons, the Bonferroni

correction was applied to adjust the significance level to a = 0.0045

(0.05/11 indicators). Pearson correlation analysis was employed to

assess the association between serum NRG4 levels and clinical

parameters (e.g., HOMA-IR, FT3, TSH), with the Holm-Bonferroni

method used to adjust the significance threshold for multiple

correlation analyses. The predictive performance of the SVM

model and traditional NRG4 levels was evaluated through receiver

operating characteristic (ROC) curve analysis, and the area under the

curve (AUC) was calculated to quantify overall accuracy. Unless

otherwise specified for threshold adjustments, a two-tailed test with

P< 0.05 was considered statistically significant.
3 Results

3.1 Comparison of baseline data among
three groups of patients

The baseline data were collected from Ctrl group, T2DM group,

and T2DM+FT group, including age, gender, height, weight,

duration of T2DM, and type of T2DM treatment medications

(Table 1). Upon comparison, no considerable differences were

observed in the baseline characteristics among Ctrl group, T2DM

group, and T2DM+FT group (P>0.05).
3.2 Comparison of blood glucose, NRG4
levels, and thyroid indices

Table 2 summarizes the measurement results of FBG, 2hPBG,

HbA1c, HOMA-IR, NRG4, FT3, FT4, and TSH levels in patients of

the Ctrl group, T2DM group, and T2DM+FT group. The results

showed that the levels of FBG, 2hPBG, HbA1c, and NRG4 in the

T2DM and T2DM+FT groups were significantly higher than those
TABLE 1 Baseline data of three groups of patients.

Group Ctrl group (n=200) T2DM group (n=440) T2DM+FT group (n=60) P

Age (years old) 54.12 ± 6.39 57.02 ± 6.11 55.29 ± 7.33 0.283

Sex
n (%)

Female 110 (45) 268 (60.91) 35 (58.33) 0.313

Male 90 (55) 172 (39.09) 25 (41.67) 0.093

Height (cm) 170.09 ± 10.16 167.21 ± 11.23 173.02 ± 9.24 0.082

Weight (kg) 59.37 ± 5.33 61.34 ± 6.03 56.93 ± 5.39 0.056

T2DMdrug
n (%)

Oral class —— 251 (57.05) 30 (50) 0.088

Injection —— 145 (32.95) 23 (38.33) 0.183

Others —— 44 (10) 7 (11.67) 0.280

T2DM disease course (years) —— 4.37 ± 1.29 4.46 ± 1.22 0.111
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in the Ctrl group (P<0.05), and the level of HOMA-IR in the T2DM

+FT group was also significantly increased (P<0.05). Furthermore,

the T2DM+FT group exhibited significantly higher levels of FT3

and FT4, as well as significantly lower levels of TSH (P<0.05).
3.3 Histopathological analysis

3.3.1 Analysis of H&E staining results
In thyroid tissue samples, H&E staining results showed that in

the T2DM+FT group, thyroid cells exhibited significant

proliferation with irregular cell arrangement (indicated by yellow

circles), and there was marked interstitial edema (indicated by black

arrows). Compared to the T2DM group, the T2DM+FT group

showed enlarged cell nuclei, expanded cytoplasm, and the presence

of interstitial fluid accumulation. The H&E staining results for the
Frontiers in Oncology 07
T2DM group indicated a more regular cell arrangement, mild

degree of proliferation, and no significant interstitial edema. The

thyroid tissue of the healthy Ctrl group displayed normal cellular

morphology and structure, with tightly packed cell arrangement

and very little interstitial fluid accumulation (Figure 2).

