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RNA methylation is a type of reversible chemical modification in epitranscriptomics
that influences gene expression by dynamically regulating RNA functions. RNA
methylation comprises N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-
methylguanosine (M7G), N1-methyladenosine (m1A), and 3-methylcytosine (m3C)
modifications. These are dynamically controlled by a tripartite enzymatic system:
methyltransferases (“writers”) add methyl groups, demethylases (“erasers”) remove
them, and RNA-binding proteins (‘readers”) recognize and interpret the
modifications to mediate downstream biological effects. Extensive research has
shown the importance of RNA methylation in the onset and progression of cancer.
RNA methylation contributes to radioresistance in cancer cells through various
mechanismes, affecting therapeutic outcomes. To date, the precise functions of RNA
methylation in cancer radioresistance remain unclear. This review summarizes
recent advances in m6A, m5C, m7G, and mlA methylation in cancer
radioresistance regulation and discusses the clinical potential of precision
therapeutic strategies targeting these methylation modifications.
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1 Introduction

Cancer represents a major challenge to public health, with an overall 19.74 million new
diagnoses reported worldwide in 2022 alone. The International Agency for Research on Cancer
(IARC) projects a 77% increase in annual global cancer cases by 2050, reaching approximately 35
million cases (1). Based on the updated cancer epidemiology statistics from the United States, the
projected incidence of newly confirmed malignant neoplasms in 2025 is 2,041,910 cases, with an
estimated 618,120 deaths attributable to malignancies (2).Current cancer treatment options
include surgery, radiotherapy, chemotherapy, and novel targeted therapies (3). Among these,
radiotherapy is crucial in cancer treatment, providing clinical benefits to over 50% of patients (4).
Radiotherapy primarily involves inducing DNA double-strand breaks (DSBs) to damage cancer
cells (5). However, radioresistance, characterized by cancer cells’ resistance to radiotherapy,
reduces therapeutic efficacy and can lead to treatment failure (6), posing a significant challenge in
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managing malignant tumors. Notably, in pharmacotherapy, resistance
to chemotherapy, targeted therapy, and immunotherapy has been
established as closely associated with RNA modifications (7).
Simultaneously, the mechanisms underlying radioresistance are
complex, involving multiple biological processes. Research has
identified several key factors contributing to the development of
radioresistance in cancer cells, including improved DNA damage
repair capacity, alterations in the tumor microenvironment (TME),
activation of epithelial-mesenchymal transition (EMT), the presence of
cancer stem cells (CSCs), regulation of autophagy, involvement of
transcription factors such as nuclear factor-kappa B (NF-xB), signal
transducer and activator of transcription 3 (STAT3), nuclear factor
erythroid 2-related factor 2 (NRF2), and hypoxia-inducible factor 1
(HIF-1), as well as epitranscriptomics (8, 9). In recent years, RNA
methylation, an important reversible chemical modification in the field
of epitranscriptomics, has been closely associated with cancer cell
radioresistance. RNA methylation affects cancer cell sensitivity to
radiotherapy by regulating gene expression, RNA stability, and
translation efficiency.

RNA methylation serves as a fundamental regulatory mechanism
within the field of epitranscriptomics. It refers to the reversible chemical
modifications of RNA nucleotides that dynamically regulate gene
expression without altering the RNA sequence. This process
encompasses several types of methylation, including N6-
methyladenosine (m6A) methylation, 5-methylcytosine (m5C)
methylation, N7-methylguanosine (m7G) methylation, NI-
methyladenosine (m1A) methylation, and 3-methylcytosine (m3C)
methylation. These modifications are found in various types of RNA,
including mRNA, tRNA, and rRNA (10). RNA methylation regulates
gene expression and has been linked to tumorigenesis and metastasis, as
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well as resistance to chemotherapy and radiotherapy. In cancer, RNA
methylation is controlled primarily by methyltransferases, demethylases,
and binding proteins. Methyltransferases transfer methyl groups to
specific bases on the RNA, thus acting as “writers”. Demethylases are
responsible for removing methyl groups, making RNA methylation
dynamic and reversible, and thus serve as “erasers”. Binding proteins
recognize and interact with methylated RNA, acting as “readers”,
affecting RNA metabolism and function (10, 11). Together, these
three components regulate RNA methylation status.

This review summarizes recent advances in m6A, m5C, m7G,
and m1A methylation in cancer radioresistance (Figure 1) and
discusses the clinical potential of targeted therapeutic strategies
aimed at these methylation modifications (Table 1).

2 m6A methylation and radiotherapy
resistance

m6A methylation is a well-studied modification controlled by a
tripartite system of “writers,” “erasers,” and “readers.” The “writers”
are represented by methyltransferase-like 3 (METTL3) (38),
METTL14 (39), METTL16 (40), Wilms tumor I1-associated
protein (WTAP) (41), and VIRMA (42). The “erasers” include fat
mass and obesity-associated protein (FTO) (43) and ALKB
homolog 5 (ALKBHS5) (44). The “readers” include YTHDCI (45),
YTHDC2 (46), YTHDF1 (47), YTHDF2 (48), and the
heterogeneous nuclear ribonucleoprotein (HNRNP) family (49)
(Figure 2). These m6A methylation regulators can promote or
suppress cancer initiation and progression (50-52) and are also
closely associated with cancer radioresistance (Figure 3).

