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RNAmethylation is a type of reversible chemical modification in epitranscriptomics

that influences gene expression by dynamically regulating RNA functions. RNA

methylation comprises N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-

methylguanosine (m7G), N1-methyladenosine (m1A), and 3-methylcytosine (m3C)

modifications. These are dynamically controlled by a tripartite enzymatic system:

methyltransferases (“writers”) add methyl groups, demethylases (“erasers”) remove

them, and RNA-binding proteins (“readers”) recognize and interpret the

modifications to mediate downstream biological effects. Extensive research has

shown the importance of RNA methylation in the onset and progression of cancer.

RNA methylation contributes to radioresistance in cancer cells through various

mechanisms, affecting therapeutic outcomes. To date, the precise functions of RNA

methylation in cancer radioresistance remain unclear. This review summarizes

recent advances in m6A, m5C, m7G, and m1A methylation in cancer

radioresistance regulation and discusses the clinical potential of precision

therapeutic strategies targeting these methylation modifications.
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1 Introduction

Cancer represents a major challenge to public health, with an overall 19.74 million new

diagnoses reported worldwide in 2022 alone. The International Agency for Research on Cancer

(IARC) projects a 77% increase in annual global cancer cases by 2050, reaching approximately 35

million cases (1). Based on the updated cancer epidemiology statistics from the United States, the

projected incidence of newly confirmed malignant neoplasms in 2025 is 2,041,910 cases, with an

estimated 618,120 deaths attributable to malignancies (2).Current cancer treatment options

include surgery, radiotherapy, chemotherapy, and novel targeted therapies (3). Among these,

radiotherapy is crucial in cancer treatment, providing clinical benefits to over 50% of patients (4).

Radiotherapy primarily involves inducing DNA double-strand breaks (DSBs) to damage cancer

cells (5). However, radioresistance, characterized by cancer cells’ resistance to radiotherapy,

reduces therapeutic efficacy and can lead to treatment failure (6), posing a significant challenge in
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managing malignant tumors. Notably, in pharmacotherapy, resistance

to chemotherapy, targeted therapy, and immunotherapy has been

established as closely associated with RNA modifications (7).

Simultaneously, the mechanisms underlying radioresistance are

complex, involving multiple biological processes. Research has

identified several key factors contributing to the development of

radioresistance in cancer cells, including improved DNA damage

repair capacity, alterations in the tumor microenvironment (TME),

activation of epithelial-mesenchymal transition (EMT), the presence of

cancer stem cells (CSCs), regulation of autophagy, involvement of

transcription factors such as nuclear factor-kappa B (NF-kB), signal
transducer and activator of transcription 3 (STAT3), nuclear factor

erythroid 2-related factor 2 (NRF2), and hypoxia-inducible factor 1

(HIF-1), as well as epitranscriptomics (8, 9). In recent years, RNA

methylation, an important reversible chemical modification in the field

of epitranscriptomics, has been closely associated with cancer cell

radioresistance. RNA methylation affects cancer cell sensitivity to

radiotherapy by regulating gene expression, RNA stability, and

translation efficiency.

RNA methylation serves as a fundamental regulatory mechanism

within the field of epitranscriptomics. It refers to the reversible chemical

modifications of RNA nucleotides that dynamically regulate gene

expression without altering the RNA sequence. This process

encompasses several types of methylation, including N6-

methyladenosine (m6A) methylation, 5-methylcytosine (m5C)

methylation, N7-methylguanosine (m7G) methylation, N1-

methyladenosine (m1A) methylation, and 3-methylcytosine (m3C)

methylation. These modifications are found in various types of RNA,

including mRNA, tRNA, and rRNA (10). RNA methylation regulates

gene expression and has been linked to tumorigenesis and metastasis, as
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well as resistance to chemotherapy and radiotherapy. In cancer, RNA

methylation is controlled primarily bymethyltransferases, demethylases,

and binding proteins. Methyltransferases transfer methyl groups to

specific bases on the RNA, thus acting as “writers”. Demethylases are

responsible for removing methyl groups, making RNA methylation

dynamic and reversible, and thus serve as “erasers”. Binding proteins

recognize and interact with methylated RNA, acting as “readers”,

affecting RNA metabolism and function (10, 11). Together, these

three components regulate RNA methylation status.

This review summarizes recent advances in m6A, m5C, m7G,

and m1A methylation in cancer radioresistance (Figure 1) and

discusses the clinical potential of targeted therapeutic strategies

aimed at these methylation modifications (Table 1).
2 m6A methylation and radiotherapy
resistance

m6A methylation is a well-studied modification controlled by a

tripartite system of “writers,” “erasers,” and “readers.” The “writers”

are represented by methyltransferase-like 3 (METTL3) (38),

METTL14 (39), METTL16 (40), Wilms tumor 1-associated

protein (WTAP) (41), and VIRMA (42). The “erasers” include fat

mass and obesity-associated protein (FTO) (43) and ALKB

homolog 5 (ALKBH5) (44). The “readers” include YTHDC1 (45),

YTHDC2 (46), YTHDF1 (47), YTHDF2 (48), and the

heterogeneous nuclear ribonucleoprotein (HNRNP) family (49)

(Figure 2). These m6A methylation regulators can promote or

suppress cancer initiation and progression (50–52) and are also

closely associated with cancer radioresistance (Figure 3).
FIGURE 1

Recent advances in RNA methylation and cancer radioresistance.
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TABLE 1 The regulatory role of RNA methylation (including m6A, m5C, m7G and m1A) in radioresistance across multiple cancer types.

