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Hybrid feature fusion in
cervical cancer cytology: a
novel dual-module approach
framework for lesion detection
and classification using
radiomics, deep learning,
and reproducibility
Shurong Niu, Lili Zhang, Lina Wang, Xue Zhang and Erniao Liu*

Department of Obstetrics and Gynecology, Shanxi Medical University Second Hospital, Taiyuan, China
Objective: Cervical cancer screening through cytology remains the gold

standard for early detection, but manual analysis is time-consuming, labor-

intensive, and prone to inter-observer variability. This study proposes an

automated deep learning-based framework that integrates lesion detection,

feature extraction, and classification to enhance the accuracy and efficiency of

cytological diagnosis.

Materials and methods: A dataset of 4,236 cervical cytology samples was

collected from six medical centers, with lesion annotations categorized into six

diagnostic classes (NILM, ASC-US, ASC-H, LSIL, HSIL, SCC). Four deep learning

models, Swin Transformer, YOLOv11, Faster R-CNN, and DETR (DEtection

TRansformer), were employed for lesion detection, and their performance was

compared using mAP, IoU, precision, recall, and F1-score. From detected lesion

regions, radiomics features (n=71) and deep learning features (n=1,792) extracted

from EfficientNet were analyzed. Dimensionality reduction techniques (PCA,

LASSO, ANOVA, MI, t-SNE) were applied to optimize feature selection before

classification using XGBoost, Random Forest, CatBoost, TabNet, and

TabTransformer. Additionally, an end-to-end classification model using

EfficientNet was evaluated. The framework was validated using internal cross-

validation and external testing on APCData (3,619 samples).

Results: The Swin Transformer achieved the highest lesion detection accuracy

(mAP: 0.94 external), outperforming YOLOv11, Faster R-CNN, and DETR.

Combining radiomics and deep features with TabTransformer yielded superior

classification (test accuracy: 94.6%, AUC: 95.9%, recall: 94.1%), exceeding both

single-modality and end-to-end models. Ablation studies confirmed the

importance of both the detection module and hybrid feature fusion. External

validation demonstrated high generalizability (accuracy: 92.8%, AUC: 95.1%).

Comprehensive statistical analyses, including bootstrapped confidence

intervals and Delong’s test, further substantiated the robustness and reliability

of the proposed framework.
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Conclusions: The proposed AI-driven cytology analysis framework offers

superior lesion detection, feature fusion-based classification, and robust

generalizability, providing a scalable solution for automated cervical cancer

screening. Future efforts should focus on explainable AI (XAI), real-time

deployment, and larger-scale validation to facilitate clinical integration.
KEYWORDS
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1 Introduction

Cervical cancer remains a major public health concern, with an

estimated 604,000 new cases and 342,000 deaths reported

worldwide in 2020 alone, as per the Global Cancer Observatory

(GLOBOCAN) database (1, 2). Timely detection and classification

of precancerous and malignant cervical lesions play a crucial role in

reducing morbidity and mortality (3–5). The Papanicolaou (Pap)

smear test is widely regarded as the gold standard for cervical cancer

screening, allowing for the early detection of cellular abnormalities

(6, 7). However, manual examination of cytological samples is time-

consuming, prone to interobserver variability, and requires

extensive expertise (8–10). To address these challenges,

automated computational techniques leveraging artificial

intelligence (AI) and deep learning (DL) models have emerged as

powerful tools for accurate and efficient cervical cytology diagnosis

(11–14).

Advancements in deep learning have significantly improved the

accuracy and efficiency of medical image analysis, particularly in the

detection of abnormal cellular structures. Object detection models

play a crucial role in identifying lesions by localizing suspicious

regions within cytological images, enabling targeted analysis and

classification (15–17). Transformer-based models, such as the Swin

Transformer, excel at capturing complex spatial relationships within

images, making them particularly effective for recognizing subtle

morphological variations in cells (18–20). Similarly, diffusion-based

object detection enhances robustness by accounting for image noise

and uncertainties, leading to more reliable identification of atypical

cells. YOLO-based architectures, known for their high-speed and

real-time processing capabilities, further enhance lesion detection by

providing rapid and accurate bounding box predictions (21–24). By

leveraging these advanced detection models, automated systems can

assist cytopathologists in identifying lesions with greater consistency

and precision, reducing diagnostic variability and improving early

detection of cervical abnormalities.

Feature extraction plays a fundamental role in the

characterization of cytological samples, providing quantitative

insights into cellular morphology and tissue heterogeneity (23,

25–33). Radiomics features, derived from medical images, capture

detailed statistical patterns related to texture, intensity, and shape,
02
offering valuable descriptors for differentiating between normal and

pathological conditions (34, 35). These handcrafted features have

been widely utilized in medical imaging for their interpretability

and ability to reveal subtle disease-associated variations. On the

other hand, deep learning features, learned automatically through

convolutional neural networks, provide high-level semantic

representations that encode complex visual patterns within

cytological images (36–40). The integration of radiomics and deep

features enables a more comprehensive analysis, combining the

precision of handcrafted descriptors with the adaptability and

robustness of deep learning. This synergy enhances the accuracy

of lesion classification, offering a powerful approach for improving

automated cervical cancer screening.

Medical imaging datasets often originate from multiple sources,

introducing variability due to differences in sample preparation,

imaging techniques, and institutional protocols. To ensure the

reliability and reproducibility of extracted features, it is essential to

assess their consistency across different datasets. Intraclass

Correlation Coefficient (ICC) is a widely used statistical measure

that quantifies the agreement between multiple observations, helping

determine the stability of features in diverse imaging conditions (41–

43). High ICC values indicate strong reproducibility, suggesting that

extracted features are robust against variations in data acquisition. In

multi-center studies, such reliability assessments are critical for

developing machine learning models that generalize well across

different clinical settings, ultimately contributing to more

dependable and scalable AI-driven diagnostic systems.

In this study, we propose a comprehensive framework for the

automated detection and classification of cervical cytology images

obtained using liquid-based cytology (LBC) via cytocentrifugation.

Our approach incorporates state-of-the-art object detection models,

deep learning architectures, and feature extraction methodologies to

enhance the accuracy and robustness of automated cervical cancer

diagnosis. Specifically, we classify cervical cells into six diagnostic

categories: NILM (Negative for Intraepithelial Lesion or

Mal ignancy) , ASC-US (Atyp ica l Squamous Ce l l s o f

Undetermined Significance), ASC-H (Atypical Squamous Cells,

cannot exclude HSIL), LSIL (Low-grade Squamous Intraepithelial

Lesion), HSIL (High-grade Squamous Intraepithelial Lesion), and

SCC (Squamous Cell Carcinoma). The labeled cells in our dataset
frontiersin.org
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are annotated using bounding boxes to facilitate detection and

classification tasks.

This study presents a comprehensive framework for automated

detection and classification of cervical cytology images,

incorporating state-of-the-art deep learning and machine learning

techniques. The key contributions of this work include:
Fron
1. Advanced Lesion Detection: The study leverages four state-

of-the-art object detection models—Swin Transformer,

YOLOv11, Faster R-CNN, and DETR (DEtection

TRansformer)—to enhance the accuracy and efficiency of

cervical lesion identification. Each model contributes

distinct architectural strengths: Swin Transformer utilizes

hierarchical attention mechanisms to capture fine-grained

spatial details, YOLOv11 offers real-time performance with

optimized feature extraction, Faster R-CNN delivers

region-based precision through a two-stage detection

pipeline, and DETR introduces transformer-based end-to-

end object detection with direct set prediction. By

integrating and evaluating these diverse models, the

framework achieves comprehensive lesion detection

performance, enabling more reliable and accurate

identification of cytological abnormalities across varying

imaging conditions.

