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Introduction: Accurate classification of brain tumors from MRI scans is a critical
task for improving patient outcomes. Machine learning (ML) and deep learning
(DL) methods have shown promise in this domain, but their relative performance
remains unclear.

Methods: This study evaluates several ML and DL techniques using the BraTS
2024 dataset. The models assessed include traditional algorithms such as
Random Forest and advanced deep learning architectures including Simple
CNN, VGG16, VGG19, ResNet50, Inception-ResNetV2, and EfficientNet.
Preprocessing strategies were applied to optimize model performance.
Results: The Random Forest classifier achieved the highest accuracy of 87%,
outperforming all deep learning models, which achieved accuracy in the range of
47% to 70%. This indicates that traditional ML approaches can sometimes surpass
state-of-the-art DL methods in tumor classification tasks.

Discussion: The findings highlight the importance of model selection and
parameter tuning in automated brain tumor diagnosis. While deep learning
models are generally considered standard for image analysis, Random Forest
demonstrated superior performance in this context. This underscores the need
for fine-grained consideration of dataset characteristics, computational
resources, and diagnostic requirements.

Conclusion: The study shows that carefully selected and optimized ML
approaches can improve tumor classification and support more accurate and
efficient diagnostic systems for brain tumor patients.

brain tumor, classification accuracy, machine learning techniques, high-grade gliomas
(HGG), comparative study
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1 Introduction

The combination of deep learning and machine learning
techniques has resulted in advancement of brain tumor
segmentation and classification. The application of these
approaches has been a revolution in the field of medical imaging
primarily by automating the traditional manually driven processes
and accuracy of the tumor identification and classification. As
demonstrated by U-Net and Convolutional Neural Networks
(CNNs) type of deep learning models, tumor regions in 2D MRI
images can be accurately delineated with high Dice similarity
coefficients for tumor regions (1, 2). In addition to this,
mathematical and machine learning methods such as
thresholding, K-Means clustering, and CNN are employed to
solve the segmentation problem as an optimization problem by
using extracted features to precisely pinpoint tumor edges (3). The
segmentation process has been further refined by such other
advanced image processing techniques as noise reduction, image
enhancement and wavelet analysis (4). As for classification, CNNs
have been used effectively for differentiating various tumor types
with high classification (1, 5). Support Vector Machines (SVMs)
and Random Forests have also been used for tumor classification
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(Figure 1) by finding best separating hyperplanes or decision trees
grown in the feature space (extracted using other set of features) (3).
New and more sophisticated neural network architectures, such as
NeuraClassNet (6) and MDCNet (7) have reached 99.67%
accuracies via novel optimization techniques and multi-view
analyses. However, these advancements do not guarantee
solution, mainly due to data and model complexity. By using the
traditional image processing and the contemporary computational
intelligence methods, robust solutions for diverse imaging
modalities can be achieved by addressing these constraints,
thereby enhancing clinical applicability (8).