3.3.2 IHC results
The IHC results indicated that the expression of NRG4 in

thyroid tissue was significantly reduced in the T2DM+FT group

(P<0.01), with a markedly lower proportion of positive cells

compared to the T2DM group and the Ctrl group. The

proportion of NRG4-positive cells in the T2DM+FT group was

only 23.09 ± 1.22%, while in the T2DM group it was 55.33 ± 3.32%,

and in the Ctrl group it was as high as 80.02 ± 4.02% (Figure 3). IHC

images clearly demonstrate the differences in NRG4 expression

between the groups. The brownish areas in the T2DM+FT group

were significantly lower compared to the control and T2DM groups,

further supporting the role of NRG4 as a potential biomarker.
3.4 Comparative analysis of ultrasound
detection results

All patients underwent neck ultrasound examinations to assess

the structure and blood flow of the thyroid gland. The results

showed that the volume of the thyroid gland in patients of the

T2DM+FT group was significantly enlarged to (25.24± 6.14) mL,

which was significantly different compared to the T2DM group

(18.52 ± 4.33) mL and the Ctrl group (15.06 ± 3.8 mL) (P<0.05).

Additionally, the blood flow velocity in the T2DM+FT group (20.75

± 3.52) cm/s was also significantly higher than that in the T2DM

group (15.55 ± 2.29) cm/s and the Ctrl group (13.21 ± 2.09) cm/s,

while the RI in the T2DM+FT group (0.82 ± 0.08) was significantly

higher than that in the T2DM group (0.65 ± 0.05) and the Ctrl

group (0.55 ± 0.06) (P<0.05) (Figure 4).
TABLE 2 Comparison of clinical and laboratory indicators
among groups.

Indicators Ctrl
group
(n=200)

T2DM
group
(n=440)

T2DM+FT
group (n=60)

FBG
(mmol/L)

4.69 ± 0.39 8.80 ± 0.84** 9.36 ± 2.34**

2hPBG
(mmol/L)

6.16 ± 0.37 16.73 ± 0.42** 16.43 ± 1.42**

HbA1c (%) 5.18 ± 0.44 8.56 ± 1.01** 8.12 ± 1.12**

HOMA-IR 2.30 ± 0.27 2.48 ± 0.53 5.27 ± 0.89**^

NRG4 (mg/L) 2.17 ± 0.48 3.53 ± 1.22** 4.44 ± 1.25**^

FT3 (pmol/L) 3.40 ± 0.48 3.58 ± 0.42** 17.29 ± 1.28**^

FT4 (pmol/L) 10.11 ± 2.17 11.29 ± 1.83** 40.32 ± 2.90**^

TSH (mU/L) 2.60 ± 0.46 2.69 ± 0.57 0.21 ± 0.04**^
**compared with the Ctrl group, P<0.05; ^compared with the T2DM group, P<0.05.
FIGURE 2

Comparison of H&E staining results among the three groups.
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3.5 Correlation of serum NRG4 with
related indicators

Based on the statistical results from Sections 3.2 and 3.3,

Pearson’s correlation coefficient was employed to assess the

relationship between NRG4 levels in patients with T2DM

combined with FT and various indicators, including FBG,
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2hPBG, HbA1c, HOMA-IR, FT3, FT4, TSH, the positive rate of

NRG4 in thyroid tissue, thyroid volume, blood flow velocity, and

RI (Table 3). The levels of NRG4 were found to have a significant

positive correlation with HOMA-IR, FT3, FT4, thyroid volume,

blood flow velocity, and RI, and a significant negative correlation

with the positive rate of NRG4 in thyroid tissue and

TSH (P<0.05).
FIGURE 3

Comparative analysis of IHC results among the three groups [(A) Proportion of NRG4-positive cells (B) IHC images; ** compared with the Ctrl group,
P<0.05; ^ compared with the T2DM group, P<0.05].
FIGURE 4

Comparison of ultrasound detection results among the three groups (A) Thyroid volume (B) Blood flow velocity (C) RI; ** compared with the Ctrl
group, P<0.05; ^ compared with the T2DM group, P<0.05).
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3.6 SVM parameter optimization

Through k-fold cross-validation analysis, different values of C

parameters and kernel functions were evaluated based on accuracy,

Recall, and F1 score values to determine the optimal parameters.