In m®A-mediated RNA methylation, PARP1 facilitates
DNA double-strand break repair in ESCC, enhancing
radioresistance of ESCC cells. In 0SCC, METTL3-driven

FTO confers radiotherapy resistance in cervical
cancer by demethylating B-catenin mRNA and
activating the ERCC1-mediated repair pathway.
METTL3 enhances chemoradiotherapy
resistance in pancreatic cancer cells by
modulating the MAPK pathway and

ubiquitination processes. HPSCC.
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methylation regulates circCUX1
expression. By binding to and
inhibiting Caspase-1, circCUX1
reduces pro-inflammatory
cytokine secretion, thereby
conferring radioresistance in

activation of the Wnt/B-catenin signaling pathway
compromises DNA damage repair mechanisms,
exacerbating radioresistance. A cis-eQTL in NSUN2
promotes ESCC radioresistance by regulating gene
expression through mRNA m>C methylation. In CC,
NSUNG has been demonstrated to promote
radioresistance via m>C modification of NDRG1,

highlighting a novel therapeutic targeting strategy.

2024
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YTHDC2 confers radiotherapy resistance
in NPC by promoting IGF1R protein
synthesis and activating the PI3K-AKT/S6
signaling axis.

FIGURE 1
Recent advances in RNA methylation and cancer radioresistance.
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METTL3 has been demonstrated to
promote radiotherapy resistance in GBM
and NSCLC through m®A modification.
WTAP confers radiotherapy resistance in
BC. METTL1-mediated m’G methylation

promotes radiotherapy resistance in HCC.
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METTL3-mediated m®A methylation
upregulates KIF15 expression in NPC cells,
and elevated KIF15 contributes to
radioresistance development in NPC. In
AML, METTL14 enhances m°A
modification of ROCKT mRNA, facilitating
its binding and stabilization by the reader
protein IGF2BP3. This increases ROCK1
protein levels, driving radioresistance in
AML cells. As an m°A eraser, ALKBH5
promotes DNA damage repair and
radioresistance through the MST4-USP14-
ALKBHS signaling axis.
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TABLE 1 The regulatory role of RNA methylation (including m6A, m5C, m7G and m1A) in radioresistance across multiple cancer types.

Methylation

mo6A
methylation

Function

writer

reader

Methylation module

METTL3

WTAP

Cancer

GBM

Target/Pathway

Wnt/B-catenin Signaling Pathway

Mechanism

METTL3 promotes the self-renewal of glioma stem cells by
regulating LINC00839 to activate the Wnt/B-catenin signaling
pathway, leading to radiotherapy resistance in GBM.

(12)

OscC

NSCLC

PDAC

ESCC

NPC

HPSCC

BC

SALL4

H2AX

Genes associated with DNA damage repair; MAPK cascade,
ubiquitin-dependent processes, and RNA splicing pathways.

LNCAROD

KIF15

circCUX1

NRP1

METTLS3 activates the Wnt/B-catenin signaling pathway by
regulating the SALL4 target, promoting the renewal of tumor stem
cells, leading to radiotherapy resistance in OSCC.

METTLS3 regulates the resistance of NSCLC to carbon ion
radiotherapy by modulating H2AX expression and influencing
signaling pathways such as PI3K/AKT and MAPK.

METTL3 may confer radiotherapy resistance by influencing the
expression of DNA damage repair genes, as well as through
mechanisms such as the MAPK cascade, ubiquitin-dependent
processes, and RNA splicing pathways.

METTL3 confers radiotherapy resistance in ESCC cells by
upregulating the expression of LNCAROD, inhibiting PARP1
degradation, and enhancing DNA double-strand break
repair capacity.

METTL3-mediated m6A methylation can lead to increased
expression of KIF15 in NPC cells, and the elevated expression of
KIF15 is associated with radiotherapy resistance. Inhibition of
KIF15 may alleviate radiotherapy resistance in NPC.

METTL3 regulates the expression of the circCUX1 gene, and the
suppression of circCUX1 expression reduces the release of
inflammatory factors, leading to radiotherapy resistance.

WTAP downregulates the expression of Bcl-2 in BC by mediating
m6A modification of NRP1, promoting stem cell-like properties
and enhancing radiotherapy resistance in BC cells.

(13)

(14)

(15)

(16)

(17)

(18)

(19)

GC

TGE-B

Overexpression of WTAP enhances radiotherapy resistance in GC
cells by accelerating TGF-B-induced EMT.

(20)

METTL14

YTHDC2

ESCC

pri-miR-99a

METTLI4 enhances the stem cell-like properties of cancer cells by
promoting the maturation of pri-miR-99a and stabilizing miR-99a-
5p, thereby conferring radioresistance to ESCC cells.

21

EC

NPC

PRMT3

IGF1R

PRMT3-mediated METTL14 enhances cellular susceptibility to
ferroptosis. Depletion of PRMT3 suppresses resistance to
radiotherapy by promoting ferroptosis in EC cells.

YTHDC2 promotes the translation of IGFIR, activating the PI3K-
AKT/S6 signaling pathway, thereby conferring resistance
to radiotherapy.

(22)

(23)

(Continued)
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TABLE 1 Continued