The steps include loading the MRI dataset, preprocessing the data,
computing tumor volume, creating binary labels, and splitting the data
into training and testing sets. The model architecture is selected from
various options, including Simple CNN, VGG16/VGG19, ResNet50,
Inception-ResNetV2, Efficient Net, and Random Forest. The models
are trained and subsequently evaluated for performance, with the
results visualized through ROC curves and accuracy metrics.
Convolutional Neural Networks (CNNs) have become essential for
brain tumor classification because they perform automatic feature
extraction from medical imaging data. Pre-trained CNN models have
received validation from multiple research studies for their
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FIGURE 1
Workflow diagram for tumor detection.
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effectiveness in this area. In brain tumor classification medical imaging
applications VGG-16 demonstrated its effectiveness by reaching a high
98% accuracy rate according to studies by Vellanki et al., 2024 (9) and
Vetrivelan et al., 2024 (10). The ResNet architecture, especially
ResNet50, produced strong results with validation accuracies
reaching up to 89.47% according to Muftic et al. and Padmakala &
Maheswari both in 2024. The EfficientNetBO and EfficientNetB3
models shows effectiveness by achieving high accuracy levels of
98.36% and 99.44%, respectively (11-13). DenseNet models have
superior performance by achieving validation accuracies up to 95%
(14). The pretrained models that use transfer learning mechanism has
the capability to reuse features from large datasets thereby providing
significant benefits for medical imaging applications that has limited
dataset availability. Hybrid and ensemble learning approaches are
used to further enhance the classification accuracy by combining the
advantages of multiple models. As an example, the PDSCNN-RRELM
combines a lightweight parallel depthwise separable convolutional
neural network (PDSCNN) with a hybrid ridge regression extreme
learning machine (RRELM) and achieves a great average precision of
99.35% (15). The custom four residual deep learning architecture
(4RDL-DCNN) optimized by particle swarm optimization achieved
high effectiveness with the accuracy of 98.60% (16) was another
noteworthy model. Additionally, a classification accuracy of 95%
(17) was achieved on a ViT and EfficientNet-V2 ensemble
combined through a genetic algorithm. Ensemble methods
demonstrated consistently better results than individual models,
benefitting from the strength of combining different architectures to
obtain better results. Improvement of model performance and
building trust rely heavily on explain ability and optimization
techniques. The accuracies achieved for various datasets (11) with
the integration of the Quantum Genetic Algorithm (QGA) with
EfficientNetBO are 98.36 and 98.25. In a similar manner, the Particle
Swarm Optimization (PSO) algorithm is introduced to optimize the
feature extraction process in the custom 4RDL-DCNN model
obtaining an accuracy of 98.60% (16). Moreover, weights in the
combined system of Vision Transformers (ViT) and EfficientNet-
V2 models are optimized using the Genetic Algorithm (GA) to achieve
95% classification accuracy (17). The optimization approaches also
improve the feature selection and model weight adjustments to yield
improved classification performance. Although deep learning models
dominate the field, conventional machine learning (ML) techniques
have shown potential in brain tumor classification. The Gaussian
Process Classifier (GPC), combined with principal component
analysis (PCA), has exhibited notable improvements in accuracy,
precision, recall, and Fl-score (18). Support Vector Machines
(SVMs) have also been utilized alongside feature selection methods
like the Gini index and mutual information, yielding competitive
results (18, 19). Despite their inherent advantages, traditional machine
learning (ML) models generally underperform compared to deep
learning architectures in image-based classification tasks.

In medical applications, explain ability is extremely important
in order to achieve clinical trust in model decisions. To clarify its
decision making process, the PDSCNN-RRELM model has been
incorporated with Shapley Additive Explanations (SHAP) (15).
Moreover, Gradient-weighted Class Activation Mapping (Grad-
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CAM) has been employed to visualize the decision making of
deep learning models in order to increase their interpretability
(20). These approaches make deep learning models in clinical
environments transparent and reliable. Significant improvement
of model performance was achieved through the application of
transfer learning and advanced data preprocessing techniques. Pre
trained models such as VGG16, Resnet50, EfficientNetB3 were fine-
tuned on brain tumor datasets to achieve the state of the art results
(12, 13). Additionally, data augmentation techniques such as sparse
auto encoder based augmentation and contrast limited adaptive
histogram equalization (CLAHE) (16, 20) were used to enhance the
diversity of the dataset and improve model generalization. Different
performance metrics such as accuracy, precision, recall and F1 score
have been used to evaluate various models effectiveness. Vellanki
et al. made noteworthy findings, namely that VGG-16 has achieved
98% accuracy in brain tumor classification while Gencer & Gencer
obtained 98.36% accuracy over traditional methods with
EfficientNetB0. The denseNet has shown good generalization to a
validation accuracy of 95% (14). In addition, the accuracies of
ensemble models using multiple deep learning architectures (21)
can reach up to 99.43%. There has been progress, but there are still a
lot of obstacles. It was observed that models such as EfficientNetB3
and VGG-19, when trained on a limited amount of data, exhibited
signs of overfitting (12, 13). In order to train more complex models,
larger datasets are required (12, 13). Furthermore, most of the
models have been tested on the standard datasets, which makes it
important to evaluate them further in real clinical settings (14, 22).
Other issues should be tackled in future studies and new
architectures and optimization methods explored to improve
model accuracy and dependability.