The specific results are as follows:

For C parameters of 0.01, 0.1, 1, 10, 100, and 1,000, the 50

iterations of training yielded accuracy, Recall, and F1 score values as

shown in Figures 5A–C. Observing the results, it was found that

when C=1, the fluctuations in accuracy, Recall, and F1 scores across

the 50 training iterations were the most stable. As depicted in

Figure 5D, the average values for accuracy, Recall, and F1 scores

were as follows: C = 0.01: accuracy = 0.736 ± 0.028, Recall = 0.667 ±

0.026, F1 = 0.701 ± 0.021; C = 0.1: accuracy = 0.766 ± 0.025, Recall =

0.709 ± 0.020, F1 = 0.738 ± 0.018; C = 1: accuracy = 0.798 ± 0.019,

Recall = 0.736 ± 0.007, F1 = 0.767 ± 0.009; C = 10: accuracy = 0.774

± 0.010, Recall = 0.719 ± 0.017, F1 = 0.747 ± 0.013; C = 100:

accuracy = 0.759 ± 0.024, Recall = 0.712 ± 0.012, F1 = 0.736 ± 0.012;

C = 1,000: accuracy = 0.764 ± 0.023, Recall = 0.714 ± 0.015, F1 =

0.739 ± 0.014. By comparison, when C = 1, the average values of

accuracy, Recall, and F1 score were significantly higher than those at

C = 0.01, 0.1, 10, 100, and 1,000 (P<0.05).

Based on the results obtained, the optimal value for the C

parameter was determined to be 1, guiding the determination of the

optimal kernel function for this work. The evaluation compared the

performance metrics (accuracy, Recall, F1) across various kernel

functions including linear, polynomial, RBF, and Sigmoid, over 50

training iterations as shown in Figures 6A–C. Observations revealed

that the variations in accuracy, Recall, and F1 scores were most

stable across 50 training iterations using the linear kernel function.

As depicted in Figure 6D, the average values for the linear kernel

were accuracy = 0.783 ± 0.004, Recall = 0.766 ± 0.004, F1 = 0.776 ±

0.003; for the polynomial kernel, accuracy = 0.742 ± 0.023, Recall =

0.709 ± 0.010, F1 = 0.728 ± 0.012; for the RBF kernel, accuracy =
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0.709 ± 0.011, Recall = 0.683 ± 0.012, F1 = 0.671 ± 0.011; and for the

Sigmoid kernel, accuracy = 0.681 ± 0.03, Recall = 0.662 ± 0.009, F1 =

0.643 ± 0.011. Comparison analysis revealed that the average

accuracy, Recall, and F1 values of the linear kernel were greatly

higher than those of the polynomial, RBF, and Sigmoid kernel

functions (P<0.05).
3.7 Ablation study results of the CNN
+LSTM model

The results of the ablation study showed that the CNN model

achieved an accuracy of 78.5%, recall of 75.3%, and F1 score of

76.8%, while the LSTM model achieved an accuracy of 72.1%, recall

of 70.5%, and F1 score of 71.3%. In contrast, the CNN+LSTM

model significantly outperformed both individual models, with an

accuracy of 85.2%, recall of 83.7%, and F1 score of 84.4%. These

results demonstrate that the combination of CNN and LSTM better

captures the spatial features and temporal sequence characteristics

of ultrasound images (Figure 7).
3.8 Prediction performance of the SVM
model based on NRG4 levels combined
with ultrasound feature classification based
on CNN+LSTM

Based on the above, it was known that NRG4 showed a

significant correlation with thyroid indicators such as FT3, FT4,

TSH, HOMA-IR, the positive rate of NRG4 in thyroid tissue,

thyroid volume, blood flow velocity, and RI. Therefore, this study

obtained the NRG4 levels of patients with isolated T2DM and those

with T2DM complicated by FT. An SVM model based on NRG4

levels combined with an ultrasound feature classification prediction

model based on CNN+LSTM (SVM-CNN+LSTM) was applied to

evaluate its predictive performance for T2DM complicated by FT

and compared with traditional NRG4-based prediction methods.

The ROC curve was plotted, and the results are shown in Figure 8.

The area under the ROC curve (AUC = 0.943) for the SVM-CNN

+LSTM model was significantly higher than that of the traditional

method (AUC = 0.732). The optimal cutoff value for this model

corresponded to a sensitivity of 91.32% and a specificity of 94.18%.