Methylation Function Methylation module Cancer Target/Pathway Mechanism
YTHDEF3 CC HNF1-o YTHDE3 promotes the translation of RAD51D to mediate HNF1-o. = (24)
regulation in CC radiotherapy resistance. Depletion of HNF1-o
reduces, while its overexpression enhances, the resistance of CC
cells to radiotherapy both in vitro and in vivo.
eraser FTO NPC OTUBI FTO promotes the expression of the deubiquitinating enzyme (25)
OTUBIL, a member of the OUT domain family, thereby (26)
suppressing radiation-induced ferroptosis and ultimately conferring
resistance to radiotherapy in NPC.
CcscC B-catenin FTO regulates the expression of B-catenin, thereby enhancing 27)
resistance to chemoradiotherapy both in vitro and in vivo.
ALKBH5 HCC SOX4 ALKBH5 amplifies the characteristics of liver cancer stem cells by (28,
mediating the expression of SOX4 and activating the SHH 29)
signaling pathway, thereby conferring resistance to radiotherapy.
m5C writer TRDMT1 BC TRDMT1-m5C-RAD52-RAD51 TRDMT1 interacts with FMRP to promote transcription-coupled (30,
methylation homologous recombination through the TRDMT1-m5C-RAD52- 31)
RADS51 axis. Loss of FMRP and TRDMT1 increases the sensitivity
of BC cells to radiation.
NSUN2 ESCC STAT1 Increased activity of NSUN2 enhances the expression of STAT1 (32)
cis-eQTL, thereby promoting resistance to radiotherapy in
ESCC cells.
NSUN6 CcC NSUN6/ALYREF-m5C-NDRGI pathway Elevated expression of NSUN6 promotes resistance to radiotherapy | (33)
in CC by activating the NSUN6/ALYREF-m5C-NDRG1 pathway.
reader FMRP BC TET1 FMRP interacts with TET1 to facilitate the DNA damage repair (34)
process, thereby promoting resistance to radiotherapy in BC cells. (31)
ALYREF CC NSUN6/ALYREF-m5C-NDRG1 pathway ALYREF binds to NDRG1 and participates in the NSUN6/ (33)
ALYREF-m5C-NDRG1 pathway, promoting resistance to
radiotherapy in CC.
m7G reader METTLI HCC DNA-PKcs or DNA Ligase IV METTLI selectively regulates the translation of DNA-PKcs or (35)
methylation DNA ligase IV, enhancing the efficiency of DSB repair and
conferring resistance to ionizing radiation in HCC.
mlA LADC mlA methylation may influence immune cell infiltration and (36)
methylation function within the tumor microenvironment, thereby affecting
sensitivity to radiotherapy.
other MYC/PD-L1 signaling pathway mlA methylation downregulates the MYC/PD-L1 signaling (37)

pathway, thereby influencing the efficacy of radiotherapy.
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FIGURE 2

m6A RNA methylation is a dynamic and reversible epigenetic modification. Its regulation is primarily mediated by three key classes of proteins:
“writers”, "erasers”, and” readers”. Through the coordinated actions of these proteins, m6A dynamically modulates mRNA and cellular functions,
playing a pivotal role in cancer initiation, progression, and radiation resistance.
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FIGURE 3

The role of m6A RNA modification in cancer radiotherapy resistance. m6A RNA modification is a dynamic and reversible process, and its associated
proteins are implicated in the development of radiotherapy resistance in various cancers. Regulatory factors, known as “writers”, include METTLS3,
WTAP and METTL14; ‘readers’ include YTHDC2 and YTHDF3; and ‘erasers’ include FTO and ALKBHS.
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2.1 METTL3

METTLS3, one of the methyltransferases responsible for m6A
methylation, has been shown to potentially contribute to cancer
radioresistance by improving DNA repair capacity in malignant
cells, promoting CSCs generation, and inducing tumor
cell autophagy.

2.1.1 Glioblastoma

METTL3 contributes to radioresistance in GBM by enhancing
glioma stem cell (GSC) generation (12, 53). RNA
immunoprecipitation (RIP) assays identified SOX2 as an
authentic m®A substrate of METTL3. METTL3-mediated m°A
modification stabilizes SOX2 mRNA, thereby maintaining the
stemness properties of glioma stem cells (GSCs) and consequently
driving radioresistance (53). Activation of the Wnt/[3-catenin axis is
closely associated with glioblastoma stem-like cells (GBM-SCs)
formation (54). RNA-seq and m6A-seq analyses identified
LINCO00839, a long non-coding RNA (IncRNA), as a downstream
target of METTL3. Further studies revealed that LINCO00839
activates the Wnt/B-catenin signaling pathway by interacting with
its key components, therefore supporting GSC self-renewal and
promoting radioresistance in cancer cells (12).

2.1.2 Oral squamous cell carcinoma

METTL3 regulates transcriptional targets, including SALL4.
The transcriptional activation of SALL4 promotes [-catenin
nuclear translocation and upregulates downstream target gene
expression after radiotherapy, activating the Wnt/B-catenin
signaling pathway (13). In OSCC, this pathway activation
maintains CSC self-renewal and stemness and impairs DNA
damage repair, exacerbating radioresistance in cancer cells (13).

2.1.3 Lung cancer

METTL3-mediated m6A modifications of mRNA are closely
linked to carbon ion radiotherapy resistance in Non-Small Cell
Lung Cancer(NSCLC). METTLS3 is upregulated in NSCLC, and its
knockout enhances cellular sensitivity to radiotherapy. RNA-seq
and m6A-seq analyses indicated that METTL3 regulates the
expression of histone H2A family member X (H2AX) through
m6A modification, affecting the PI3K/AKT and mitogen-activated
protein kinase (MAPK) axes, which contribute to NSCLC resistance
to carbon ion radiotherapy (14). Furthermore, recent investigations
indicate that METTL3 overexpression promotes colony formation
and proliferation in bystander cells of irradiated lung cancer,
suppresses micronucleus formation kinetics, and attenuates DNA
damage by regulating inflammatory responses (55). This suggests
that reduced DNA damage may contribute to radiation resistance
in LC.