The BraTS 2024 database (32) contains Tlw, T1lw contrast
enhancement (T1c), T2w, and FLAIR sequence types, each offering
distinct information for imaging various aspects of tumor morphology
and structure (23). This research concentrated on utilizing a subset of
these modalities, specifically contrast-enhanced T1 (T1c), T2w, and
T2-FLAIR (or T2w) images for tumor classification. Additionally, the
corresponding segmentation masks were employed to extract
quantitative measurements (such as tumor size) used to create
binary labels. Patients with tumor volumes exceeding the median
were classified as having high tumor burden, while those below the
median were categorized as having low tumor burden. For decades,
deep learning has the potential to solve the complex patterns in
medical images. The architectures used in this study include VGG16
(24), VGGI19 (25), ResNet50 (26), Inception-ResNetV2 (27), and
EfficientNet (28), all of which are known to achieve state-of-the-art
performance in various image classification tasks. Even in this case,
classical machine learning techniques, e.g., Random Forests, are very
competitive (and in combination with PCA robust feature extraction,
which is in particular useful when there is a lack of data and/or the
features are very discriminative) (29, 30). Despite numerous studies
utilizing these methods, no comprehensive evaluation of this nature
on the BraTS 2024 dataset has been reported in the existing literature.
This gap is filled by evaluating several state of the art deep learning
models as well as Random Forest classifier on PCA reduced features.
Additionally, the models were compared in terms of accuracy, loss,
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and confusion matrices, and the results were visualized at both
individual and aggregate levels (40-42).

This research has three main goals. First, it evaluates how
different deep learning models and a traditional Random Forest
classifier perform when applied to the BraTS 2024 dataset. Second,
it examines how various data preprocessing techniques and labeling
approaches affect model effectiveness. Lastly, this investigation
provides valuable insights and suggestions for enhancing brain
tumor classification methods. The findings are intended to inform
future studies and practical applications of automated brain tumor
detection and analysis.

2 Materials and methods

This section describes the BraTS 2024 dataset and outlines the
preprocessing pipeline implemented to prepare the data for model
training. The focus was on leveraging multimodal MRI scans,
extracting relevant features, and generating labels for
binary classification.

2.1 Dataset

The BraTS 2024 dataset provides a comprehensive collection of
multimodal MRI scans of patients with brain tumors https://
arxiv.org/abs/2405.18368 (32). The dataset was obtained from a
Kaggle repository and organized into patient-specific folders. For
example, a typical folder (for example, BraTS-GLI-02632-102)
contains files named according to the following pattern:

e BraTS-GLI-02632-102-t1c.nii
e BraTS-GLI-02632-102-t2w.nii
e BraTS-GLI-02632-102-t2f.nii

*  BraTS-GLI-02632-102-seg.nii

This hierarchical structure facilitates individual patient-level
processing, ensuring that each modality and its corresponding
segmentation mask are correctly associated with each other.
Harmonizing data for training requires a preprocessing step. For
the data preprocessing pipeline, nibabel library was used to load the
NIfTI files. Middle slices were extracted from each modality (Tlc,
T2w, and T2-FLAIR) assuming that they represent the tumor
region. Finally, each extracted slice was resized to 128x128 pixels
using the resize function from skimage. Transform and normalized
to the [0,1] range to reduce variability across scans. A stack of 3
channel image was formed for each patient by stacking the
processed slices from the three modalities along the channel
dimension. Then, a segmentation mask was used to compute the
tumor volume by counting nonzero voxels, which served as a
quantitative measure used to develop classification labels. As
there is no explicit clinical labels in the dataset, the binary
classification labels were computed based on the tumor volume.
More specifically, for all patients the median tumor volume was
calculated and if a tumor volume exceeded the median, 1 was
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assigned as its label (indicative of a high tumor burden). Patients
with volumes above the median were labelled with a value of 1,
indicating a high tumor burden, and patients with volumes below
the median were given a label of 0. It also leads to a balanced binary
labelling scheme for the classification task. The data were
preprocessed and labeled, and the data were partitioned into
training and testing subsets by 80/20 ratio. The partition was
done at patient level so that there are no patient data in both the
training and the testing sets. This approach helps in keeping the
independence of the evaluation data and gives a fair estimate of the
model performance. The following section details how the BraTS
2024 dataset was prepared for classification. The first step of
preprocessing made sure that the imaging data were the same size
and intensity, and the second step ensured that the label generation
step allowed for a clear definition of classes in terms of the tumor
burden. These procedures were used to guide subsequent model
training and evaluation as laid out in the next sections. Each patient
folder in the dataset contained several NIfTI files corresponding to
different imaging modalities, including:

e Tlc (Contrast-Enhanced T1): Highlights regions with
blood-brain barrier disruption.