Methylation Function Methylation module Cancer Target/Pathway Mechanism Cite

TTL3 promotes the self-renewal of glioma stem cells by
ulating LINC00839 to activate the Wnt/b-catenin signaling
hway, leading to radiotherapy resistance in GBM.

(12)

TTL3 activates the Wnt/b-catenin signaling pathway by
ulating the SALL4 target, promoting the renewal of tumor stem
s, leading to radiotherapy resistance in OSCC.

(13)

TTL3 regulates the resistance of NSCLC to carbon ion
iotherapy by modulating H2AX expression and influencing
aling pathways such as PI3K/AKT and MAPK.

(14)

TTL3 may confer radiotherapy resistance by influencing the
ression of DNA damage repair genes, as well as through
chanisms such as the MAPK cascade, ubiquitin-dependent
cesses, and RNA splicing pathways.

(15)

TTL3 confers radiotherapy resistance in ESCC cells by
egulating the expression of LNCAROD, inhibiting PARP1
radation, and enhancing DNA double-strand break
air capacity.

(16)

TTL3-mediated m6A methylation can lead to increased
ression of KIF15 in NPC cells, and the elevated expression of
15 is associated with radiotherapy resistance. Inhibition of
15 may alleviate radiotherapy resistance in NPC.

(17)

TTL3 regulates the expression of the circCUX1 gene, and the
pression of circCUX1 expression reduces the release of
ammatory factors, leading to radiotherapy resistance.

(18)

AP downregulates the expression of Bcl-2 in BC by mediating
A modification of NRP1, promoting stem cell-like properties
enhancing radiotherapy resistance in BC cells.

(19)

erexpression of WTAP enhances radiotherapy resistance in GC
s by accelerating TGF-b-induced EMT.

(20)

TTL14 enhances the stem cell-like properties of cancer cells by
moting the maturation of pri-miR-99a and stabilizing miR-99a-
thereby conferring radioresistance to ESCC cells.

(21)

T3-mediated METTL14 enhances cellular susceptibility to
optosis. Depletion of PRMT3 suppresses resistance to
iotherapy by promoting ferroptosis in EC cells.

(22)

HDC2 promotes the translation of IGF1R, activating the PI3K-
T/S6 signaling pathway, thereby conferring resistance
adiotherapy.

(23)
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TABLE 1 Continued

Methylation Function Methylation module Cancer Target/Pathway Mechanism Cite

YTHDF3 promotes the translation of RAD51D to mediate HNF1-a
regulation in CC radiotherapy resistance. Depletion of HNF1-a
reduces, while its overexpression enhances, the resistance of CC
cells to radiotherapy both in vitro and in vivo.

(24)

FTO promotes the expression of the deubiquitinating enzyme
OTUB1, a member of the OUT domain family, thereby
suppressing radiation-induced ferroptosis and ultimately conferring
resistance to radiotherapy in NPC.

(25)
(26)

FTO regulates the expression of b-catenin, thereby enhancing
resistance to chemoradiotherapy both in vitro and in vivo.

(27)

ALKBH5 amplifies the characteristics of liver cancer stem cells by
mediating the expression of SOX4 and activating the SHH
signaling pathway, thereby conferring resistance to radiotherapy.

(28,
29)

TRDMT1 interacts with FMRP to promote transcription-coupled
homologous recombination through the TRDMT1–m5C-RAD52-
RAD51 axis. Loss of FMRP and TRDMT1 increases the sensitivity
of BC cells to radiation.

(30,
31)

Increased activity of NSUN2 enhances the expression of STAT1
cis-eQTL, thereby promoting resistance to radiotherapy in
ESCC cells.

(32)

Elevated expression of NSUN6 promotes resistance to radiotherapy
in CC by activating the NSUN6/ALYREF-m5C-NDRG1 pathway.

(33)

FMRP interacts with TET1 to facilitate the DNA damage repair
process, thereby promoting resistance to radiotherapy in BC cells.

(34)
(31)

ALYREF binds to NDRG1 and participates in the NSUN6/
ALYREF-m5C-NDRG1 pathway, promoting resistance to
radiotherapy in CC.

(33)

METTL1 selectively regulates the translation of DNA-PKcs or
DNA ligase IV, enhancing the efficiency of DSB repair and
conferring resistance to ionizing radiation in HCC.

(35)

m1A methylation may influence immune cell infiltration and
function within the tumor microenvironment, thereby affecting
sensitivity to radiotherapy.

(36)

m1A methylation downregulates the MYC/PD-L1 signaling
pathway, thereby influencing the efficacy of radiotherapy.

(37)
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FIGURE 2

m6A RNA methylation is a dynamic and reversible epigenetic modification. Its regulation is primarily mediated by three key classes of proteins:
“writers”, “erasers”, and” readers”. Through the coordinated actions of these proteins, m6A dynamically modulates mRNA and cellular functions,
playing a pivotal role in cancer initiation, progression, and radiation resistance.
FIGURE 3

The role of m6A RNA modification in cancer radiotherapy resistance. m6A RNA modification is a dynamic and reversible process, and its associated
proteins are implicated in the development of radiotherapy resistance in various cancers. Regulatory factors, known as “writers”, include METTL3,
WTAP and METTL14; ’readers’ include YTHDC2 and YTHDF3; and ‘erasers’ include FTO and ALKBH5.
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2.1 METTL3

METTL3, one of the methyltransferases responsible for m6A

methylation, has been shown to potentially contribute to cancer

radioresistance by improving DNA repair capacity in malignant

cells, promoting CSCs generation, and inducing tumor

cell autophagy.