2.1.4 Pancreatic ductal adenocarcinoma

Studies have shown that METTL3 significantly increases
radioresistance in PDAC cells by regulating m6A RNA
modifications. Under low-dose irradiation, METTL3-knockdown
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cells exhibit increased radiosensitivity, suggesting that METTL3
may contribute to low-dose radiotherapy resistance.
Mechanistically, METTL3 promotes radioresistance in PDAC by
activating the MAPK cascade and processes involving ubiquitin and
RNA splicing, which improves DNA damage repair. However, the
precise mechanisms remain unclear and require further
investigation (15). In PDAC, insulin-like growth factor 2 mRNA-
binding protein 2 (IGF2BP2) upregulates the expression of polo-
like kinase 1 (PLK1) by binding to m®A sites on PLK1 mRNA.
Meanwhile, METTL3 maintains PLK1 expression through m°A
methylation, thereby regulating the PDAC cell cycle. Disruption of
the METTL3-IGF2BP2-PLK1 axis (for instance, through
methylation inhibition) induces replication stress-induced cell
death (56), presenting a novel therapeutic strategy to overcome
radioresistance in PDAC.

2.1.5 Esophageal squamous cell carcinoma

ESCC contributes to radioresistance by affecting DNA
recombination repair and signaling pathway LNCAROD has been
identified as a METTL3-mediated IncRNA. METTL3 significantly
upregulates LNCAROD expression through m6A methylation.
LNCAROD promotes the interaction between poly(ADP-ribose)
polymerase 1 (PARP1) and nucleophosmin 1 (NPM1), preventing
ubiquitin-proteasome-mediated degradation of PARP1. PARP1 is
associated with DNA repair and facilitates the repair of DNA DSBs
in ESCC, thus increasing ESCC radioresistance (16). Furthermore,
METTL3 enhances radiosensitivity in ESCC through the m°A
modification of circular CREBBP (circCREBBP). Mechanistically,
METTL3-mediated m°A methylation of circCREBBP promotes its
competitive binding with IGF2BP3, thereby inhibiting IGF2BP3-
mediated stabilization of the oncogene MYC mRNA, which leads to
the downregulation of MYC expression (57). Both in vitro and in
vivo experiments confirm that the METTL3/circCREBBP/
IGF2BP3/MYC axis reverses radioresistance. Genetic knockdown
of circCREBBP significantly reduces MYC instability, enhances
ESCC cell survival, and promotes radioresistance. Conversely,
activation of this axis serves as a key therapeutic target for
radiosensitization (57). Additionally, Ma et al. discovered that
METTL3 catalytically elevates m°A modification levels in the 3’
UTR of SOCS6 mRNA, consequently inhibiting SOCS6 gene
expression and blocking ferroptosis, which ultimately contributes
to radioresistance in ESCC (58).

2.1.6 Nasopharyngeal carcinoma

METTLS3 serves as a master regulator of radioresistance in NPC,
driving therapeutic resistance through three independent pathways.
Its downstream targets—KIF15, the tumor suppressor BRD7, and
SLC7A11—constitute a critical intervention network (17, 37, 59). Li
et al. discovered that METTL3-mediated m®A methylation
upregulates KIF15 expression in NPC cells, and this KIF15
overexpression contributes to radioresistance. Further studies
demonstrate that inhibiting KIF15 expression alleviates NPC
radioresistance by suppressing STAT3 activation and promoting
autophagy (17). In parallel, the tumor suppressor BRD7
radiosensitizes NPC by disrupting USP5-METTL3 binding, which
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reduces METTL3 stability and inhibits BRCA1/RAD51-mediated
DNA damage repair. Critically, clinical evidence confirms that high
BRD7 and low METTL3 expression predict radiosensitivity and a
favorable prognosis (37). Additionally, METTL3 stabilizes
SLC7A11 mRNA via the m°A-IGF2BP2 axis, thereby driving
NPC radioresistance through the suppression of ferroptosis.
Mechanistically, METTL3-dependent SLC7A11 stabilization
through this axis inhibits ferroptosis to confer radioresistance,
whereas SLC7A11 knockdown or combined Erastin/radiotherapy
reverses this effect (59).

2.1.7 Hypopharyngeal squamous cell carcinoma

CircCUXI, a circular RNA derived from the CUXI gene, is
upregulated in radiotherapy-resistant HPSCC where it is linked
with shortened survival. m®A methylation by METTL3 was found
to regulate circCUX1 expression, and circCUX1 knockdown
increases the radiosensitivity of HPSCC cells. Moreover,
circCUX1 interacts with Caspasel to suppress its expression,
preventing inflammatory factor production and contributing to
radioresistance (18).

2.1.8 Hepatocellular carcinoma

Studies demonstrate that the overexpression of METTL3
correlates with poor prognosis in HCC, whereas its knockdown
significantly enhances radiosensitivity by inducing ferroptosis (60).
Mechanistically, METTL3 mediates the m°A modification at the
+1795 site of SLC7A11 mRNA, stabilizing transcripts through
IGF2BP2 binding, while simultaneously inhibiting the ubiquitin-
mediated degradation of SLC7A11 protein via the m®A/YTHDF2/
SOCS?2 axis.In vivo studies confirm that models with low METTL3/
IGF2BP2 expression exhibit an enhanced response to radiotherapy.
Importantly, the ablation of METTL3 abolishes the compensatory
upregulation of SLC7A1l post-irradiation, which cooperatively
promotes ferroptosis and radiosensitization. This work establishes
the METTL3-IGF2BP2 axis as a potential therapeutic target for
radiotherapy in HCC (60). These findings indicate that the
inhibition of SLC7A11 ubiquitination through the m°A/YTHDF2/
SOCS?2 axis blocks radiation-induced ferroptosis, ultimately leading
to radioresistance.