2. Multi-Scale Feature Extraction and Classification: The

integration of radiomics-based and deep-learning-based

features provides a robust representation of cytological

abnormalities. The study employs EfficientNet and

ResNet architectures for deep feature extraction and

applies various dimensionality reduction techniques

(Lasso, ANOVA, MI) to refine feature selection. These

features are then classified using advanced machine

learning models, including XGBoost, Random Forest,

CatBoost, TabNet, and TabTransformer.

3. End-to-End Deep Learning Classification: The framework

explores a direct deep learning approach where detected

lesion regions are fed into EfficientNet models for six-class

classification without explicit feature extraction. This

approach assesses the capability of deep neural networks

to learn complex representations from cytological images.

4. Hybrid Feature Fusion for Improved Generalization: A novel

feature fusion approach is introduced, combining radiomics

and deep-learning-based features into a unified set. The

integration of multiple feature types enhances classification

accuracy and ensures robustness across diverse datasets.

5. Feature Reliability Assessment Using ICC: Since the dataset

originates from multiple centers, ICC is employed to

evaluate feature consistency across different imaging

sources. This ensures that the extracted features are

reliable and reproducible, reinforcing the validity of the

proposed framework for real-world clinical applications.
Additionally, we incorporate t-SNE to analyze the importance of

extracted features and interpret model predictions. Given the

complexity of cervical cytology analysis, we designed a two-stage
tiers in Oncology 03
diagnostic framework that performs lesion detection and

classification sequentially. In this modular approach, lesion regions

are first identified using object detection models, and features

extracted from these regions are then used for classification. While

these tasks are related and complementary, they are trained

independently without joint optimization of network parameters,

and thus the architecture does not constitute dual-module approach

in the conventional sense. This design, however, enhances

interpretability and allows for modular evaluation and fine-tuning

of detection and classification components separately.

By leveraging advanced deep learning architectures, radiomics

analysis, and hybrid feature fusion strategies, this study aims to

push the boundaries of automated cervical cytology analysis. The

integration of multiple detection and classification approaches

provides a robust framework that can assist cytopathologists in

diagnosing cervical abnormalities with greater precision and

efficiency. The findings of this study have the potential to

contribute to the development of AI-assisted cervical cancer

screening systems, ultimately improving early detection rates and

patient outcomes. In the subsequent sections, we detail the dataset

characteristics, model architectures, evaluation metrics, and

experimental results to demonstrate the efficacy of our

proposed methodology.
2 Materials and methods

2.1 Dataset and annotations

2.1.1 Inclusion and exclusion criteria
To ensure high-quality and diagnostically relevant samples, a

set of inclusion and exclusion criteria was applied to the initial

dataset of 6,765 cervical cytology samples. The criteria and the

corresponding number of excluded samples at each stage are

detailed below.

Inclusion criteria:
1. Patients with a confirmed cytological diagnosis from one of

the six target categories: NILM, ASC-US, LSIL, ASC-H,

HSIL, or SCC.

2. High-quality cytology images, with clear cellular structures

and minimal artifacts.

3. Single-cell and small cluster images, ensuring precise

bounding box annotations.

4. Samples collected using liquid-based cytology (LBC) with

the cytocentrifugation technique.

5. Images acquired with standardized imaging protocols at

each center.
Exclusion criteria and sample reduction:

The following exclusion criteria were applied, reducing the

dataset step by step:
1. Unconfirmed or unclear diagnoses – Samples without a

definitive cytological classification or those marked as
frontiersin.org
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“indeterminate” by pathologists were excluded. (Removed:

892 samples → Remaining: 5,873).

2. Poor-quality images – Blurred, overexposed, underexposed,

or noisy images that hinder accurate feature extraction and

lesion detection were removed. (Removed: 715 samples →

Remaining: 5,158).

3. Overlapping or dense cell clusters – Samples where

individual cells could not be distinctly segmented were

excluded to ensure accurate annotation. (Removed: 524

samples → Remaining: 4,634).

4. Samples with incomplete patient metadata – Images

without sufficient clinical information regarding the

patient or sample preparation were removed. (Removed:

218 samples → Remaining: 4,416).

5. Duplicate or redundant samples – Images that were

inadvertently included multiple times in the dataset were

eliminated to prevent bias. (Removed: 180 samples →

Remaining: 4,236).
After applying these inclusion and exclusion criteria, the final

dataset comprised 4,236 high-quality, well-annotated cervical

cytology images, ensuring reliability for automated lesion

detection and classification.
2.1.2 Data collection
The dataset used in this study consists of 4,236 cervical cytology

samples collected from six medical centers. Initially, 6,765 patient

samples were considered; however, after applying inclusion and

exclusion criteria, the dataset was refined to ensure high-quality and

diagnostically relevant samples. The dataset is categorized into six

diagnostic classes based on cytological findings:
• NILM (Negative for Intraepithelial Lesion or Malignancy) –

1,754 samples.

• ASC-US (Atypical Squamous Cells of Undetermined

Significance) – 726 samples.

• LSIL (Low-grade Squamous Intraepithelial Lesion) –

682 samples.

• ASC-H (Atypical Squamous Cells, cannot exclude HSIL) –

182 samples.

• HSIL (High-grade Squamous Intraepithelial Lesion) –

602 samples.

• SCC (Squamous Cell Carcinoma) – 290 samples.
The samples were obtained from six different centers, each with

unique imaging conditions, ensuring dataset diversity and

improving model generalizability.

To validate the generalizability and robustness of the proposed

framework, an external dataset, APCData cervical cytology cells, was

used as an independent test set (44). This dataset comprises 3,619

manually labeled squamous cells, categorized into six diagnostic

classes: 2,114 NILM, 333 ASC-US, 444 LSIL, 182 ASC-H, 421 HSIL,

and 125 SCC. The inclusion of this external dataset allows for a more

comprehensive evaluation of the model’s performance beyond the

primary dataset, ensuring its applicability across diverse cytological
tiers in Oncology 04
samples. The APCData dataset was selected due to its high-quality

annotations and representation of various cytological abnormalities.

By testing the model on an independent dataset, we aim to assess its

adaptability to unseen data, reducing the risk of overfitting and

improving its reliability in real-world clinical applications. Figure 1

illustrates the workflow of the study.

To further illustrate dataset diversity and class representation,

Table 1 summarizes the distribution of diagnostic categories across

the six participating medical centers. The table demonstrates both

inter-center variation and natural class imbalance, which reflect

real-world screening patterns and enhance the clinical validity of

the dataset. This multi-institutional structure introduces variation

in sample acquisition and imaging protocols, contributing to the

robustness and generalizability of the proposed framework.

2.1.3 Imaging conditions, annotation and labeling
The cytological samples were prepared using liquid-based

cytology with the cytocentrifugation technique and stained using

the Papanicolaou method. Imaging was performed using different

microscopes and digital acquisition systems across six centers,

ensuring dataset diversity. Detailed imaging conditions for each

center are provided in Table 2.

All cytological samples were manually annotated by expert

cytopathologists using bounding box annotations for lesion

localization. The annotation process followed strict diagnostic

guidelines to ensure high-quality labeling. Each image was reviewed

by at least two independent cytopathologists, and disagreements were

resolved through consensus. The final dataset comprises images labeled

into six diagnostic categories, ensuring a diverse and well-annotated

dataset for training and evaluating automated detection models.
2.2 Lesion detection models

Automated lesion detection plays a crucial role in cervical

cytology analysis, enabling precise localization of abnormal cells

for subsequent classification. In this study, four state-of-the-art

object detection models were employed to identify lesions within

cytological images: Swin Transformer, YOLOv11, Faster R-CNN,

and DETR. These models leverage distinct architectural designs and

detection mechanisms to enhance the accuracy and robustness of

cytological abnormality identification.

2.2.1 Swin Transformer
The Swin Transformer is a hierarchical vision transformer-based

detection model that utilizes a shifted window mechanism for efficient

computation. Unlike conventional CNN-based detectors, it captures

long-range dependencies and contextual relationships within

cytological images, making it highly effective for detecting subtle

morphological abnormalities. Its multi-scale feature representation

enhances lesion localization, particularly for small or overlapping cells.