2.1.1 Glioblastoma
METTL3 contributes to radioresistance in GBM by enhancing

g l ioma s t em ce l l (GSC) genera t ion (12 , 53 ) . RNA

immunoprecipitation (RIP) assays identified SOX2 as an

authentic m6A substrate of METTL3. METTL3-mediated m6A

modification stabilizes SOX2 mRNA, thereby maintaining the

stemness properties of glioma stem cells (GSCs) and consequently

driving radioresistance (53). Activation of the Wnt/b-catenin axis is

closely associated with glioblastoma stem-like cells (GBM-SCs)

formation (54). RNA-seq and m6A-seq analyses identified

LINC00839, a long non-coding RNA (lncRNA), as a downstream

target of METTL3. Further studies revealed that LINC00839

activates the Wnt/b-catenin signaling pathway by interacting with

its key components, therefore supporting GSC self-renewal and

promoting radioresistance in cancer cells (12).

2.1.2 Oral squamous cell carcinoma
METTL3 regulates transcriptional targets, including SALL4.

The transcriptional activation of SALL4 promotes b-catenin
nuclear translocation and upregulates downstream target gene

expression after radiotherapy, activating the Wnt/b-catenin
signaling pathway (13). In OSCC, this pathway activation

maintains CSC self-renewal and stemness and impairs DNA

damage repair, exacerbating radioresistance in cancer cells (13).

2.1.3 Lung cancer
METTL3-mediated m6A modifications of mRNA are closely

linked to carbon ion radiotherapy resistance in Non-Small Cell

Lung Cancer(NSCLC). METTL3 is upregulated in NSCLC, and its

knockout enhances cellular sensitivity to radiotherapy. RNA-seq

and m6A-seq analyses indicated that METTL3 regulates the

expression of histone H2A family member X (H2AX) through

m6A modification, affecting the PI3K/AKT and mitogen-activated

protein kinase (MAPK) axes, which contribute to NSCLC resistance

to carbon ion radiotherapy (14). Furthermore, recent investigations

indicate that METTL3 overexpression promotes colony formation

and proliferation in bystander cells of irradiated lung cancer,

suppresses micronucleus formation kinetics, and attenuates DNA

damage by regulating inflammatory responses (55). This suggests

that reduced DNA damage may contribute to radiation resistance

in LC.
2.1.4 Pancreatic ductal adenocarcinoma
Studies have shown that METTL3 significantly increases

radioresistance in PDAC cells by regulating m6A RNA

modifications. Under low-dose irradiation, METTL3-knockdown
Frontiers in Oncology 06
cells exhibit increased radiosensitivity, suggesting that METTL3

may contr ibute to low-dose radiotherapy resis tance .

Mechanistically, METTL3 promotes radioresistance in PDAC by

activating the MAPK cascade and processes involving ubiquitin and

RNA splicing, which improves DNA damage repair. However, the

precise mechanisms remain unclear and require further

investigation (15). In PDAC, insulin-like growth factor 2 mRNA-

binding protein 2 (IGF2BP2) upregulates the expression of polo-

like kinase 1 (PLK1) by binding to m6A sites on PLK1 mRNA.

Meanwhile, METTL3 maintains PLK1 expression through m6A

methylation, thereby regulating the PDAC cell cycle. Disruption of

the METTL3-IGF2BP2-PLK1 axis (for instance, through

methylation inhibition) induces replication stress-induced cell

death (56), presenting a novel therapeutic strategy to overcome

radioresistance in PDAC.

2.1.5 Esophageal squamous cell carcinoma
ESCC contributes to radioresistance by affecting DNA

recombination repair and signaling pathway LNCAROD has been

identified as a METTL3-mediated lncRNA. METTL3 significantly

upregulates LNCAROD expression through m6A methylation.

LNCAROD promotes the interaction between poly(ADP-ribose)

polymerase 1 (PARP1) and nucleophosmin 1 (NPM1), preventing

ubiquitin-proteasome-mediated degradation of PARP1. PARP1 is

associated with DNA repair and facilitates the repair of DNA DSBs

in ESCC, thus increasing ESCC radioresistance (16). Furthermore,

METTL3 enhances radiosensitivity in ESCC through the m6A

modification of circular CREBBP (circCREBBP). Mechanistically,

METTL3-mediated m6A methylation of circCREBBP promotes its

competitive binding with IGF2BP3, thereby inhibiting IGF2BP3-

mediated stabilization of the oncogene MYC mRNA, which leads to

the downregulation of MYC expression (57). Both in vitro and in

vivo experiments confirm that the METTL3/circCREBBP/

IGF2BP3/MYC axis reverses radioresistance. Genetic knockdown

of circCREBBP significantly reduces MYC instability, enhances

ESCC cell survival, and promotes radioresistance. Conversely,

activation of this axis serves as a key therapeutic target for

radiosensitization (57). Additionally, Ma et al. discovered that

METTL3 catalytically elevates m6A modification levels in the 3’

UTR of SOCS6 mRNA, consequently inhibiting SOCS6 gene

expression and blocking ferroptosis, which ultimately contributes

to radioresistance in ESCC (58).