According to the ROC curve, the specificity, specificity,

accuracy, Youden index, and AUC of the SVM-CNN+LSTM

classification model for prediction were 91.32%, 94.18%, 95.35%,

0.855, and 0.943, respectively. The prediction results of the SVM

model based on NRG4 levels were 86.23%, 90.33%, 90.89%, 0.798,

and 0.887, respectively. In comparison, the traditional NRG4

prediction method yielded specificity, specificity, Youden index,

and AUC of 60.22%, 80.78%, 79.49%, 0.410, and 0.732 (Figure 9).

The SVM model based on NRG4 levels showed significant

improvement over the traditional prediction method in terms of

specificity, specificity, Youden index, and AUC, while the SVM-

CNN+LSTM classification model further outperformed the NRG4-

based SVM model in all prediction metrics (P<0.05).
TABLE 3 Correlation of NRG4 with FBG, 2hPBG, HbA1c, HOMA-IR, FT3,
FT4, and TSH in T2DM patients with concurrent FT.

Correlation NRG4

r P

FBG 0.183 0.403

2hPBG 0.128 0.684

HbA1c -0.011 1.212

HOMA-IR 0.593 0.008

FT3 0.773 0.000

FT4 0.683 0.000

TSH -0.809 0.000

Positive rate of NRG4 in thyroid tissue -0.122 0.009

Thyroid volume 0.652 0.002

Blood flow velocity 0.589 0.013

RI 0.473 0.010
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4 Discussion

The rising global prevalence of T2DM and its frequent

comorbidity with FT (incidence rate of 7%-50%) (22, 23)

underscores the necessity for early prediction tools. Our findings

indicate that, compared to T2DM alone, T2DM+FT patients exhibit
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significantly higher levels of HOMA-IR and NRG4 (P< 0.05),

suggesting an exacerbation of insulin resistance and metabolic

dysfunction. These interactions may accelerate disease progression

(24), highlighting the need for targeted interventions.

Research has shown that NRG4 plays a role in regulating lipid

metabolism and insulin sensitivity (25–27). In the current study, the
FIGURE 5

The variations in accuracy (A), Recall (B), and F1 score (C) under different C parameters, along with a comparison of their average values (D). *P<0.05
vs. C parameters of 0.01, 0.1, 10, 100, and 1,000.
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decreased expression of NRG4 in thyroid tissue of T2DM+FT

patients (P< 0.01) may lead to abnormal cell proliferation. In this

cohort, elevated serum NRG4 levels were positively correlated with

HOMA-IR, FT3, and FT4 (P< 0.05) and negatively correlated with

TSH (P< 0.05), indicating a compensatory response to thyroid

hormone dysregulation. Mechanistically, thyroid hormones may
Frontiers in Oncology 11
upregulate NRG4 through the PI3K/Akt signaling pathway (28),

consistent with preclinical models (29, 30). However, due to

unmeasured confounding factors, these associations must be

interpreted with caution. For instance, metformin (a common

antidiabetic medication) regulates thyroid function (31), and

lifestyle factors such as iodine intake may alter thyroid
FIGURE 6

The variations in accuracy (A), Recall (B), and F1 score (C) across different kernel functions, along with a comparison of their average values (D).
#P<0.05 vs. the polynomial, RBF, and Sigmoid kernel functions.
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hemodynamics (32). Future studies should employ propensity score

matching to isolate drug effects and adjust for lifestyle covariates.

Additionally, pathological and imaging analyses revealed that

thyroid tissue samples from patients with T2DM complicated by FT

demonstrated significant cellular hyperplasia, irregular cell

arrangement, and marked interstitial edema. Furthermore, IHC

results further confirmed the significant reduction of NRG4 in

thyroid tissue in the T2DM+FT group. NRG4 plays an important

role in the proliferation and differentiation of thyroid cells, and its

decreased expression may lead to abnormal proliferation of thyroid

cells, thereby affecting the normal function of the thyroid gland (33,

34). Specifically, the expression of NRG4 is closely related to the

proliferation and differentiation of thyroid cells, and its decline may

lead to abnormal proliferation of thyroid cells. Ultrasound

examination results indicated that patients in the T2DM+FT

group had significantly abnormal thyroid volume, blood flow
Frontiers in Oncology 12
velocity, and RI, further reflecting the changes in thyroid

hemodynamics. These changes may be due to increased metabolic

activity caused by FT, which in turn affects the blood supply and

structure of the thyroid gland (35). Correlation analysis also

confirmed that serum NRG4 was significantly positively

correlated with thyroid volume, blood flow velocity, and RI, and

significantly negatively correlated with the positive rate of NRG4 in

thyroid tissue.