2.2 WTAP

The methyltransferase WTAP enhances stemness and EMT in
tumor cells, which in turn increases radioresistance. NRP1, a
transmembrane glycoprotein, is highly expressed across multiple
cancer types. Studies have shown that radiotherapy alone
significantly increases double-strand DNA (dsDNA) damage in
breast cancer (BC) cells, whereas NRP1 overexpression combined
with radiotherapy does not significantly affect dsDNA breaks,
indicating that NRP1 plays a key role in BC radioresistance.
Mechanistically, NRP1 downregulates Bcl-2 expression in BC
through WTAP-mediated m6A modification, thus reducing
radiation-induced apoptosis, promoting stemness in BC cells, and
increasing their radioresistance (19). Similarly, Liu et al. reported
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that, after irradiation, WTAP overexpression in gastric cancer (GC)
cells promotes EMT by accelerating TGF-3 signaling, increasing
radioresistance, whereas WTAP downregulation reduces
radioresistance (20). Additionally, WTAP stabilizes SQLE mRNA
expression through an m®A-dependent mechanism, enhancing CSC
properties in high-grade serous ovarian carcinoma (HGSOC),
which may indirectly contribute to radioresistance (61). These
studies demonstrate that WTAP regulates downstream gene
expression through m6A modification across multiple cancer
types, affecting radioresistance.

2.3 METTL14

METTL14 is a well-characterized m6A regulator. In ESCC cells,
METTL14 promotes pri-miR-99a maturation and miR-99a-5p
stability, enhancing stemness in cancer cells and increasing
radioresistance (21). Additionally, METTL14 mediates the
regulation of radioresistance through ferroptosis pathways.
Studies demonstrate that METTL14 reverses radioresistance in
ESCC by promoting ferroptosis via enhanced m®A modification
of ACSL4 (62). In endometrial cancer (EC), protein arginine
methyltransferase 3 (PRMT3)-mediated METTL14 promotes
ferroptosis sensitivity by reducing the expression and stability of
glutathione peroxidase 4 (GPX4). Further studies have revealed that
PRMT3 inhibition increases radiosensitivity, whereas PRMT3
depletion suppresses radioresistance by promoting ferroptosis in
EC (22). In acute myeloid leukemia (AML), AML-derived
mesenchymal stem cells (AML-MSCs) deliver METTL14 to
leukemia cells via exosomes, where it stabilizes ROCK1
expression through the m°A-IGF2BP3 axis, thereby mediating
radioresistance. Specifically, exosome-transferred METTL14
enhances the m°®A modification of ROCK1 mRNA, facilitating its
binding to and stabilization by the reader protein IGF2BP3.
Consequently, ROCKI1 protein levels are upregulated, driving
AML cell proliferation and contributing to radioresistance (63).

2.4 YTHDC2

Research indicates that the m®A reader protein YTHDC2 plays
a critical role in radioresistance across various malignancies, with
IGFIR acting as the central hub mediating YTHDC2-driven
therapeutic resistance. In NPC, previous studies demonstrate that
IGFIR inhibition, such as through Linsitinib, blocks downstream
Akt/ERK phosphorylation, suppresses proliferation, induces
apoptosis, and significantly radiosensitizes tumors by reversing
resistance. This highlights the therapeutic targeting potential of
IGFIR and establishes a definitive association between IGFIR and
NPC radioresistance (64). Further investigations reveal that
YTHDC2 is highly expressed in radioresistant NPC cells and
clinical specimens. It facilitates the translation of IGFIR,
activating the PI3K-AKT/S6 signaling pathway to confer
radioresistance, thereby emerging as a promising therapeutic
target for NPC radiosensitization. Experimentally, the depletion
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of YTHDC2 downregulates IGFIR expression and suppresses
PI3K-AKT/S6 signaling, consequently alleviating radioresistance
in NPC cells (23). In neuroblastoma (NB), the activation of the
STAT3/AKT axis stimulates CSC properties and EMT, both of
which are intrinsically linked to radioresistance. Although the
response to radiotherapy remains untested in NB, the identified
IGF1R-kinase signaling (STAT3/AKT)-CSC/EMT mechanistic
logic aligns with the NPC axis, demonstrating a shared
dependence on IGF1R-driven downstream pathways to sustain
resistance phenotypes (65). Therefore, targeting YTHDC2, IGFIR,
or their downstream kinases (PI3K/AKT, STAT3) represents a
viable strategy to overcome radioresistance and achieve
radiosensitization by suppressing CSC traits and aberrant
signaling cascades.

2.5 YTH domain-containing family
protein 3

The m6A “reader” protein YTHDEF3 contributes to radiotherapy
resistance by modulating gene expression. A study by Du et al. found
that the levels hepatocyte nuclear factor 1-alpha (HNFI-o) are
markedly higher in radiotherapy-resistant cervical cancer (CC)
tissues and cell lines. This upregulation increases the transcription
of YTHDEF3, leading to m6A modifications of RAD51D mRNA.
Furthermore, YTHDF3 mediates HNF1-o-regulated radiotherapy
resistance in CC by promoting m6A-dependent translation of
RADS5ID translationr. Depletion of HNF1-0. reduces radiotherapy
resistance, whereas its overexpression enhances it in CC cells and
tissues. In summary, YTHDF3 affects radiotherapy resistance in CC
cells (24).