2.1.6 Nasopharyngeal carcinoma
METTL3 serves as a master regulator of radioresistance in NPC,

driving therapeutic resistance through three independent pathways.

Its downstream targets—KIF15, the tumor suppressor BRD7, and

SLC7A11—constitute a critical intervention network (17, 37, 59). Li

et al. discovered that METTL3-mediated m6A methylation

upregulates KIF15 expression in NPC cells, and this KIF15

overexpression contributes to radioresistance. Further studies

demonstrate that inhibiting KIF15 expression alleviates NPC

radioresistance by suppressing STAT3 activation and promoting

autophagy (17). In parallel, the tumor suppressor BRD7

radiosensitizes NPC by disrupting USP5-METTL3 binding, which
frontiersin.org
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reduces METTL3 stability and inhibits BRCA1/RAD51-mediated

DNA damage repair. Critically, clinical evidence confirms that high

BRD7 and low METTL3 expression predict radiosensitivity and a

favorable prognosis (37). Additionally, METTL3 stabilizes

SLC7A11 mRNA via the m6A-IGF2BP2 axis, thereby driving

NPC radioresistance through the suppression of ferroptosis.

Mechanistically, METTL3-dependent SLC7A11 stabilization

through this axis inhibits ferroptosis to confer radioresistance,

whereas SLC7A11 knockdown or combined Erastin/radiotherapy

reverses this effect (59).

2.1.7 Hypopharyngeal squamous cell carcinoma
CircCUX1, a circular RNA derived from the CUX1 gene, is

upregulated in radiotherapy-resistant HPSCC where it is linked

with shortened survival. m6A methylation by METTL3 was found

to regulate circCUX1 expression, and circCUX1 knockdown

increases the radiosensitivity of HPSCC cells. Moreover,

circCUX1 interacts with Caspase1 to suppress its expression,

preventing inflammatory factor production and contributing to

radioresistance (18).

2.1.8 Hepatocellular carcinoma
Studies demonstrate that the overexpression of METTL3

correlates with poor prognosis in HCC, whereas its knockdown

significantly enhances radiosensitivity by inducing ferroptosis (60).

Mechanistically, METTL3 mediates the m6A modification at the

+1795 site of SLC7A11 mRNA, stabilizing transcripts through

IGF2BP2 binding, while simultaneously inhibiting the ubiquitin-

mediated degradation of SLC7A11 protein via the m6A/YTHDF2/

SOCS2 axis.In vivo studies confirm that models with low METTL3/

IGF2BP2 expression exhibit an enhanced response to radiotherapy.

Importantly, the ablation of METTL3 abolishes the compensatory

upregulation of SLC7A11 post-irradiation, which cooperatively

promotes ferroptosis and radiosensitization. This work establishes

the METTL3-IGF2BP2 axis as a potential therapeutic target for

radiotherapy in HCC (60). These findings indicate that the

inhibition of SLC7A11 ubiquitination through the m6A/YTHDF2/

SOCS2 axis blocks radiation-induced ferroptosis, ultimately leading

to radioresistance.
2.2 WTAP

The methyltransferase WTAP enhances stemness and EMT in

tumor cells, which in turn increases radioresistance. NRP1, a

transmembrane glycoprotein, is highly expressed across multiple

cancer types. Studies have shown that radiotherapy alone

significantly increases double-strand DNA (dsDNA) damage in

breast cancer (BC) cells, whereas NRP1 overexpression combined

with radiotherapy does not significantly affect dsDNA breaks,

indicating that NRP1 plays a key role in BC radioresistance.

Mechanistically, NRP1 downregulates Bcl-2 expression in BC

through WTAP-mediated m6A modification, thus reducing

radiation-induced apoptosis, promoting stemness in BC cells, and

increasing their radioresistance (19). Similarly, Liu et al. reported
Frontiers in Oncology 07
that, after irradiation, WTAP overexpression in gastric cancer (GC)

cells promotes EMT by accelerating TGF-b signaling, increasing

radioresistance, whereas WTAP downregulation reduces

radioresistance (20). Additionally, WTAP stabilizes SQLE mRNA

expression through an m6A-dependent mechanism, enhancing CSC

properties in high-grade serous ovarian carcinoma (HGSOC),

which may indirectly contribute to radioresistance (61). These

studies demonstrate that WTAP regulates downstream gene

expression through m6A modification across multiple cancer

types, affecting radioresistance.
2.3 METTL14

METTL14 is a well-characterized m6A regulator. In ESCC cells,

METTL14 promotes pri-miR-99a maturation and miR-99a-5p

stability, enhancing stemness in cancer cells and increasing

radioresistance (21). Additionally, METTL14 mediates the

regulation of radioresistance through ferroptosis pathways.

Studies demonstrate that METTL14 reverses radioresistance in

ESCC by promoting ferroptosis via enhanced m6A modification

of ACSL4 (62). In endometrial cancer (EC), protein arginine

methyltransferase 3 (PRMT3)-mediated METTL14 promotes

ferroptosis sensitivity by reducing the expression and stability of

glutathione peroxidase 4 (GPX4). Further studies have revealed that

PRMT3 inhibition increases radiosensitivity, whereas PRMT3

depletion suppresses radioresistance by promoting ferroptosis in

EC (22). In acute myeloid leukemia (AML), AML-derived

mesenchymal stem cells (AML-MSCs) deliver METTL14 to

leukemia cells via exosomes, where it stabilizes ROCK1

expression through the m6A-IGF2BP3 axis, thereby mediating

radioresistance. Specifically, exosome-transferred METTL14

enhances the m6A modification of ROCK1 mRNA, facilitating its

binding to and stabilization by the reader protein IGF2BP3.