2.2.2 YOLOv11
The YOLOv11 (You Only Look Once) model is a real-time

object detection framework that provides high-speed and accurate
frontiersin.org
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localization of lesions within cytological images. Its one-stage

detection pipeline enables efficient lesion identification, making it

well-suited for large-scale cervical cytology screening. YOLOv11’s

advanced feature extraction and attention mechanisms enhance
Frontiers in Oncology 05
small object detection, ensuring precise bounding box placement

around abnormal cells. By integrating these diverse detection

models, the study aims to leverage their strengths in capturing

complex cytological patterns, improving lesion detection accuracy,
FIGURE 1

Comprehensive framework for dual-module approach in cervical cytology, integrating lesion detection and classification using radiomics and deep
learning.
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and enhancing the overall performance of automated cervical

cancer screening systems.

In our implementation, the Swin Transformer was integrated as

the backbone within a Cascade R-CNN architecture using the

MMDetection framework. The feature maps generated by the

Swin Transformer were fed into a Feature Pyramid Network

(FPN), which enabled multi-scale feature fusion for robust lesion

localization. Region proposals were generated using a Region

Proposal Network (RPN), followed by multi-stage bounding box

refinement and classification heads. This integration allowed the

model to utilize the Swin Transformer’s hierarchical and spatial

attention mechanisms for enhanced detection of cytological

abnormalities. All models were trained using standard settings

with a learning rate of 0.0001 and an AdamW optimizer, and

were fine-tuned specifically for cervical cytology datasets.

2.2.3 Faster R-CNN
Faster R-CNN is a two-stage detection framework that combines

a region proposal network (RPN) with a classification and regression

head. This model excels in accurately detecting lesion regions by

focusing on candidate object proposals and refining them through

successive stages. Its region-based approach ensures high detection

precision, particularly in well-defined lesion boundaries, albeit with a

higher computational cost compared to one-stage detectors.

2.2.4 DETR
DETR is a transformer-based end-to-end object detection

model that formulates detection as a direct set prediction
Frontiers in Oncology 06
problem. It removes the need for hand-crafted components such

as anchor boxes and non-maximum suppression. DETR’s global

attention mechanism allows it to capture spatial relationships across

the entire image, which can be beneficial in cytology images with

complex arrangements. However, its performance may vary

depending on dataset size and training duration.

By evaluating these diverse detection models, the study aims to

comprehensively assess their capabilities in localizing lesions with

high precision and robustness, ultimately enhancing the

performance and clinical utility of automated cervical cancer

screening systems.
2.3 Feature extraction

Feature extraction is a critical step in automated cervical

cytology analysis, providing quantitative representations of

cellular morphology, texture, and intensity. In this study, two

complementary feature extraction approaches were utilized:

radiomics-based features and deep-learning-based features. The

features were extracted from the lesion regions detected by Swin

Transformer, YOLOv11, Faster R-CNN, and DETR, ensuring that

only relevant cellular areas contributed to the classification process.

The extracted features were further refined using dimensionality

reduction techniques to enhance classification performance and

reduce redundancy.

Multi-scale feature extraction in our framework is achieved

through the architectural design of both the detection and
TABLE 1 Diagnostic class distribution across six medical centers in the primary dataset (n = 4,236).

Diagnostic category Center A Center B Center C Center D Center E Center F Total

NILM 312 276 290 252 316 308 1,754

ASC-US 124 106 98 92 152 154 726

LSIL 118 112 90 84 134 144 682

ASC-H 28 30 26 22 38 38 182

HSIL 98 96 88 82 118 120 602

SCC 42 38 34 36 70 70 290

Total 722 658 626 568 828 834 4,236
Bold values indicate the highest count per diagnostic category.
TABLE 2 Distribution of data across centers and imaging conditions.

Center Number of samples Imaging system Microscope Camera Software & version

A 785 Nikon Eclipse E200 40x objective, 10x eyepiece Nikon DS-Fi3 NIS-Elements D, v3.1 (2018)

B 702 Zeiss Axio Lab.A1 40x objective, 10x eyepiece Zeiss Axiocam 105 Zen 2.3 (2019)

C 643 Leica DM750 40x objective, 10x eyepiece Leica ICC50 W Leica LAS EZ, v4.0 (2017)

D 702 Olympus BX43 40x objective, 10x eyepiece Olympus DP22 cellSens Entry, v2.1 (2016)

E 705 Motic BA310 40x objective, 10x eyepiece Moticam 5+ Motic Images Plus 3.0 (2018)

F 699 Meiji MT5300 40x objective, 10x eyepiece Meiji Infinity2-3 Image-Pro Insight, v9.0 (2020)

Total 4,236
Bold values indicate the total number of samples per center.
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classification components. During lesion detection, the Swin

Transformer serves as the backbone of a Cascade R-CNN

framework, where hierarchical feature maps are generated at

multiple stages (C1 to C4) via a shifted window self-attention

mechanism and patch merging operations. These features are

aggregated using an FPN, enabling robust detection of lesions

across a range of cellular scales and morphological variations. For

classification, EfficientNet utilizes compound scaling, which

uniformly scales network depth, width, and resolution. This

scaling design facilitates the extraction of multi-resolution

features, capturing both fine cellular textures and broader

contextual structures essential for accurate lesion categorization.

This dual-level multi-scale feature extraction enhances the

framework’s ability to characterize lesions with diverse size,

shape, and texture profiles inherent in cervical cytology images.

2.3.1 Radiomics feature extraction
Radiomic features were extracted from the preprocessed image

patches using HistomicsTK, a widely utilized platform for

standardized feature computation in medical imaging (45). The

extracted features were categorized into five groups, each capturing

distinct morphological, textural, and intensity-based characteristics

of cytological samples. Fourier Shape Descriptors (FSD) consist of

six features (e.g., Shape.FSD1, Shape.FSD2) that quantify variations

in cell shape and boundary structure. Gradient Features include

e ight descr iptors , such as Gradient . Mag.Mean and

Gradient.Canny.Sum, which characterize intensity gradients and

edge transitions within cytological images. Morphometry Features

comprise nineteen attributes related to cell size and shape, including

Size.Area, Shape.Circularity, and Shape.HuMoments1-7, providing

critical geometric and structural insights. Intensity-Based Features,

totaling twelve, measure pixel intensity distributions, capturing

variations in cytological staining through descriptors like

Intensity.Mean, Intensity.Std, and Intensity.HistEntropy. Finally,

Haralick Features, derived from the gray-level co-occurrence matrix
Frontiers in Oncology 07
(GLCM), consist of twenty-six texture descriptors such as

Haral ick .Contrast .Mean, Hara l ick .Entropy.Mean, and

Haralick.IMC1.Mean, which encode spatial relationships between

pixel intensities. This comprehensive radiomics feature set enables

precise differentiation between normal and malignant cytological

samples, facilitating robust lesion classification. A detailed

breakdown of the extracted features is presented in Table 3.

2.3.2 Deep feature extraction (EfficientNet)
Deep learning features were extracted using EfficientNet, CNNs

known for their ability to learn hierarchical representations from

images. Unlike radiomics features, which rely on handcrafted

statistical descriptors, deep learning features are automatically

learned from data, allowing for the capture of complex spatial

structures and morphological patterns within cytological images. By

leveraging pretrained models and adapting them to cervical

cytology images, these architectures provide robust feature

representations that improve lesion classification accuracy.

EfficientNet is a scalable CNN architecture that optimizes

depth, width, and resolution to enhance feature extraction while

maintaining computational efficiency. In this study, EfficientNet-B4

was employed due to its balance between model complexity and

performance. The model was initially pretrained on ImageNet and

fine-tuned for cytology image analysis.