To address the limitations of traditional prediction models that

rely solely on clinical indicators and biochemical markers (36), this

study developed a multimodal prediction model based on SVM and

SVM-CNN+LSTM, which significantly improved predictive

performance. The results show that the NRG4-based SVM model

outperformed traditional methods in sensitivity (86.23%),

specificity (90.33%), and AUC (0.887) (P< 0.05). Relevant studies

indicate that SVM has unique advantages in handling high-

dimensional data and nonlinear relationships, and has been

widely applied in the prediction and diagnosis of cancer,

cardiovascular diseases, and diabetes (37–41). Further integration

of spatiotemporal features extracted by CNN+LSTM (such as

thyroid volume, blood flow velocity, and RI) with NRG4 levels

led to a multimodal model with sensitivity, specificity, AUC, and

Youden index of 91.32%, 94.18%, 0.943, and 0.855, respectively, all

significantly higher than those of the single SVM model (P< 0.05).

This multi-level feature fusion strategy not only enhanced the

model’s classification performance but also provided new insights

into the pathological interactions between T2DM and FT (42, 43).

Despite the excellent predictive performance of the model, its

practical application still requires standardized operational

procedures. It is recommended to simultaneously collect imaging

and serum samples during routine ultrasound examinations,

standardize the extraction of NRG4 and ultrasound parameters,

and establish an auxiliary decision-making system for real-time risk

assessment. Additionally, an operational manual should be

developed and training programs implemented to ensure

standardized use of the model. In the future, integrating with

clinical information systems will further validate and promote its

application value in routine screening.
FIGURE 7

Comparison of classification performance between CNN, LSTM, and CNN+LSTM models.
FIGURE 8

ROC curves of different methods and models for predicting T2DM
complicated by FT.
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Furthermore, this study validated the feature representation

capability of the multimodal model using t-SNE visualization. The

T2DM+FT group and the Ctrl group formed distinct clusters in the

low-dimensional space, demonstrating that the model effectively

distinguishes between disease states. When combined with

pathological findings, such as the reduced expression of NRG4 in

thyroid tissue and abnormal cellular proliferation, as well as

ultrasound parameters, including increased thyroid volume and

hemodynamic changes, the results further support the biological

association between NRG4 and thyroid dysfunction. These findings

also highlight the potential for clinical translation of the multimodal

model. Other studies also demonstrated that machine learning-

based multimodal strategies can significantly enhance the

robustness of disease prediction. For instance, SVM combined

with radiomics features has shown excellent performance in

cancer risk stratification (44), while the CNN-LSTM model has

exhibited advantages in time-series modeling for cardiovascular

event prediction (45). The results of this study align with such

cutting-edge work, confirming the vast potential of multimodal

artificial intelligence models in the prediction of metabolic-

endocrine diseases.

Although our model demonstrates high accuracy, its

generalizability may be limited by the single-center design and

potential confounding factors such as medication heterogeneity.