Consequently, ROCK1 protein levels are upregulated, driving

AML cell proliferation and contributing to radioresistance (63).
2.4 YTHDC2

Research indicates that the m6A reader protein YTHDC2 plays

a critical role in radioresistance across various malignancies, with

IGF1R acting as the central hub mediating YTHDC2-driven

therapeutic resistance. In NPC, previous studies demonstrate that

IGF1R inhibition, such as through Linsitinib, blocks downstream

Akt/ERK phosphorylation, suppresses proliferation, induces

apoptosis, and significantly radiosensitizes tumors by reversing

resistance. This highlights the therapeutic targeting potential of

IGF1R and establishes a definitive association between IGF1R and

NPC radioresistance (64). Further investigations reveal that

YTHDC2 is highly expressed in radioresistant NPC cells and

clinical specimens. It facilitates the translation of IGF1R,

activating the PI3K-AKT/S6 signaling pathway to confer

radioresistance, thereby emerging as a promising therapeutic

target for NPC radiosensitization. Experimentally, the depletion
frontiersin.org
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of YTHDC2 downregulates IGF1R expression and suppresses

PI3K-AKT/S6 signaling, consequently alleviating radioresistance

in NPC cells (23). In neuroblastoma (NB), the activation of the

STAT3/AKT axis stimulates CSC properties and EMT, both of

which are intrinsically linked to radioresistance. Although the

response to radiotherapy remains untested in NB, the identified

IGF1R-kinase signaling (STAT3/AKT)-CSC/EMT mechanistic

logic aligns with the NPC axis, demonstrating a shared

dependence on IGF1R-driven downstream pathways to sustain

resistance phenotypes (65). Therefore, targeting YTHDC2, IGF1R,

or their downstream kinases (PI3K/AKT, STAT3) represents a

viable strategy to overcome radioresistance and achieve

radiosensitization by suppressing CSC traits and aberrant

signaling cascades.
2.5 YTH domain-containing family
protein 3

The m6A “reader” protein YTHDF3 contributes to radiotherapy

resistance by modulating gene expression. A study by Du et al. found

that the levels hepatocyte nuclear factor 1-alpha (HNF1-a) are

markedly higher in radiotherapy-resistant cervical cancer (CC)

tissues and cell lines. This upregulation increases the transcription

of YTHDF3, leading to m6A modifications of RAD51D mRNA.

Furthermore, YTHDF3 mediates HNF1-a-regulated radiotherapy

resistance in CC by promoting m6A-dependent translation of

RAD51D translationr. Depletion of HNF1-a reduces radiotherapy

resistance, whereas its overexpression enhances it in CC cells and

tissues. In summary, YTHDF3 affects radiotherapy resistance in CC

cells (24).
2.6 FTO

FTO, a critical RNA m6A demethylase, plays a pivotal role in

radioresistance across diverse malignancies. It drives therapeutic

resistance through epitranscriptomic regulation of downstream

effectors, including CSC properties, EMT, DNA repair, and

oncogenic signaling pathways.Studies demonstrate that in

colorectal cancer, cytoplasmic FTO suppresses CSC phenotypes

via its m6A demethylase activity. Conversely, low FTO expression

induces m6A hypermethylation, significantly enhancing the in vivo

tumorigenicity and radioresistance of CSCs (66). In lung

adenocarcinoma (LUAD), FTO stabilizes PHF1 mRNA through

demethylation, forming a tumor-suppressive axis. The

downregulation of the FTO/PHF1 axis promotes tumor cell self-

renewal, progression, and poor prognosis by enhancing FOXM1

expression, thereby compromising therapeutic efficacy (67). Breast

cancer research reveals that chemotherapy-induced senescent

neutrophils upregulate intratumoral FTO via exosomal piR-17560

secretion. Elevated FTO subsequently reduces m6A modification on

ZEB1 mRNA, stabilizing its transcript and promoting EMT and

radioresistance (68). In glioblastoma (GBM), pharmacological

inhibition of FTO (e.g., using FB23-2) increases m6A
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modification on the target gene VEGFA, downregulating its

expression and impairing DNA damage repair (e.g., sustaining

gH2AX foci and reducing Rad51 recruitment). This significantly

enhances the radiosensitivity of glioblastoma stem cells (GSCs),

suppresses tumor growth, and prolongs survival, indicating that

FTO upregulation promotes GBM radioresistance (69).

Additionally, FTO in NPC promotes OTUB1 expression by

erasing m6A marks on OTUB1 transcripts, suppressing radiation-

induced ferroptosis (25), and induces CD44 splice variant switching

(CD44v) via lncRNA-HOTAIRM1 interaction to inhibit

ferroptosis, collectively driving radioresistance (26). In CSCC,

FTO upregulates b-catenin expression by reducing the m6A levels

of its mRNA, thereby enhancing chemoradioresistance both in vitro

and in vivo (27). Collectively, FTO acts as a core determinant of

pan-cancer radioresistance, positioning it as a promising

therapeutic target for overcoming resistance and improving the

efficacy of radiotherapy.
2.7 ALKBH5

ALKBH5, an m6A “eraser”, increases radiotherapy resistance in

hepatocellular carcinoma (HCC) and GBM by influencing CSCs.