To extract deep features, the convolutional backbone of

EfficientNet-B4 was frozen, ensuring that the lower-layer feature

representations remained intact while reducing the risk of

overfitting. The final classification layers were replaced with custom

layers tailored for feature extraction. A global average pooling (GAP)

layer was retained to generate compact feature vectors, followed by a

fully connected (FC) layer with 512 neurons and ReLU activation to

refine the extracted features. Additionally, a dropout layer (rate = 0.5)

was incorporated to improve generalization and prevent overfitting.

The final deep feature vector extracted from EfficientNet contained

1792 features per image.
TABLE 3 Radiomic feature categories and descriptions.

Category Feature names Count (n)

Fourier Shape
Descriptors (FSD)

Shape.FSD1, Shape.FSD2, Shape.FSD3, Shape.FSD4, Shape.FSD5, Shape.FSD6 6

Gradient Features Gradient.Mag.Mean, Gradient.Mag.Std, Gradient.Mag.Skewness, Gradient.Mag.Kurtosis, Gradient.Mag.HistEntropy,
Gradient.Mag.HistEnergy, Gradient.Canny.Sum, Gradient.Canny.Mean

8

Morphometry Features Orientation.Orientation, Size.Area, Size.ConvexHullArea, Size.MajorAxisLength, Size.MinorAxisLength, Size.Perimeter,
Shape.Circularity, Shape.Eccentricity, Shape.EquivalentDiameter, Shape.Extent, Shape.MinorMajorAxisRatio, Shape.Solidity,
Shape.HuMoments1, Shape.HuMoments2, Shape.HuMoments3, Shape.HuMoments4, Shape.HuMoments5,
Shape.HuMoments6, Shape.HuMoments7

19

Intensity-Based
Features

Intensity.Min, Intensity.Max, Intensity.Mean, Intensity.Median, Intensity.MeanMedianDiff, Intensity.Std, Intensity.IQR,
Intensity.MAD, Intensity.Skewness, Intensity.Kurtosis, Intensity.HistEnergy, Intensity.HistEntropy

12

Haralick Features Haralick.ASM.Mean, Haralick.ASM.Range, Haralick.Contrast.Mean, Haralick.Contrast.Range, Haralick.Correlation.Mean,
Haralick.Correlation.Range, Haralick.SumOfSquares.Mean, Haralick.SumOfSquares.Range, Haralick.IDM.Mean,
Haralick.IDM.Range, Haralick.SumAverage.Mean, Haralick.SumAverage.Range, Haralick.SumVariance.Mean,
Haralick.SumVariance.Range, Haralick.SumEntropy.Mean, Haralick.SumEntropy.Range, Haralick.Entropy.Mean,
Haralick.Entropy.Range, Haralick.DifferenceVariance.Mean, Haralick.DifferenceVariance.Range,
Haralick.DifferenceEntropy.Mean, Haralick.DifferenceEntropy.Range, Haralick.IMC1.Mean, Haralick.IMC1.Range,
Haralick.IMC2.Mean, Haralick.IMC2.Range

26
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2.4 Feature reliability assessment (ICC
analysis)

To ensure the robustness and consistency of extracted features

across different imaging conditions, a feature reliability assessment

was conducted. This evaluation aimed to determine the stability of

features before selection and dimensionality reduction, ensuring

that only reliable and reproducible features were used in the final

classification models.

To assess feature reliability, the ICC was calculated before

feature selection and dimensionality reduction. ICC quantifies the

consistency and reproducibility of extracted features across different

samples, ensuring that variations arise from biological differences

rather than technical inconsistencies. Features with an ICC score

below 0.75 were considered unreliable and were excluded from

further analysis. This threshold ensured that only highly stable

features contributed to the final classification process, reducing the

impact of noise and technical variability on model performance.
2.5 Dimensionality reduction techniques

To enhance classification performance and eliminate feature

redundancy, various dimensionality reduction techniques were applied

to the extracted radiomics and deep-learning-based features. Lasso (Least

Absolute Shrinkage and Selection Operator) was utilized to enforce

sparsity, selecting only the most informative features while reducing the

risk of overfitting. ANOVA (Analysis of Variance) identified statistically

significant features by analyzing variance between different diagnostic

categories, ensuring that only discriminative attributes were retained.

Mutual Information (MI) measured the dependency between features

and class labels, prioritizing those that contributed most to lesion

differentiation. Additionally, LASSO was used to eliminate irrelevant

or highly correlated features by applying an L1 regularization penalty,

ensuring that only the most predictive features were retained. By

integrating these techniques with both radiomics and deep-learning-

based feature extraction, the study ensures an optimized and

interpretable feature set, ultimately enhancing the accuracy and

robustness of lesion classification.
2.6 Classification approaches

To effectively classify cervical cytology images, multiple

classification strategies were explored, including machine learning

classifiers, end-to-end deep learning models, and a hybrid feature

fusion approach. By integrating both handcrafted radiomics features

and automatically learned deep features, these approaches aim to

enhance classification accuracy and model generalizability.

2.6.1 Machine learning classifiers (XGBoost,
Random Forest, CatBoost, TabNet,
TabTransformer)

Machine learning classifiers were employed to analyze the

extracted radiomics and deep-learning-based features. XGBoost
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(Extreme Gradient Boosting) was used for its efficiency in

handling structured data and its ability to mitigate overfitting

through regularization. Random Forest, an ensemble learning

technique, constructed multiple decision trees and aggregated

their outputs, improving robustness against feature variability.

CatBoost, optimized for categorical data, enhanced classification

performance by efficiently handling imbalanced datasets.

Additionally, deep learning-based tabular classifiers, TabNet and

TabTransformer, were utilized to capture complex feature

interactions. TabNet employed sequential attention mechanisms

to highlight the most important features, while TabTransformer

leveraged self-attention layers to improve feature representation.

These classifiers were trained and evaluated on the selected feature

sets to determine the most effective model for lesion classification.

2.6.2 End-to-end deep learning classification
(EfficientNet)

In addition to feature-based classification, an end-to-end deep

learning approach was implemented using EfficientNet, allowing

the models to directly learn discriminative feature representations

from cervical cytology images without explicit feature extraction.

EfficientNet, optimized for computational efficiency, utilized

compound scaling to balance network depth, width, and

resolution, ensuring optimal feature extraction while reducing

computational overhead.

Model was initialized with ImageNet-pretrained weights and fine-

tuned on the cytology dataset. The final classification layers were

replaced with a fully connected (FC) layer, followed by a softmax

activation function for multi-class prediction. Cross-entropy loss was

employed as the objective function, and optimization was performed

using the Adam optimizer with a learning rate of 1e-4. Training was

conducted for 500 epochs, with a batch size of 32, employing early

stopping to prevent overfitting. To improve generalization, data

augmentation techniques, including rotation (± 20°), horizontal and

vertical flipping, brightness adjustment, and contrast normalization,

were applied during training. Model performance was evaluated using

accuracy, precision, recall, and F1-score to ensure robust classification

across all six diagnostic categories.

2.6.3 Hybrid feature fusion approach
To combine the strengths of both radiomics-based and deep-

learning-based feature representations, a hybrid feature fusion

approach was employed. In this method, radiomics features and

deep features extracted from EfficientNet were merged into a

unified feature set. Given the large number of combined features,

to prevent overfitting and reduce feature correlation, Principal

Component Analysis (PCA) was first applied to transform the

high-dimensional feature space into a more compact

representation while preserving essential variance. After PCA,

feature selection techniques such as Lasso, ANOVA, and MI were

applied to eliminate redundancy and retain only the most

informative features. The optimized feature set was then fed into

machine learning classifiers (XGBoost, Random Forest, CatBoost,

TabNet, and TabTransformer) for final classification. This hybrid

approach combined the interpretability of handcrafted radiomics
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features with the expressive power of deep learning-based features,

ultimately improving lesion classification accuracy, robustness,

and generalizability.
2.7 Evaluation metrics and experimental
setup

A rigorous evaluation framework was established to assess the

performance of the proposed detection and classification models. The

evaluation process included performance metrics for both detection

and classification, model training and hyperparameter tuning, and a

cross-validation strategy to ensure robustness and generalizability.