2.6 FTO

FTO, a critical RNA m®A demethylase, plays a pivotal role in
radioresistance across diverse malignancies. It drives therapeutic
resistance through epitranscriptomic regulation of downstream
effectors, including CSC properties, EMT, DNA repair, and
oncogenic signaling pathways.Studies demonstrate that in
colorectal cancer, cytoplasmic FTO suppresses CSC phenotypes
via its m°A demethylase activity. Conversely, low FTO expression
induces m°A hypermethylation, significantly enhancing the in vivo
tumorigenicity and radioresistance of CSCs (66). In lung
adenocarcinoma (LUAD), FTO stabilizes PHF1 mRNA through
demethylation, forming a tumor-suppressive axis. The
downregulation of the FTO/PHF1 axis promotes tumor cell self-
renewal, progression, and poor prognosis by enhancing FOXM1
expression, thereby compromising therapeutic efficacy (67). Breast
cancer research reveals that chemotherapy-induced senescent
neutrophils upregulate intratumoral FTO via exosomal piR-17560
secretion. Elevated FTO subsequently reduces m®A modification on
ZEB1 mRNA, stabilizing its transcript and promoting EMT and
radioresistance (68). In glioblastoma (GBM), pharmacological
inhibition of FTO (e.g., using FB23-2) increases m°A
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modification on the target gene VEGFA, downregulating its
expression and impairing DNA damage repair (e.g. sustaining
YH,AX foci and reducing Rad51 recruitment). This significantly
enhances the radiosensitivity of glioblastoma stem cells (GSCs),
suppresses tumor growth, and prolongs survival, indicating that
FTO upregulation promotes GBM radioresistance (69).
Additionally, FTO in NPC promotes OTUBI expression by
erasing m®A marks on OTUBI transcripts, suppressing radiation-
induced ferroptosis (25), and induces CD44 splice variant switching
(CD44v) via IncRNA-HOTAIRMI1 interaction to inhibit
ferroptosis, collectively driving radioresistance (26). In CSCC,
FTO upregulates B-catenin expression by reducing the m°A levels
of its mRNA, thereby enhancing chemoradioresistance both in vitro
and in vivo (27). Collectively, FTO acts as a core determinant of
pan-cancer radioresistance, positioning it as a promising
therapeutic target for overcoming resistance and improving the
efficacy of radiotherapy.

2.7 ALKBH5

ALKBHS5, an m6A “eraser”, increases radiotherapy resistance in
hepatocellular carcinoma (HCC) and GBM by influencing CSCs.
CSCs are closely linked to cancer therapy resistance through various
pathways, including activating DNA damage repair processes, the
EMT, and modulating the levels of genes associated with self-
renewal (28, 29). Studies demonstrate that elevated expression of
ALKBH5 enhances glioblastoma (GBM) radioresistance by
modulating homologous recombination (HR) (70). Further
investigations confirm that glioblastoma stem cells (GSCs) are the
primary source of radioresistance in GBM, with the MST4-USP14-
ALKBHS5 signaling axis serving as its core mechanism. Specifically,
ALKBH5 undergoes deubiquitination mediated by USP14 (a
deubiquitinase), which confers protein stability that is further
potentiated by phosphorylation from the upstream kinase MST4.
This pathway sustains GSC stemness and tumorigenicity, while
robustly promoting DNA damage repair and driving therapeutic
radioresistance (71). Liver cancer stem cells (LCSCs) exhibit CSC-
like properties and significantly affect HCC progression and
therapeutic resistance (72). ALKBH5 is upregulated in LCSCs,
where it promotes SOX4 expression through demethylation. The
ALKBHS5/SOX4 axis enhances LCSC properties by the activation of
SHH signaling (73). In summary, ALKBH5 overexpression in HCC
may contribute to radiotherapy resistance.

2.8 Others

In NSCLC, m6A RNA methylation-mediated regulation of
mitochondrial RNA-processing endoribonuclease (RNase MRP)
enhances the properties of cancer stem cells and promotes the
EMT through the TGFB/SMAD2/SMAD3 pathway, thus
contributing to radiotherapy resistance (74). Meanwhile, m6A-
modified enhancer RNAs (eRNAs) are closely linked to the
progression of bone-metastatic prostate cancer (mPCa) and its
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resistance to radiotherapy. Zhao et al (75) employed RNA
sequencing and other methods to identify the m6A-modified
bone-specific eRNA, MLXIP, associated with radiotherapy
resistance. This eRNA inhibits RNA degradation by facilitating
the interaction between the RNA-binding protein KHSRP and
mRNA, affecting PC progression and its sensitivity to radiotherapy.

3 m5C methylation and radiotherapy
resistance

m5C modification refers to the methylation of the fifth cytosine
carbon in RNA and is commonly observed in RNA types such as
mRNA, tRNA, rRNA, and enhancer RNA (11). The m5C
methyltransferases are associated with both the TRDMT (76) and
NSUN families (34, 77). Known “erasers” of m5C methylation
include the TET enzyme family (30), while “readers” include fragile
X messenger ribonucleoprotein (FMRP) (30), ALYREF (78), and
YBX1 (79). m5C methylation regulators affect RNA stability,
translation efficiency, and other processes, regulating various
biological functions, including proliferation, differentiation, and
apoptosis. They also play a key role in radiotherapy resistance in
malignant tumors (80), primarily by improving DNA repair
capacity and regulating gene expression, ultimately reducing cell
death and leading to radiotherapy resistance (81, 82) (Figure 4).

10.3389/fonc.2025.1596541

3.1 FMRP

FMRP is an m5C “reader” that recognizes and binds to m5C-
modified RNA. Through its interaction with the m5C eraser ten-
eleven translocation protein 1 (TET1), FMRP induces the
demethylation of m5C RNA modifications, therefore promoting
mRNA-dependent DNA damage repair processes (34).
Furthermore, FMRP interacts with the m5C methyltransferase
TRDMT]1, which facilitates transcription-coupled homologous
recombination at reactive oxygen species (ROS)-induced DSBs
through the TRDMT1- m5C-RAD52-RAD51 axis (31). The
absence of FMRP and TRDMT1 increases radiation sensitivity in
BC cells (30, 31), and BC cells with low TRDMT1 expression exhibit
greater sensitivity to radiotherapy (31).