CSCs are closely linked to cancer therapy resistance through various

pathways, including activating DNA damage repair processes, the

EMT, and modulating the levels of genes associated with self-

renewal (28, 29). Studies demonstrate that elevated expression of

ALKBH5 enhances glioblastoma (GBM) radioresistance by

modulating homologous recombination (HR) (70). Further

investigations confirm that glioblastoma stem cells (GSCs) are the

primary source of radioresistance in GBM, with the MST4-USP14-

ALKBH5 signaling axis serving as its core mechanism. Specifically,

ALKBH5 undergoes deubiquitination mediated by USP14 (a

deubiquitinase), which confers protein stability that is further

potentiated by phosphorylation from the upstream kinase MST4.

This pathway sustains GSC stemness and tumorigenicity, while

robustly promoting DNA damage repair and driving therapeutic

radioresistance (71). Liver cancer stem cells (LCSCs) exhibit CSC-

like properties and significantly affect HCC progression and

therapeutic resistance (72). ALKBH5 is upregulated in LCSCs,

where it promotes SOX4 expression through demethylation. The

ALKBH5/SOX4 axis enhances LCSC properties by the activation of

SHH signaling (73). In summary, ALKBH5 overexpression in HCC

may contribute to radiotherapy resistance.
2.8 Others

In NSCLC, m6A RNA methylation-mediated regulation of

mitochondrial RNA-processing endoribonuclease (RNase MRP)

enhances the properties of cancer stem cells and promotes the

EMT through the TGFB/SMAD2/SMAD3 pathway, thus

contributing to radiotherapy resistance (74). Meanwhile, m6A-

modified enhancer RNAs (eRNAs) are closely linked to the

progression of bone-metastatic prostate cancer (mPCa) and its
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resistance to radiotherapy. Zhao et al (75) employed RNA

sequencing and other methods to identify the m6A-modified

bone-specific eRNA, MLXIP, associated with radiotherapy

resistance. This eRNA inhibits RNA degradation by facilitating

the interaction between the RNA-binding protein KHSRP and

mRNA, affecting PC progression and its sensitivity to radiotherapy.
3 m5C methylation and radiotherapy
resistance

m5C modification refers to the methylation of the fifth cytosine

carbon in RNA and is commonly observed in RNA types such as

mRNA, tRNA, rRNA, and enhancer RNA (11). The m5C

methyltransferases are associated with both the TRDMT (76) and

NSUN families (34, 77). Known “erasers” of m5C methylation

include the TET enzyme family (30), while “readers” include fragile

X messenger ribonucleoprotein (FMRP) (30), ALYREF (78), and

YBX1 (79). m5C methylation regulators affect RNA stability,

translation efficiency, and other processes, regulating various

biological functions, including proliferation, differentiation, and

apoptosis. They also play a key role in radiotherapy resistance in

malignant tumors (80), primarily by improving DNA repair

capacity and regulating gene expression, ultimately reducing cell

death and leading to radiotherapy resistance (81, 82) (Figure 4).
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3.1 FMRP

FMRP is an m5C “reader” that recognizes and binds to m5C-

modified RNA. Through its interaction with the m5C eraser ten-

eleven translocation protein 1 (TET1), FMRP induces the

demethylation of m5C RNA modifications, therefore promoting

mRNA-dependent DNA damage repair processes (34).

Furthermore, FMRP interacts with the m5C methyltransferase

TRDMT1, which facilitates transcription-coupled homologous

recombination at reactive oxygen species (ROS)-induced DSBs

through the TRDMT1– m5C-RAD52-RAD51 axis (31). The

absence of FMRP and TRDMT1 increases radiation sensitivity in

BC cells (30, 31), and BC cells with low TRDMT1 expression exhibit

greater sensitivity to radiotherapy (31).
3.2 NSUN6

The mechanistic and functional diversity of NSUN6-mediated

tumor radioresistance operates through the m5C-NDRG1 axis. Yu

et al. discovered that in cervical cancer, NDRG1, as a transcriptional

regulatory target of NSUN6, participates in radioresistance

mechanisms. Elevated NSUN6 expression initiates the NSUN6/

ALYREF-m5C signaling cascade, enhancing NDRG1 stability by

augmenting its m5C RNA methylation levels, ultimately conferring
FIGURE 4

The role of m5C RNA methylation in tumor resistance to radiotherapy. m5C modification contributes to radioresistance in EC, BC, and ESCC by
regulating mRNA stability, DNA damage repair, and epigenetic modulation.
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radioresistance (33). Given that NDRG1 significantly promotes

tumor progression and brain metastasis in aggressive breast

cancer (83), NSUN6 may potentially co-drive breast cancer

radioresistance via NDRG1 regulation. However, the molecular

interactome of this signaling axis in breast cancer remains to be

elucidated further. Conversely, NDRG1 exhibits context-dependent

functional reversal in HCC, where it significantly suppresses HCC

tumorigenesis and metastasis by inducing tumor cell ferroptosis

(84). This highlights the cancer type-dependent biological effects

mediated by NDRG1.Whether the NSUN6-m5C-NDRG1 axis

universally drives pan-cancer radioresistance requires.
3.3 NSUN2

NSUN2, an m5C “writer,” participates in radiotherapy

resistance by regulating gene expression. Niu et al. found that cis-

expression quantitative trait loci (cis-eQTLs) in NSUN2 promote

radiotherapy resistance in ESCC through mRNA-m5Cmethylation.