2.7.1 Performance metrics for detection and
classification

To evaluate the effectiveness of lesion detection and

classification, standard performance metrics were utilized to

ensure a comprehensive assessment of model accuracy and

reliability. For lesion detection, the performance of Swin

Transformer, YOLOv11, Faster R-CNN, and DETR was measured

using Mean Average Precision (mAP), which calculates the overall

detection accuracy across various Intersection over Union (IoU)

thresholds. Additionally, precision, recall, and F1-score were

employed to assess the accuracy of lesion localization and

classification. The IoU metric was specifically used to quantify the

overlap between the predicted bounding boxes and the ground

truth, ensuring precise lesion detection.

For classification tasks, the performance of machine learning

classifiers (XGBoost, Random Forest, CatBoost, TabNet, and

TabTransformer) as well as end-to-end deep learning models

(ResNet50, EfficientNet) was evaluated using multiple statistical

measures. Accuracy was computed to determine the proportion of

correctly classified samples. Recall (sensitivity) was analyzed to

evaluate the model’s ability to correctly identify positive cases.

Additionally, ROC-AUC (Receiver Operating Characteristic -

Area Under the Curve) was employed to assess the model’s ability

to distinguish between different lesion categories, providing insight

into classification robustness across multiple decision thresholds.

These metrics collectively ensured a rigorous evaluation of the

proposed detection and classification approaches.
2.8 Model training and hyperparameter
tuning

To optimize model performance, extensive hyperparameter

tuning was performed for both machine learning classifiers and

deep learning models, ensuring optimal accuracy and generalization.

For machine learning classifiers, hyperparameter tuning was

conducted using grid search and Bayesian optimization to identify

the best configurations for each model. Specifically, XGBoost was

tuned for learning rate (0.01–0.1), maximum depth (3–10), and the

number of estimators (100–500) to balance complexity and

performance. Random Forest was optimized by varying the number
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of trees (50–300) and maximum depth (None, 10, 20, 30) to enhance

ensemble learning efficiency. CatBoost, known for its ability to handle

categorical data, was fine-tuned with learning rates (0.01–0.1),

iterations (500–2000), and depth (6–12). For deep-learning-based

classifiers, such as TabNet and TabTransformer, tuning focused on

learning rate (0.001–0.01) and the number of attention steps (3–10) to

refine feature selection and improve interpretability.

For deep learning models, EfficientNet was fine-tuned by

freezing initial layers and modifying the fully connected layers for

cytology-specific classification. The models were trained using the

Adam optimizer with a learning rate of 1e-4, a batch size of 32, and

500 epochs with early stopping to prevent overfitting. To further

improve generalization, data augmentation techniques, including

rotation (± 20°), horizontal and vertical flipping, brightness

adjustment, and contrast normalization, were applied during

training. These optimizations ensured that the models were

robust, reducing overfitting and improving classification

performance across diverse cytology samples.
2.9 Cross-validation strategy

To ensure model robustness and mitigate overfitting, a five-fold

cross-validation strategy was employed for both lesion detection and

classification tasks. The dataset was randomly divided into five subsets,

where in each iteration, 80% of the dataset was used for training, while

the remaining 20% was reserved for validation. This cross-validation

process was repeated five times, ensuring that each subset served as a

test set once. By training and evaluating the model acrossmultiple data

partitions, this approach exposed the model to diverse data

distributions, enhancing its generalization ability to unseen samples.

Additionally, to further validate the model’s performance on external

data, an independent test set (APCData cervical cytology cells) was

used as an additional evaluation benchmark.
2.10 Interpretability and explainability

To enhance model interpretability, t-SNE visualization was

employed to understand feature distribution and importance. t-

SNE was used to project high-dimensional features into a 2D space,

allowing for a qualitative assessment of class separability and feature

clustering. This visualization provided insights into how well

radiomics and deep-learning-based features distinguished between

different lesion categories.
2.11 Computational resources and software

The experiments were conducted using high-performance

computing resources to efficiently process and analyze the cervical

cytology dataset. Model training and inference were performed on a

NVIDIA A100 GPU (40GB VRAM), integrated into a system with

an Intel Xeon Gold 6248R CPU (3.0 GHz, 24 cores) and 256GB

RAM. The deep learning models were implemented using
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TensorFlow 2.8 and PyTorch 1.12, while machine learning

classifiers were developed using Scikit-learn, XGBoost, CatBoost,

and LightGBM. Feature extraction and image processing tasks were

carried out using OpenCV, NumPy, and HistomicsTK for

radiomics analysis. Statistical analyses, including ICC calculations

and feature selection, were performed using SciPy, Statsmodels, and

Pandas. The t-SNE analyses were conducted using Matplotlib,

Seaborn, and Python library. All experiments were executed on

an Ubuntu 20.04 Linux operating system, ensuring a stable and

optimized computational environment.

To ensure full transparency and reproducibility, comprehensive

details of the implemented model architectures, hyperparameter

configurations, data preprocessing workflows, and validation

strategies are provided in the Supplementary Material

accompanying this article. Readers are encouraged to consult this

supplementary file for precise technical specifications and protocols,

which facilitate independent replication and extension of our work.
3 Results

3.1 Lesion detection performance

3.1.1 Detection accuracy of Swin Transformer
and YOLOv11

To evaluate lesion detection performance, Swin Transformer,

YOLOv11, Faster R-CNN, and DETR were assessed using a
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comprehensive set of evaluation metrics, including mean Average

Precision (mAP), Intersection over Union (IoU), precision, recall,

and F1-score across the training, validation, and external test sets.

The comparative results are presented in Figure 2, demonstrating

that the Swin Transformer consistently outperformed the other

models across all metrics, highlighting its superior lesion

localization accuracy and robustness. YOLOv11 followed closely,

offering competitive performance with efficient processing speed,

while Faster R-CNN and DETR showed moderate detection

capabilities, particularly under external testing conditions. This

evaluation provides a detailed performance landscape across

diverse detection paradigms, reinforcing the effectiveness of Swin

Transformer in complex cytological environments.

3.1.2 Comparison of IoU, Precision, Recall, and
mAP scores

The results demonstrate that the Swin Transformer consistently

outperformed the other detection models—YOLOv11, Faster R-

CNN, and DETR—across all evaluation metrics and datasets,

indicating its superior capability in lesion detection. Specifically,

Swin Transformer achieved the highest mAP scores: 0.962(± 0.012)

in training, 0.951 in validation, and 0.940 in external testing, with a

narrow variance that signifies stable training and robust

generalization. YOLOv11 followed with slightly lower mAP values

of 0.943(± 0.015), 0.930, and 0.915, respectively, showing good

performance but somewhat higher sensitivity to variations in

external datasets. Faster R-CNN and DETR showed further
FIGURE 2

Lesion detection performance of Swin Transformer and YOLOv11.
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reduced mAP performance (0.920±0.020 and 0.900±0.022 in

training, and 0.890 and 0.870 in external testing, respectively),

indicating a less effective ability to adapt to unseen data.

This trend was similarly observed in the IoU scores, which

assess the accuracy of bounding box predictions. Swin Transformer

demonstrated the strongest localization ability (IoU: 0.947 in

training, 0.935 in validation, 0.920 in testing), followed by

YOLOv11 (0.929, 0.915, 0.898), Faster R-CNN (0.900, 0.885,

0.870), and DETR (0.880, 0.865, 0.850). Notably, the performance

gap between training and testing remained smallest in Swin

Transformer, suggesting that it maintained localization precision

across diverse data conditions.

Precision and recall metrics further confirmed Swin

Transformer’s detection strength. It achieved the highest training

precision (0.971±0.011) and recall (0.955±0.013), underscoring its

ability to correctly identify lesion regions while minimizing false

positives and negatives. YOLOv11 exhibited slightly reduced

precision (0.950) and recall (0.932), followed by Faster R-CNN

(0.910 and 0.890) and DETR (0.890 and 0.870), both of which were

less reliable in capturing lesion boundaries, particularly under

external variations.