e T2w (T2-Weighted): Provides a high signal intensity for
fluid regions.

e T2-FLAIR (Fluid-Attenuated Inversion Recovery):
Suppresses cerebrospinal fluid signals to better visualize
the lesions.

* Segmentation Masks: Contain expert annotations
delineating the tumor regions.

The Tlc, T2w, and T2-FLAIR modalities were utilized to
construct a 3-channel input image for each patient, while the
segmentation mask was used to derive quantitative measures,
such as tumor volume.

Primarily one needs to load the dataset and perform pre-
processing on the data and utilize PCA for dimensional
reduction. The information undergoes division into training
batches and testing batches. The Random Forest model receives
its training through application of the training data. The testing data
receives predictions from the model and its performance undergoes
evaluation. The visual representation includes the ROC curve.

2.2 Methodology

This section outlines the overall experimental design, including
the models evaluated, training procedures, and the evaluation metrics
and visualizations used to compare performance (Figure 2). To
capture the intricate patterns, present in brain MRI data, several
state-of-the-art deep learning architectures were implemented using
transfer learning. The foundational baseline model employed was a
Simple CNN, representing a custom-designed convolutional neural
network. Subsequently, the VGG16 architecture, consisting of 16
layers, was utilized due to its suitability for transfer learning by
freezing the convolutional base and appending custom fully
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A flowchart presents the complete procedure for data analysis.

connected layers. This was followed by the use of VGG19, which
extends the architecture to 19 layers to enable the extraction of more
abstract features. Additionally, ResNet50, a 50-layer residual network
with shortcut connections, was incorporated to facilitate the training
of deeper models. Inception modules and the residual connection-
based advanced hybrid architecture, InceptionResNetV2, were
introduced to capture multi-scale features. Lastly, EfficientNet was
employed, which balances model depth, width, and resolution through
compound scaling, representing a modern and efficient network
design. In neural models, an increase in the number of layers
generally results in a higher number of trainable parameters
(weights and biases), allowing the network to model more complex
relationships. However, deeper architectures are more prone to
overfitting, particularly when the dataset is limited, and thus require
additional regularization and tuning strategies to generalize effectively
(38, 39). A Random Forest classifier is the classical machine learning
approach which, in addition to deep learning models, was used for
classification. Then, for this method, image detecting features were
extracted through flattening the pixel intensities and followed by the
dimensionality reduction method of Principal Component Analysis
(PCA). Under conditions where the dataset size was limited, this
classical technique acted as a benchmark for the deep learning models.

In this study on brain tumor classification using the BraT$ 2024
dataset, a Random Forest classifier was employed to distinguish
between cases of high and low tumor volumes. Prior to
classification, each patient’s multi-modal brain MRI comprising
tlc, t2w, and t2f sequences is preprocessed and flattened into a
high-dimensional feature vector x. To reduce dimensionality and
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mitigate overfitting, Primary Component Analysis (PCA) is applied
to project these feature vectors onto a lower-dimensional space.

This transformation is mathematically expressed in Equation 1
as:

z=w (x—x) (1)

Where x represents the mean of the training data and W is the
projection matrix containing the top principal components. The
transformed feature vector z thus captures the most significant
variance in the data while discarding redundant information.

The Random Forest classifier then operates on these PCA-
reduced features. Let (z) denote the prediction made by the k — th
decision tree in the ensemble for the transformed input z. In a
binary classification setting (with class labels 0 for low tumor
volume and 1 for high tumor volume), the final prediction y is
obtained through a majority voting scheme as presented in
Equation 2:

yN = modeTlz, T2z, ..., TKz (2)

This process can also be formulated in Equation 3 as:

yA =arg maxil{Tk(z) =} (3)
=

Where itl= ¢/it is an indicator function that equals 1 if the k —
th tree predicts class ¢ and 0 otherwise.