Mechanistically, the NSUN2 rs10076470 G-to-A mutation acts as a

cis-eQTL for STAT1, a key transcription factor that is markedly

upregulated in ESCC. This genetic variation increases NSUN2

activity, leading to enhanced m5C methylation and upregulation

of multiple cancer-related genes, promoting ESCC progression and

increasing resistance to radiotherapy (32).
4 m7G methylation and radiotherapy
resistance

The m7G modification is frequently seen in tRNA, rRNA, and

mRNA across both eukaryotic and prokaryotic organisms. m7G

methylation primarily occurs at position 46 of tRNA and within the

mRNA 5′ cap structure. The key regulators of m7G methylation

include “writers” such as Trm8/Trm82 (85) and METTL1/WDR4

(86). FTO, primarily known as an m6A demethylase, also functions
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as an “eraser” of m7G methylation, affecting RNA stability and

translation efficiency (87). Known “readers” include the QKI family

(88) and YTH domain-containing proteins, which recognize m7G

modifications and regulate RNA stability and translation (89).

METTL1, involved in m7G tRNA modification, serves as a

“writer” of m7G methylation. It is closely associated with

tumorigenesis, progression, and resistance to radiotherapy. For

instance, studies have indicated that increased METTL1

expression elevates the risk of neuroblastoma tumorigenesis (90)

and promotes the growth and metastasis of NPC both in vitro and

in vivo (91). Furthermore, Studies have shown that METTL1 is

upregulated in various cancers, with its levels correlating with

cancer malignancy. In HCC, ionizing radiation induces METTL1-

mediated m7G tRNA methylation, selectively increasing the

translation of DNA-dependent protein kinase catalytic subunit

(DNA-PKcs) or DNA ligase IV through higher-frequency m7G-

associated codons. This regulation enhances the DNA DSB repair

through nonhomologous end joining (NHEJ), thus conferring

resistance to ionizing radiation in HCC (35) (Figure 5).
5 m1A methylation and radiotherapy
resistance

The m1A modification involves adenosine methylation the 1-

position, affecting RNA structure and function. In eukaryotes, the

methyltransferases (“writers”) responsible for m1A methylation

primarily include TRMT10C, TRMT61B, TRMT61A, TRMT6,

SDR5C1, and NML. The demethylases (“erasers”) mainly consist of

a-ketoglutarate-dependent dioxygenases such as ALKBH7, ALKBH3,

ALKBH1, and FTO. The known “readers” of m1A-modified RNA

include YTHDF1-3 and YTHDC1 (11). Currently, direct causal

evidence for the regulatory factors driving tumor radioresistance

remains insufficient. Nevertheless, cutting-edge research has

suggested their potential roles. For instance, the RNA demethylase

ALKBH3 has been reported to influence radiation sensitivity by
FIGURE 5

The role of m7G RNA modification in radiotherapy resistance of hepatocellular carcinoma. The key factor METTL1 promotes DNA damage repair in
hepatocellular carcinoma cells through non-homologous end joining (NHEJ).
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modulating the TME (92). These preliminary findings underscore the

necessity for in-depth mechanistic dissection of relevant regulatory

pathways in radioresistance.

m1A methylation contributes to radiotherapy resistance by

modulating the TME, regulating gene expression, and altering

cellular metabolic processes. Xu et al. reported that m1A

methylation may affect the sensitivity of lung adenocarcinoma

(LADC) cells to radiotherapy by affecting immune cell infiltration

and function within the TME (36). Specifically, inhibition of m1A

downregulates the MYC/PD-L1 axis involved in immune evasion of

tumors. Since radiotherapy resistance has close associations with

changes in the tumor immune microenvironment, m1A

methylation may affect radiotherapy efficacy by modulating this

signaling pathway (93).
6 Clinical significance of RNA
methylation in radiotherapy resistance

RNA methylation holds significant clinical implications for

radiotherapy resistance in cancer. Its levels can serve as

biomarkers for predicting radiotherapy efficacy, helping in the

identification of radiotherapy-resistant patients, and guiding

personalized treatment strategies (94). Furthermore, RNA

methylation-related enzymes, such as METTL3 and YTHDC2,

may serve as therapeutic targets to overcome radiotherapy

resistance. Modulating RNA methylation levels through inhibitors

holds the potential for improving radiotherapy outcomes (13, 23).

RNA methylation modifications influence radiotherapy efficacy by

influencing DNA repair, tumor cell radiation sensitivity, and the

tumor immune microenvironment. Therefore, precision treatment

strategies based on RNA methylation research offer the potential to

mitigate radiotherapy resistance and improve patient outcomes,

representing a promising therapeutic approach (27).
6.1 Biomarkers

RNA methylation can serve as a biomarker for identifying

malignant tumors resistant to radiotherapy. In GBM, METTL3

expression is associated with radioresistance, and its downregulation

reduces DNA damage repair and increases radiosensitivity (12).