In terms of F1-score, which harmonizes precision and recall,

Swin Transformer again led with 0.963(± 0.009) in training and

0.939 in testing. YOLOv11 attained an F1-score of 0.941(± 0.011) in

training and 0.918 in testing, while Faster R-CNN and DETR scored

0.900 and 0.880 in training, and 0.875 and 0.853 in testing,

respectively. These results confirm the consistent superiority of

the Swin Transformer in delivering high detection accuracy,

minimal overfitting, and excellent generalizability across all

experimental conditions.

The learning dynamics of these models are illustrated in

Figures 3 and 4. Figure 3 presents the IoU curves over training

epochs, showing that Swin Transformer maintains higher and more
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stable IoU values compared to other models. YOLOv11 follows

closely, while Faster R-CNN and DETR exhibit more pronounced

variability and lower convergence. Figure 4 highlights the training

and validation loss trajectories, where Swin Transformer again

demonstrates minimal divergence, indicating a balanced learning

process. In contrast, DETR and Faster R-CNN show larger

discrepancies, reflecting greater susceptibility to overfitting and

less robust learning behavior.

Together, these findings establish Swin Transformer as the most

effective detection model in this study, offering a reliable foundation

for downstream classification in automated cervical cytology analysis.

Figures 5a, b present qualitative examples of lesion detection

results on cervical cytology images, comparing ground truth

annotations with predictions from Swin Transformer and

YOLOv11. The Swin Transformer model (a) demonstrates higher

alignment with ground truth, accurately localizing lesion regions

with well-defined bounding boxes while minimizing false positives

and false negatives. In contrast, YOLOv11 model (b) exhibits

slightly less precise lesion localization, particularly in cases with

overlapping cells or subtle morphological variations. These

qualitative results further support the superior performance of

Swin Transformer, which consistently provides more accurate

and reliable lesion detection in cervical cytology analysis.

Figures 6a, b illustrate similar qualitative comparisons for Faster

R-CNN and DETR, respectively. The Faster R-CNN model

(Figure 6a) shows reasonable alignment with ground truth,

effectively detecting larger lesions but occasionally missing smaller

or obscured abnormalities, particularly in cluttered regions. DETR

(Figure 6b), while capturing the global image context through its

transformer-based architecture, produces less constrained

bounding boxes and demonstrates reduced sensitivity in complex

or low-contrast areas. These findings align with the quantitative

results, confirming that while all models contribute useful insights,
FIGURE 3

IoU curves for training and validation across different models.
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Swin Transformer remains the most accurate and generalizable

detection framework within this study.

Figure 7 illustrates the feature reduction process applied to

radiomics and deep learning features extracted from lesion regions

detected by Swin Transformer, YOLOv11, Faster R-CNN, and

DETR. To ensure the reliability of extracted features across

varying imaging conditions, ICC analysis was first performed to

remove features with ICC < 0.75. Following this initial filtering,

feature selection techniques were employed to retain only the most

relevant features for classification.

Out of the 71 initial radiomics features, Swin Transformer

retained 57 features (80.3%) after ICC filtering, with 14 features

(19.7%) removed. YOLOv11 retained 54 features (76.1%) after

eliminating 17 features (23.9%). For Faster R-CNN, 21 radiomics

features (29.6%) were excluded, leaving 50 features (70.4%), while

DETR retained 47 features (66.2%) after the removal of 24

features (33.8%).

For deep learning features extracted via EfficientNet (1,792

features per image), Swin Transformer retained 1,433 features

(80%), and YOLOv11 retained 1,344 features (75%) after ICC

filtering. Similarly, Faster R-CNN preserved 1,280 features

(71.4%), and DETR retained 1,220 features (68.1%) after

discarding lower-consistency features.

Subsequent feature selection further refined the feature sets. The

final selected features included 42 radiomics and 35 deep learning

features for Swin Transformer, 38 radiomics and 30 deep learning

features for YOLOv11, 34 radiomics and 28 deep learning features

for Faster R-CNN, and 30 radiomics and 25 deep learning features

for DETR. These optimized feature subsets were then used as inputs

for machine learning classifiers (XGBoost, Random Forest,

CatBoost, TabNet, and TabTransformer) to classify cervical

cytology lesions. The staged reduction ensured a balance between

class ificat ion accuracy, computat ional efficiency, and

model interpretability.
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3.2 Classification performance

3.2.1 Machine learning classifiers
In reviewing the classification performance across different

feature selection methods and detection frameworks, several

important trends emerge. The analysis of Figure 8, which

examines radiomics features using Swin Transformer–based

detection, reveals that LASSO-based approaches tend to

outperform those selected using ANOVA or MI, particularly

when paired with ensemble models like TabTransformer; for

instance, under LASSO, the TabTransformer model achieves the

highest test accuracy (86.73%), AUC (88.41%), and recall (85.92%),

indicating a strong ability to generalize. In contrast, Figure 9, which

utilizes YOLOv11–based detection for radiomics features, shows a

moderate drop in performance with test accuracy, AUC, and recall

values approximately 2–3 percentage points lower than those

observed in the Swin Transformer–based setup, underscoring the

significant impact of the detection algorithm on the final

classification performance.

Furthermore, the use of EfficientNet deep features, as presented

in Figure 10, leads to notable improvements over radiomics features

alone; for example, under LASSO, the TabTransformer model

demonstrates a test accuracy near 90.47%, test AUC around

91.13%, and test recall of 91.32%, which suggests that deep

features capture more discriminative information. However,

similar to the radiomics-only scenario, when the detection

framework is switched to YOLOv11 (Figure 11), there is again a

consistent reduction in performance compared to the Swin

Transformer–based approach, highlighting the sensitivity of deep

feature performance to the underlying detection method.

The classification results obtained from the combination of

radiomics and EfficientNet-based deep features extracted using lesion

regions detected by Faster R-CNN and DETR indicate moderate but

consistent performance across different feature selection and
FIGURE 4

Loss curves for training and validation across different models.
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classification strategies (Figure 12). As shown in the results, all

evaluation metrics—including accuracy, AUC, and recall—remained

within the range of 80% to 90%, with no configuration exceeding the

90% threshold. This performance suggests that while the combination

of Faster R-CNN and DETR enables reasonable lesion localization and

feature extraction, it does not achieve the same level of discriminative

power as Swin Transformer or YOLOv11-based pipelines. The

relatively lower feature quality and stability may be attributed to less

precise boundary detection or weaker spatial encoding in the extracted

regions, which ultimately impacts the effectiveness of downstream

classifiers. Nonetheless, the results demonstrate that these models can

still support viable classification performance, particularly in resource-

constrained or ensemble-based diagnostic settings where

interpretability or model diversity is prioritized.

Most strikingly, Figure 13 illustrates that combining radiomics

and deep features yields a synergistic effect that substantially
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enhances classification outcomes; for instance, the LASSO with

TabTransformer configuration in this combined setup achieves

exceptional results, with training accuracy reaching 96.11% and

test accuracy at 94.62%, training AUC of 97.42% and test AUC of

95.88%, along with test recall of 94.12%. These findings indicate that

not only is the choice of feature selection method—particularly

LASSO—critical, but also that the integration of complementary

feature types (radiomics and deep features) and the employment of

an advanced detection framework like the Swin Transformer can

significantly improve classification performance, offering valuable

insights for the development of more robust systems in complex

tasks such as medical imaging.

To ensure comprehensive statistical validation, we

complemented cross-validation metrics and McNemar’s test with

additional analyses. Bootstrapped 95% confidence intervals were

calculated for all primary test metrics, yielding robust,
FIGURE 5

Qualitative lesion detection results using Swin Transformer (a) and YOLOv11 (b).
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nonparametric measures of performance variability (Table X).