3.2 NSUN6

The mechanistic and functional diversity of NSUN6-mediated
tumor radioresistance operates through the m>C-NDRGI axis. Yu
et al. discovered that in cervical cancer, NDRGI, as a transcriptional
regulatory target of NSUNG6, participates in radioresistance
mechanisms. Elevated NSUNG6 expression initiates the NSUN6/
ALYREF-m’C signaling cascade, enhancing NDRGI stability by
augmenting its m°C RNA methylation levels, ultimately conferring
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radioresistance (33). Given that NDRGI significantly promotes
tumor progression and brain metastasis in aggressive breast
cancer (83), NSUN6 may potentially co-drive breast cancer
radioresistance via NDRGI regulation. However, the molecular
interactome of this signaling axis in breast cancer remains to be
elucidated further. Conversely, NDRGI exhibits context-dependent
functional reversal in HCC, where it significantly suppresses HCC
tumorigenesis and metastasis by inducing tumor cell ferroptosis
(84). This highlights the cancer type-dependent biological effects
mediated by NDRG1.Whether the NSUN6-m>C-NDRGI axis
universally drives pan-cancer radioresistance requires.

3.3 NSUN2

NSUN2, an m5C “writer,” participates in radiotherapy
resistance by regulating gene expression. Niu et al. found that cis-
expression quantitative trait loci (cis-eQTLs) in NSUN2 promote
radiotherapy resistance in ESCC through mRNA-m5C methylation.
Mechanistically, the NSUN2 rs10076470 G-to-A mutation acts as a
cis-eQTL for STATI, a key transcription factor that is markedly
upregulated in ESCC. This genetic variation increases NSUN2
activity, leading to enhanced m5C methylation and upregulation
of multiple cancer-related genes, promoting ESCC progression and
increasing resistance to radiotherapy (32).

4 m7G methylation and radiotherapy
resistance

The m7G modification is frequently seen in tRNA, rRNA, and
mRNA across both eukaryotic and prokaryotic organisms. m7G
methylation primarily occurs at position 46 of tRNA and within the
mRNA 5’ cap structure. The key regulators of m7G methylation
include “writers” such as Trm8/Trm82 (85) and METTL1/WDR4
(86). FTO, primarily known as an m6A demethylase, also functions

10.3389/fonc.2025.1596541

as an “eraser” of m7G methylation, affecting RNA stability and
translation efficiency (87). Known “readers” include the QKI family
(88) and YTH domain-containing proteins, which recognize m7G
modifications and regulate RNA stability and translation (89).

METTLI1, involved in m7G tRNA modification, serves as a
“writer” of m7G methylation. It is closely associated with
tumorigenesis, progression, and resistance to radiotherapy. For
instance, studies have indicated that increased METTLI
expression elevates the risk of neuroblastoma tumorigenesis (90)
and promotes the growth and metastasis of NPC both in vitro and
in vivo (91). Furthermore, Studies have shown that METTLI1 is
upregulated in various cancers, with its levels correlating with
cancer malignancy. In HCC, ionizing radiation induces METTLI-
mediated m7G tRNA methylation, selectively increasing the
translation of DNA-dependent protein kinase catalytic subunit
(DNA-PKcs) or DNA ligase IV through higher-frequency m7G-
associated codons. This regulation enhances the DNA DSB repair
through nonhomologous end joining (NHE]), thus conferring
resistance to ionizing radiation in HCC (35) (Figure 5).

5 m1A methylation and radiotherapy
resistance

The mlA modification involves adenosine methylation the 1-
position, affecting RNA structure and function. In eukaryotes, the
methyltransferases (“writers”) responsible for m1A methylation
primarily include TRMT10C, TRMT61B, TRMT61A, TRMTS,
SDR5CI, and NML. The demethylases (“erasers”) mainly consist of
o-ketoglutarate-dependent dioxygenases such as ALKBH7, ALKBH3,
ALKBH1, and FTO. The known “readers” of m1A-modified RNA
include YTHDF1-3 and YTHDCI1 (11). Currently, direct causal
evidence for the regulatory factors driving tumor radioresistance
remains insufficient. Nevertheless, cutting-edge research has
suggested their potential roles. For instance, the RNA demethylase
ALKBH3 has been reported to influence radiation sensitivity by
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modulating the TME (92). These preliminary findings underscore the
necessity for in-depth mechanistic dissection of relevant regulatory
pathways in radioresistance.

mlA methylation contributes to radiotherapy resistance by
modulating the TME, regulating gene expression, and altering
cellular metabolic processes. Xu et al. reported that mlA
methylation may affect the sensitivity of lung adenocarcinoma
(LADC) cells to radiotherapy by affecting immune cell infiltration
and function within the TME (36). Specifically, inhibition of m1A
downregulates the MYC/PD-L1 axis involved in immune evasion of
tumors. Since radiotherapy resistance has close associations with
changes in the tumor immune microenvironment, ml1A
methylation may affect radiotherapy efficacy by modulating this
signaling pathway (93).

6 Clinical significance of RNA
methylation in radiotherapy resistance

RNA methylation holds significant clinical implications for
radiotherapy resistance in cancer. Its levels can serve as
biomarkers for predicting radiotherapy efficacy, helping in the
identification of radiotherapy-resistant patients, and guiding
personalized treatment strategies (94). Furthermore, RNA
methylation-related enzymes, such as METTL3 and YTHDC2,
may serve as therapeutic targets to overcome radiotherapy
resistance. Modulating RNA methylation levels through inhibitors
holds the potential for improving radiotherapy outcomes (13, 23).
RNA methylation modifications influence radiotherapy efficacy by
influencing DNA repair, tumor cell radiation sensitivity, and the
tumor immune microenvironment. Therefore, precision treatment
strategies based on RNA methylation research offer the potential to
mitigate radiotherapy resistance and improve patient outcomes,
representing a promising therapeutic approach (27).