Similarly, in NSCLC, METTL3 is upregulated, and its knockout

increases cellular sensitivity to radiotherapy (14). These findings

suggest that RNA methylation levels can function as biomarkers to

predict radiotherapy efficacy, facilitating the identification of

radiotherapy-resistant patients and enabling individualized

precision treatment.
6.2 Therapeutic targets

Enzymes involved in RNA methylation modifications and their

downstream regulatory targets hold significant therapeutic

potential for overcoming radiotherapy resistance across various

cancers. Studies have shown that METTL3 increases radiotherapy
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resistance in OSCC by targeting SALL4 (13), while METTL3

knockdown increases PDAC cell sensitivity to low-dose

radiotherapy, suggesting its possible application as a target in

treating the disease (15). In NPC, METTL3-mediated m6A

methylation upregulates KIF15 expression, contributing to

radiotherapy resistance. Inhibiting KIF15 expression has been

found to mitigate this resistance (17). Collectively, these findings

suggest that METTL3 is a promising therapeutic target for

radiosensitization across various cancer types. Currently, small-

molecule inhibitors targeting METTL3 are undergoing preclinical

investigation (95), which may inform future combinatorial

radiosensitization strategies. Similarly, in CSCC, FTO promotes

b-catenin expression by reducing m6A modification levels,

aggravating radiotherapy resistance. This suggests that targeting

FTO or b-catenin may optimize therapeutic outcomes (27).

However, FTO exhibits broad substrate specificity. Targeting FTO

may influence the expression of metabolism-related genes,

potentially resulting in metabolic dysregulation. This underscores

the necessity for more precise strategies to target RNA methylation

(69, 96). Furthermore, m5C modification-related proteins,

including FMRP and members of the NSUN family, as well as the

key m7G tRNA modification enzyme METTL1, have been reported

to be involved in regulating the radiotherapy response in malignant

tumors. Inhibiting the activity of these modification enzymes has

been shown to improve radiotherapy efficacy in killing cancer cells

(30–33). These findings not only highlight the key role of RNA

methylation modifications in radiotherapy resistance but also

provide diverse potential targets for developing precision

radiotherapy sensitization strategies based on RNA modification

regulation, offering significant clinical implications.
6.3 Combination

Combining methylation-modulating inhibitors with

radiotherapy has been shown to suppress tumor growth and

progression. Research indicates that STM2457, a novel inhibitor

targeting METTL3, exhibits significant efficacy in preclinical models

of AML (97). To evaluate its anti-leukemic effects in conjunction

with radiotherapy, experiments were conducted using METTL3-

knockout cells and murine models. The results demonstrate that the

targeted inhibition of METTL3 by STM2457, when combined with

in vivo radiotherapy, synergistically suppresses tumor growth (95).

Furthermore, Zhang et al. found that inhibiting METTL3 enhances

the radiosensitivity of HCC by activating the radiation-induced

ferroptosis pathway (60). Additionally, studies have shown that the

FTO inhibitor FB23-2, when combined with radiotherapy,

significantly inhibits tumor spheroid formation and the self-

renewal capacity of GSCs, suppresses cell proliferation, and

induces apoptosis in GBM cells. Animal experiments further

confirmed that FB23-2 combined with radiotherapy effectively

inhibits intracranial tumor growth in mice (69). Collectively,

these findings suggest that the targeted inhibition of METTL3

and FTO, in combination with radiotherapy, enhances the

suppression of tumor growth and progression.
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Moreover, studies have indicated that cyclooxygenase-2 (COX-

2) is a potential target for radioprotection and radiosensitization.

Inhibition of COX-2 (e.g., celecoxib) can reduce the resistance of

malignant tumor cells to radiotherapy (98). In NPC, the resistance

to radiotherapy is primarily mediated by EBV-encoded products

(such as LMP1) and non-coding RNAs (miRNA/lncRNA/

circRNA), which inhibit DNA damage repair, activate anti-

apoptotic pathways (such as PI3K/AKT, NF-kB), and promote

EMT. Combined chemoradiotherapy or targeting EBV/non-

coding RNAs (e.g., olaparib inhibiting miR-519d, curcumin

downregulating lncRNA AK294004) can reverse radiotherapy

resistance (99).

In summary, targeting epigenetic regulation (such as METTL3,

FTO, COX-2 inhibitors) or viral/non-coding RNA pathways (such

as EBV-LMP1, miRNA/lncRNA), in conjunction with

radiotherapy, can significantly enhance antitumor efficacy

through synergistic mechanisms, providing new strategies to

reverse radiotherapy resistance.
7 Conclusion

In summary, RNA methylation plays a crucial role in tumor

radioresistance by regulating DNA damage repair and key signaling

pathways. Current research has preliminarily elucidated the

mechanisms of m6A; however, several limitations remain: the

associations of other modifications such as m5C, m7G, and m1A

with radioresistance have yet to be clarified. Additionally, the

synergistic effects, targeting, and toxicity issues of methylation

inhibitors (e.g., FTO/METTL3 targeted drugs) urgently need

breakthroughs, and there is a lack of clinical validation.

Furthermore, existing RNA methylation detection technologies

exhibit insufficient sensitivity, limiting their clinical application as

biomarkers. To address these limitations, future research should

deeply explore the mechanisms of non-m6Amodifications, advance

human trials and safety optimization of inhibitors, and develop

high-sensitivity multidimensional methylation detection systems,

ultimately achieving precise design of individualized radiotherapy

sensitization strategies.
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