Comparative model performance was formally assessed using

Delong’s test, confirming that the TabTransformer’s superior

AUC was statistically significant (p<0.01) compared to all other

classifiers. Additionally, Cohen’s kappa coefficients were computed

between the predictions of leading classifiers, with values

consistently above 0.85, indicating strong inter-model agreement

and classification reliability. Collectively, these advanced statistical

analyses further confirm the stability, reproducibility, and clinical

relevance of our hybrid feature framework for cervical

cytology classification.

Figures 14 and 15 depict the Receiver Operating Characteristic

(ROC) curves for the training and test sets, respectively, comparing

the performance of Swin Transformer and YOLOv11-based feature

extraction approaches. Figure 12 presents the ROC curves for

models trained on Swin Transformer- and YOLOv11-extracted
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features, while Figure 13 illustrates their performance on the test

set. Across both figures, the Swin Transformer-based models

consistently achieved higher AUC values, demonstrating superior

feature extraction and classification capabilities. Additionally, the

close alignment between training and test AUC scores indicates

strong generalizability and minimal overfitting across different

detection approaches.

3.2.2 End-to-end deep learning classification
In addition to feature-based classification, an end-to-end deep

learning approach was implemented using EfficientNet, allowing the

model to directly learn relevant feature representations from cervical

cytology images without explicit feature extraction. EfficientNet,

known for its optimized architecture balancing depth, width, and

resolution, was fine-tuned to classify lesion categories into six classes:

NILM, ASC-US, ASC-H, LSIL, HSIL, and SCC.
FIGURE 6

Qualitative lesion detection results using Faster R-CNN (a) and DETR (b). Faster R-CNN.
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FIGURE 7

Feature reduction pipeline for radiomics and deep learning features across four detection models (Swin Transformer, YOLOv11, Faster R-CNN, and
DETR).
FIGURE 8

Classification performance using radiomics features (Swin Transformer-based detection).
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FIGURE 10

Classification performance using EfficientNet deep features (Swin Transformer-based detection).
FIGURE 9

Classification performance using radiomics features (YOLOv11-based detection).
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FIGURE 12

Classification performance using combined radiomics and EfficientNet deep features (Faster R-CNN and DETR-based detection).
FIGURE 11

Classification performance using EfficientNet deep features (YOLOv11-based detection).
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The model was trained using a cross-entropy loss function and

optimized with the Adam optimizer with a learning rate of 1e-4.

Training was performed over 500 epochs, employing early stopping

to prevent overfitting. The classification results show that

EfficientNet achieved a test accuracy of about 85%, with an AUC

of 84.7% and a recall of 84.1%. While this approach provided a solid

baseline, its performance was slightly lower than the hybrid feature
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fusion method, which combined both radiomics and deep-learning-

based features. However, the end-to-end model had the advantage

of being fully automated, removing the need for manual feature

selection and engineering. These results suggest that while

EfficientNet is effective for direct classification, integrating

handcrafted radiomics features with deep features can further

improve model accuracy and robustness.
FIGURE 14

ROC curves for training sets using Swin Transformer and YOLOv11-based feature extraction.
FIGURE 13

Classification performance using combined radiomics and EfficientNet deep features (Swin Transformer and YOLOv11-based detection).
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Figure 16 illustrates the accuracy and loss curves over 500

training epochs for the EfficientNet model. The accuracy curve

shows a steady improvement, reaching approximately 85% test

accuracy, while the loss curve demonstrates a consistent decrease,

indicating effective model convergence. The smooth trend in both

curves suggests that the training process was stable, with no signs of

overfitting or underfitting, further supporting the robustness and

generalizability of the end-to-end deep learning approach.

3.2.3 Ablation study: effect of detection module
on classification performance

To evaluate the contribution of the lesion detection module to

the overall classification framework, we conducted an ablation

experiment comparing two distinct approaches: (i) the full

“detection + classification” pipeline and (ii) a direct whole-image

classification model.

In the full pipeline, lesion regions were first localized using the

Swin Transformer, and features were subsequently extracted for

classification using the hybrid fusion strategy. This approach

yielded a test accuracy of 94.62%, an AUC of 95.88%, and a recall

of 94.12%, as described in Section 3.2.1. For comparison, we

implemented an end-to-end EfficientNet model trained to classify

entire cytology images without prior lesion detection. As detailed in

Section 3.2.2, this model achieved a lower test accuracy of 85%,

AUC of 84.7%, and recall of 84.1%.

This substantial performance gap (approximately 9.6% in

accuracy and 11.8% in AUC) directly highlights the critical role

of the lesion detection module. By isolating diagnostically relevant

regions, the detection stage filters irrelevant background and

enhances the focus of downstream feature extraction, thereby

improving classification precision and robustness. These results

confirm that the detection module is not merely auxiliary but a

foundational component for accurate cytological diagnosis in

our framework.
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3.2.4 Ablation study: effectiveness of hybrid
feature fusion

To evaluate the individual and combined contributions of

radiomics and deep learning–based features to classification

performance, we conducted an ablation analysis across three

feature configurations: (i) radiomics-only, (ii) deep features only,

and (iii) hybrid fusion (radiomics + deep features).

The classification performance was assessed using identical

machine learning models and detection pipelines, with results

summarized in Figure 8 through 12. Radiomics-only features

(Figure 8) resulted in moderate classification performance, with

the best test accuracy reaching 86.73% and AUC 88.41% using

TabTransformer. Deep features alone (Figure 10) improved

performance further, achieving up to 90.47% accuracy and

91.13% AUC under the same classifier.

However, the highest performance was obtained using the

hybrid feature fusion strategy (Figure 12), which integrated both

radiomics and deep features. In this configuration, the

TabTransformer classifier achieved a test accuracy of 94.62%,

AUC of 95.88%, and recall of 94.12%. These improvements

demonstrate the complementary nature of the two feature types:

radiomics provides interpretable, handcrafted morphological and

texture descriptors, while deep features capture high-level semantic

patterns that enhance generalization. This ablation study confirms

that the fusion of handcrafted and learned representations

significantly enhances classification robustness and accuracy in

cervical cytology analysis, justifying the central role of hybrid

feature fusion in the proposed framework.

When combining radiomics and EfficientNet-based features

extracted from lesion regions detected by Faster R-CNN and

DETR, classification performance remained moderate but

consistently below that of Swin Transformer and YOLOv11

pipelines. As illustrated in Figure 12, all evaluation metrics—

including accuracy, AUC, and recall—remained between 80% and
frontiersin.or
FIGURE 15

ROC curves for test sets using Swin Transformer and YOLOv11-based feature extraction.
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90%, with no configuration exceeding the 90% threshold. This

reduced performance is likely due to less precise lesion boundary

localization and weaker spatial encoding by Faster R-CNN and

DETR, which in turn limits the discriminative capacity of the

extracted features. These findings reinforce the importance of

accurate detection as a prerequisite for effective feature fusion

and classification.
3.3 External validation

To further evaluate the generalizability and robustness of the

proposed framework, an external dataset (APCData cervical

cytology cells) was used as an independent test set. The best-

performing model, which combined radiomics and EfficientNet

deep features, was evaluated on this external dataset. The
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classification results demonstrated a test accuracy of 92.8%, with

an AUC of 95.1% and a recall of 93.4%. These values were slightly

lower than those obtained on the primary test set, indicating a small

performance drop due to domain variability but still confirming the

model’s strong generalization ability. The consistent performance

across both datasets suggests that the hybrid feature fusion

approach enhances classification robustness, making it well-suited

for real-world cytological analysis.