Alternatively, if each tree provides a probabilistic estimate pk for
class ¢, the ensemble’s class probability is calculated as the average
of these estimates as shown in Equation 4:
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ph (1) = LKk (elx) @

The final class label is then determined by selecting the class
with the highest average probability as presented in Equation 5:

y =argmax p* (c|x) ©)

2.2.1 Data preprocessing pipeline

In the context of the BraTS2024 dataset, this approach leverages
the multi-modal imaging data by first condensing it via PCA and
subsequently classifying patients based on tumor volume. The
middle slice from each modality (T1lc, T2w, and T2-FLAIR) was
extracted and resized to 128x128 pixels. The three modalities were
stacked to form a three-channel image, with each channel
corresponding to a specific modality. All images were normalized
to the [0, 1] range to maintain consistency across models.

2.2.2 Training configuration

The dataset was split into training and testing sets using an 80/
20 ratio, ensuring no patient appeared in both sets. Data
augmentation techniques (rotation, flip, and scaling) were applied
to enhance generalization. The Adam optimizer was employed with
learning rates (1e-4 to le-3), and Categorical Cross-Entropy served
as the loss function for binary classification with one-hot encoded
labels. Training used a batch size of 8 and initially spanned five
epochs, extended as needed for improved performance.

2.2.3 Model architectures and training

For deep learning models, the convolutional bases of pretrained
models were frozen during initial experiments, with options for
unfreezing and fine-tuning in future trials. For the Random Forest
approach, images were flattened, and PCA reduced feature
dimensionality (minimum of 50 components). The Random
Forest classifier was trained with 100 estimators and default
parameters as a classical benchmark.

2.2.4 Performance evaluation
Model performance was assessed through:

* Training/validation accuracy and loss curves across epochs
* Confusion matrices analyzing true/false positives/negatives
* ROC curve analysis with AUC values

» Aggregate plots comparing final accuracies and losses

* Grid layouts of all confusion matrices

This comprehensive evaluation framework enabled robust

comparison of both deep learning and classical machine learning
approaches on the BraTS 2024 dataset.

3 Results

This section presents the experimental results of the BraTS$
dataset 2024 used in this study. Deep learning models and classical
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TABLE 1 Obtained results of accuracy.

S. No Model Accuracy
1 Random Forest (with PCA features) 87.5%
2 Simple CNN 70.0%
3 VGGI16 67.5%
4 VGGI19 62.5%
5 Inception-ResNetV2 60.0%
6 ResNet50 47.5%
7 Efficient Net 47.5%

Random Forest classifier are evaluated for comparison. The
performances of both individual and aggregated models are
visualized in terms of accuracy, loss and confusion matrices. The
experiments are evaluated using the BraTS 2024 dataset. The data in
the dataset is preprocessed for each patient by extracting the middle
slices of three imaging modalities (Tlc, T2w, T2-FLAIR) and
normalizing them. To create binary labels from the tumor volume
computed based on the segmentation masks, the median volume
was chosen as the threshold (Table 1). The following accuracy
results were obtained for the test set:

The Random Forest model with PCA features had the highest
accuracy of 87.5%. More complex CNN models performed with
lower accuracy rates. The results suggest that the evaluated deep
learning models failed to match the performance of the classical
Random Forest classifier by a large margin. On the other side of
comparison, different deep models showed more ranges of
performance, simple architecture (Simple CNN and VGG based
networks) got higher accuracy than complex networks (ResNet50
and EfficientNet) (Table 2, Figure 3).

Table 2 displays the model’s overall accuracy (0.88) along with
more detailed measures: precision (0.90) indicates how many of the
positive predictions were correct; sensitivity or recall (0.86) shows
the model’s ability to correctly identify actual positive cases;
specificity (0.89) reflects how well the model identifies negative
cases; and the F1 Score (0.88) provides a balance between precision
and recall. Together, these metrics offer a comprehensive overview
of the classifier’s performance. The key performance metrics for the
Random Forest classifier offer a comprehensive overview of the
model’s effectiveness. The overall accuracy is 0.88. More detailed
measures include precision at 0.90, indicating the proportion of
correct positive predictions; sensitivity (or recall) at 0.86, reflecting

TABLE 2 Performance metrics for a Random Forest classifier.