Therefore, future studies will involve multi-center, large-sample

prospective cohort research, with the T2DM+FT group reaching at

least 100 cases. Sample collection and follow-up validation are

planned to be completed within the next 2–3 years. Additionally,

the molecular mechanisms of NRG4 in T2DM with FT will be

further explored, such as by integrating genomics and

metabolomics data, focusing on the regulatory role of signaling

pathways like PI3K/Akt. Consideration may also be given to

incorporating attention mechanisms to optimize feature fusion

algorithms. A detailed experimental design and inter-institutional
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collaboration plan will be developed, with clear goals and timelines

for each phase to ensure data s tandardiza t ion and

result reproducibility.
5 Conclusion

This study confirmed the value of NRG4 in predicting T2DM

with FT by analyzing its correlation with multiple clinical

indicators. The SVM-based predictive model improved the

predictive efficacy of NRG4, highlighting its potential as an

independent biomarker. The multimodal model, constructed by

combining spatiotemporal features extracted by CNN+LSTM,

further enhanced predictive performance, demonstrating the

advantages of multimodal data integration in analyzing the

interactions between T2DM and FT. The findings provide new

insights for the early identification and mechanistic research of

T2DM with FT.
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31. Krysiak R, Kowalcze K, Okopień B. The impact of combination therapy with
metformin and exogenous vitamin D on hypothalamic-pituitary-thyroid axis activity in
women with autoimmune thyroiditis and high-normal thyrotropin levels. J Clin Pharm
Ther. (2020) 45:1382–9. doi: 10.1111/jcpt.13233

32. Wang D, Wan S, Liu P, Meng F, Zhang X, Ren B, et al. Relationship between
excess iodine, thyroid function, blood pressure, and blood glucose level in adults,
pregnant women, and lactating women: A cross-sectional study. Ecotoxicology Environ
Saf. (2021) 208:111706. doi: 10.1016/j.ecoenv.2020.111706

33. Chen M, Zhu J, Luo H, Mu W, Guo L. The journey towards physiology and
pathology: Tracing the path of neuregulin 4. Genes Dis. (2023) 11:687–700.
doi: 10.1016/j.gendis.2023.03.021
Frontiers in Oncology 15
34. Li M, Chen Y, Jiang J, Lu Y, Song Z, Zhang S, et al. Elevated serum neuregulin 4
levels in patients with hyperthyroidism. Endocrine connections. (2019) 8:728–35.
doi: 10.1530/EC-19-0175

35. Wang J, Wan K, Chang X, Mao RF. Association of autoimmune thyroid disease
with type 1 diabetes mellitus and its ultrasonic diagnosis and management. World J
Diabetes. (2024) 15:348–60. doi: 10.4239/wjd.v15.i3.348

36. Huang L, Pan Y, Zhou K, Liu H, Zhong S. Correlation between glycemic
variability and diabetic complications: A narrative review. Int J Gen Med. (2023)
16:3083–94. doi: 10.2147/IJGM.S418520

37. Wang J, Khan MA, Wang S, Zhang Y. SNSVM: squeezeNet-guided SVM for
breast cancer diagnosis. Computers materials continua. (2023) 76:2201–16.
doi: 10.32604/cmc.2023.041191

38. Le Y, Zhu H, Ye C, Lin J, Wang N, Yang T. CT radiomics analysis discriminates
pulmonary lesions in patients with pulmonary MALT lymphoma and non-pulmonary
MALT lymphoma. Methods (San Diego Calif.). (2024) 224:54–62. doi: 10.1016/
j.ymeth.2024.02.003

39. Ding W, Xiao Q, Yue Y, Chen S, She X, Pan B, et al. Deciphering alternative
splicing events and their therapeutic implications in colorectal Cancer. Cell signalling.
(2024) 118:111134. doi: 10.1016/j.cellsig.2024.111134

40. Sheng M, Cui X. A machine learning-based diagnostic model for myocardial
infarction patients: Analysis of neutrophil extracellular traps-related genes and eQTL
Mendelian randomization. Medicine . (2024) 103:e37363. doi: 10.1097/
MD.0000000000037363

41. Liu L, Bi B, Cao L, Gui M, Ju F. Predictive model and risk analysis for peripheral
vascular disease in type 2 diabetes mellitus patients using machine learning and shapley
additive explanation. Front Endocrinol. (2024) 15:1320335. doi: 10.3389/
fendo.2024.1320335

42. Bawa A, Banitsas K, Abbod M. A movement classification of polymyalgia
rheumatica patients using myoelectric sensors. Sensors (Basel Switzerland). (2024)
24:1500. doi: 10.3390/s24051500
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