Figure 17 displays the t-SNE projections of cervical cytology

samples from our study. The left panels show the overlapping

clusters in the original high-dimensional space, while the right

panels illustrate the well-separated clusters after t-SNE

transformation. Notably, approximately 95% of the samples are

correctly classified—correct predictions are indicated by circle

markers and misclassifications by crosses. This visualization

underscores the discriminative power of our best model and
FIGURE 16

Accuracy and loss curves over 500 epochs for EfficientNet training.
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highlights how the fusion of radiomics, and deep features

significantly enhances the separation of six diagnostic classes in

cervical cytology.
4 Discussion

Cervical cancer remains a significant global health concern, but

early detection through routine screening has significantly reduced

mortality rates. However, manual cytology analysis remains time-

consuming, labor-intensive, and subject to inter-observer variability.

In this study, we developed an automated cervical cytology lesion

detection and classification framework, integrating deep learning-

based lesion detection models (Swin Transformer, YOLOv11) and a

hybrid feature fusion approach combining radiomics and deep

features extracted from EfficientNet. Our results demonstrated that

Swin Transformer outperformed YOLOv11 in lesion detection,

achieving a mAP of 0.962, and that hybrid feature fusion

significantly enhanced classification performance, with

TabTransformer achieving a test accuracy of 94.62%, AUC of

95.88%, and recall of 94.12%. External validation on the APCData

dataset further confirmed the generalizability of our approach,

maintaining a test accuracy of 92.8%. These findings highlight the

potential of AI-driven cytology analysis in enhancing screening

accuracy and efficiency while reducing diagnostic subjectivity.
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Several studies have explored deep learning-based cervical

cytology analysis, with a focus on single-cell classification, WSI

analysis, and ensemble learning strategies. However, our study

introduces several key advancements that distinguish it from prior

research. First, our approach integrates end-to-end lesion detection

and classification, eliminating the need for manual feature extraction

or single-cell segmentation. Unlike studies that focus on classifying

individual cells, our method detects and classifies lesions directly from

whole-slide cytology images, providing a more clinically relevant and

scalable solution. Second, we employ a hybrid feature fusion strategy,

combining both deep learning-based features from EfficientNet and

handcrafted radiomics features. This integration leverages the

complementary strengths of both feature types—radiomics captures

detailed morphological characteristics, while deep learning-based

features provide high-level contextual representations. By fusing

these feature sets, our model achieves higher classification accuracy

and robustness compared to models that rely on a single feature

extraction approach. Finally, our study emphasizes comprehensive

validation across multiple centers, ensuring that the model performs

well on diverse imaging conditions and cytology samples. Unlike prior

studies that evaluate models on limited datasets, we further validated

our framework on an independent external dataset (APCData). This

step was crucial in confirming the generalizability of our approach,

demonstrating its applicability to real-world clinical settings beyond

the training environment.
FIGURE 17

t-SNE visualization of cervical cytology classification using LASSO TabTransformer with combined radiomics, deep, and genetic features.
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The study by Ke et al. (46) proposed a deep-learning-based

diagnostic system that localized and graded squamous cell

abnormalities using 130 whole-slide images (WSIs). Their system

achieved 94.5% accuracy in binary classification (normal vs.

abnormal) with AUC values above 85% for each epithelial

abnormality subtype. Our approach extends this by incorporating

automated lesion detection before classification, resulting in higher

classification accuracy (94.62%) and AUC (95.88%), suggesting that

lesion detection significantly enhances diagnostic precision.

Additionally, our study evaluated multi-class classification beyond

binary differentiation, addressing six diagnostic categories (NILM,

ASC-US, ASC-H, LSIL, HSIL, SCC), whereas Ke et al. (2021)

primarily focused on binary classification. Similarly, Kanavati

et al. (47) investigated WSI classification using deep learning on

liquid-based cytology (LBC) specimens and achieved AUCs

between 0.89–0.96. While their results are promising, their

method classified WSIs as neoplastic or non-neoplastic without

localizing lesion regions. Our study improves on this by

incorporating precise lesion detection, which enhances

interpretability and model explainability. Furthermore, our hybrid

feature fusion approach yielded higher AUC values (95.88%) than

their deep-learning-only approach, reinforcing the advantage of

combining radiomics and deep features.

The study by Alsalatie et al. (48) proposed an ensemble deep

learning model that classified WSIs into four diagnostic classes with

up to 99.6% accuracy. While this represents a high classification

rate, their model was trained on limited datasets, and the

generalizability to external test sets was not explored. Our study,

in contrast, included multi-center training data and external

validation, demonstrating strong model robustness and

generalizability across different cytology imaging conditions.

Additionally, our lesion detection module (Swin Transformer)

provides a localization capability absent in their whole-image

classification approach, which enhances clinical usability. Feature

extraction plays a crucial role in cytology classification. Rodrıǵuez

et al. (49) explored single-cell segmentation and deep learning for

Pap smears and LBC samples, showing that LBC images resulted in

significantly better classification accuracy (0.98) compared to Pap

smear datasets (0.87) due to better cell morphology preservation.

These findings align with our study, where high-quality image

acquisition and multi-feature integration led to improved

classification accuracy. However, unlike their approach, which

focuses on single-cell segmentation, our framework considers

whole-image lesion detection and feature extraction, allowing for

scalable AI-based cytology analysis.

The CytoBrain system Chen et al. (50) developed an automated

cervical cell classification system using CompactVGG,

demonstrating strong performance on a dataset of 198,952

cervical cell images. Their approach, however, primarily focused

on cell-based classification, whereas our method integrates lesion-

level detection and classification, making it more aligned with real-

world cytology workflows where pathologists analyze larger image

regions rather than individual cells. Similarly, Fang et al. (51)

proposed DeepCELL, a convolutional neural network (CNN)

designed for cervical cytology image classification, achieving
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95.63% accuracy on SIPaKMeD and Herlev datasets. Their

approach utilized multi-scale feature learning, but our study

advances this by incorporating dimensionality reduction (LASSO,

ANOVA, MI) before classification, ensuring higher feature

interpretability and reduced overfitting. Our hybrid approach

with feature fusion also resulted in higher recall (94.12%) than

DeepCELL, which is crucial for reducing false negatives in

clinical applications.

Beyond algorithmic performance, the proposed framework

holds significant clinical implications. By providing automated

lesion localization and accurate multi-class classification, the

system can assist cytopathologists in prioritizing high-risk cases,

reducing diagnostic workload, and improving consistency across

observers. This is particularly beneficial in low-resource settings

where expert cytologists are scarce or in high-throughput

laboratories handling large volumes of screening samples.

Furthermore, the integration of both interpretable radiomics

features and high-dimensional deep features supports

transparency in decision-making, which is crucial for clinical

adoption. The modular design of the framework allows for

seamless integration with existing digital pathology systems,

paving the way for real-time, AI-assisted cervical cancer screening

and triage in routine practice.
4.1 Clinical implications and future
directions

Our study demonstrates that hybrid feature fusion, when

combined with Swin Transformer-based lesion detection,

significantly improves cervical cytology classification accuracy and

robustness. Unlike existing studies that rely on single-cell

segmentation or whole-image classification, our end-to-end

framework integrates lesion detection, radiomics, and deep

learning-based features, providing a clinically interpretable and

scalable solution. Domain Adaptation and Generalizability: While

external validation on APCData demonstrated strong model

performance (92.8% accuracy, 95.1% AUC), further validation on

larger, diverse datasets is necessary to ensure broad applicability.

Real-Time Deployment: While our model achieves high accuracy,

its computational efficiency must be optimized for real-time cervical

cancer screening applications in clinical laboratories.
5 Conclusion

This study presents a comprehensive AI-driven framework for

automated cervical cytology analysis, integrating Swin

Transformer-based lesion detection, hybrid feature fusion, and

deep learning-based classification. Compared to prior studies, our

approach offers higher classification accuracy, improved lesion

localization, and better generalizability across diverse datasets.

The results suggest that combining radiomics and deep features

significantly enhances model robustness, making it a promising tool

for AI-assisted cervical cancer screening. Future efforts should focus
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on further external validation, model explainability, and

deployment strategies to facilitate clinical integration and real-

world impact.
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