6.1 Biomarkers

RNA methylation can serve as a biomarker for identifying
malignant tumors resistant to radiotherapy. In GBM, METTL3
expression is associated with radioresistance, and its downregulation
reduces DNA damage repair and increases radiosensitivity (12).
Similarly, in NSCLC, METTL3 is upregulated, and its knockout
increases cellular sensitivity to radiotherapy (14). These findings
suggest that RNA methylation levels can function as biomarkers to
predict radiotherapy efficacy, facilitating the identification of
radiotherapy-resistant patients and enabling individualized
precision treatment.

6.2 Therapeutic targets

Enzymes involved in RNA methylation modifications and their
downstream regulatory targets hold significant therapeutic
potential for overcoming radiotherapy resistance across various
cancers. Studies have shown that METTL3 increases radiotherapy
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resistance in OSCC by targeting SALL4 (13), while METTL3
knockdown increases PDAC cell sensitivity to low-dose
radiotherapy, suggesting its possible application as a target in
treating the disease (15). In NPC, METTL3-mediated m6A
methylation upregulates KIF15 expression, contributing to
radiotherapy resistance. Inhibiting KIF15 expression has been
found to mitigate this resistance (17). Collectively, these findings
suggest that METTL3 is a promising therapeutic target for
radiosensitization across various cancer types. Currently, small-
molecule inhibitors targeting METTL3 are undergoing preclinical
investigation (95), which may inform future combinatorial
radiosensitization strategies. Similarly, in CSCC, FTO promotes
B-catenin expression by reducing m6A modification levels,
aggravating radiotherapy resistance. This suggests that targeting
FTO or PB-catenin may optimize therapeutic outcomes (27).
However, FTO exhibits broad substrate specificity. Targeting FTO
may influence the expression of metabolism-related genes,
potentially resulting in metabolic dysregulation. This underscores
the necessity for more precise strategies to target RNA methylation
(69, 96). Furthermore, m5C modification-related proteins,
including FMRP and members of the NSUN family, as well as the
key m7G tRNA modification enzyme METTLI, have been reported
to be involved in regulating the radiotherapy response in malignant
tumors. Inhibiting the activity of these modification enzymes has
been shown to improve radiotherapy efficacy in killing cancer cells
(30-33). These findings not only highlight the key role of RNA
methylation modifications in radiotherapy resistance but also
provide diverse potential targets for developing precision
radiotherapy sensitization strategies based on RNA modification
regulation, offering significant clinical implications.

6.3 Combination

Combining methylation-modulating inhibitors with
radiotherapy has been shown to suppress tumor growth and
progression. Research indicates that STM2457, a novel inhibitor
targeting METTL3, exhibits significant efficacy in preclinical models
of AML (97). To evaluate its anti-leukemic effects in conjunction
with radiotherapy, experiments were conducted using METTL3-
knockout cells and murine models. The results demonstrate that the
targeted inhibition of METTL3 by STM2457, when combined with
in vivo radiotherapy, synergistically suppresses tumor growth (95).
Furthermore, Zhang et al. found that inhibiting METTL3 enhances
the radiosensitivity of HCC by activating the radiation-induced
ferroptosis pathway (60). Additionally, studies have shown that the
FTO inhibitor FB23-2, when combined with radiotherapy,
significantly inhibits tumor spheroid formation and the self-
renewal capacity of GSCs, suppresses cell proliferation, and
induces apoptosis in GBM cells. Animal experiments further
confirmed that FB23-2 combined with radiotherapy effectively
inhibits intracranial tumor growth in mice (69). Collectively,
these findings suggest that the targeted inhibition of METTL3
and FTO, in combination with radiotherapy, enhances the
suppression of tumor growth and progression.
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Moreover, studies have indicated that cyclooxygenase-2 (COX-
2) is a potential target for radioprotection and radiosensitization.
Inhibition of COX-2 (e.g., celecoxib) can reduce the resistance of
malignant tumor cells to radiotherapy (98). In NPC, the resistance
to radiotherapy is primarily mediated by EBV-encoded products
(such as LMP1) and non-coding RNAs (miRNA/IncRNA/
circRNA), which inhibit DNA damage repair, activate anti-
apoptotic pathways (such as PI3K/AKT, NF-«B), and promote
EMT. Combined chemoradiotherapy or targeting EBV/non-
coding RNAs (e.g., olaparib inhibiting miR-519d, curcumin
downregulating IncRNA AK294004) can reverse radiotherapy
resistance (99).

In summary, targeting epigenetic regulation (such as METTL3,
FTO, COX-2 inhibitors) or viral/non-coding RNA pathways (such
as EBV-LMP1, miRNA/IncRNA), in conjunction with
radiotherapy, can significantly enhance antitumor efficacy
through synergistic mechanisms, providing new strategies to
reverse radiotherapy resistance.

7 Conclusion

In summary, RNA methylation plays a crucial role in tumor
radioresistance by regulating DNA damage repair and key signaling
pathways. Current research has preliminarily elucidated the
mechanisms of m6A; however, several limitations remain: the
associations of other modifications such as m5C, m7G, and m1A
with radioresistance have yet to be clarified. Additionally, the
synergistic effects, targeting, and toxicity issues of methylation
inhibitors (e.g., FTO/METTL3 targeted drugs) urgently need
breakthroughs, and there is a lack of clinical validation.
Furthermore, existing RNA methylation detection technologies
exhibit insufficient sensitivity, limiting their clinical application as
biomarkers. To address these limitations, future research should
deeply explore the mechanisms of non-m6A modifications, advance
human trials and safety optimization of inhibitors, and develop
high-sensitivity multidimensional methylation detection systems,
ultimately achieving precise design of individualized radiotherapy
sensitization strategies.
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