Accuracy 0.88
Precision 0.90
Sensitivity (Recall) 0.86
Specificity 0.89
F1 Score 0.88
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Performance metrics on the BraTS 2024 dataset.

the model’s ability to identify actual positive cases; specificity at
0.89, demonstrating how well the model recognizes negative cases;
and an F1 Score of 0.88, which balances precision and recall.
Together, these metrics clearly and effectively illustrate the
classifier’s performance.

The graph displays an accuracy of 0.88, precision of 0.90,
sensitivity (recall) of 0.86, specificity of 0.89, and an F1 score of
0.88. These metrics collectively demonstrate that the classifier
effectively balances true positive and true negative rates, ensuring
robust discrimination between high and low tumor burden cases.
The visualization underscores the efficacy of the traditional Random
Forest approach, particularly when leveraging PCA-reduced
features for brain tumor classification. Each model was trained
and validated independently in their respective loss curves and
plotted the training and validation accuracies, and revealed

themselves to be very good at learning. Accuracy of the Simple
CNN increased with each training epoch and corresponding loss
decreased. Same trends were observed in VGG16 and VGG19, but
with slightly worse final accuracies (Figure 4). In contrast, more
complex architectures such as ResNet50 and EfficientNet exhibited
poor convergence, as indicated by static accuracy curves and
relatively high loss values (Figure 5). At the same time, the better
performance of the shallow architectures was complemented by
moderate improvement of the InceptionResNetV2 model, which,
however, could not achieve performance levels comparable to the
straight architectures.

The accuracy and loss curves provide valuable insights into the
training progress and performance of both Simple CNN and
VGG16 models. Accuracy curves plot training and validation
accuracy against the number of epochs, where higher accuracy
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Performance metrics for ResNet50 and Inception-ResNetV2 models over four epochs. (a) Training and validation accuracy for the ResNet50 model
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indicates better prediction capability. Similarly, loss curves depict
the model’s error over time, with separate plots for training and
validation loss. A decreasing loss suggests improved performance
and more accurate predictions. Comparing the two models, the
graphs highlight differences in generalization, with VGG16, a pre-
trained model, typically converging faster and achieving higher
accuracy than Simple CNN, which is trained from scratch.
Observing the intersection points and divergence of curves helps

evaluate which model performs better on unseen data,
demonstrating the advantage of transfer learning in achieving
efficient and effective model training.

Three neural network architectures evaluate their training
performance through multiple epochs in the figure. The accuracy
plots show training and validation results that might reveal
overfitting or under fitting symptoms through their changing
patterns. Loss graphs demonstrate the training error reduction
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FIGURE 6
Performance metrics for the EfficientNet model over four epochs (a) Traini
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pattern of the model throughout its learning process. The large
difference between training and validation accuracy can indicate
pronounced overfitting when training deeper networks such as
ResNet50 and Inception-ResNetV2. The stable performance of
VGG19 results from transfer learning because it uses pre-trained
models to achieve improved generalization capabilities on
unknown data.

The experimental training performance of the EfficientNet model,
including trends in accuracy and loss over training epochs, is presented
in Figure 6. The illustration in this figure shows how the Efficient Net
model performed throughout its training process. During training the
accuracy graph demonstrates model learning effectiveness through
increasing training accuracy levels and occasionally fluctuating
validation accuracy which might lead to overfitting because the
model adapts to training data patterns. This graph shows error rate
measurements alongside the training process which indicates that
effective error reduction occurs when loss values decrease. Each
model was used to generate its own class specific confusion matrix.
Overall accuracy for the Random Forest classifier was quite high, and
the confusion matrix of the classifier revealed strong discrimination
between the two classes. A balanced distribution of true positive vs. true
negative was observed for the Simple CNN and VGG16 although some
misclassifications could be found (Figure 7). On the contrary, models
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including ResNet50 and EfficientNet had slightly higher confusion rate
between the classes, which matched their slightly lower accuracy values
for a couple of seconds (Figure 8). The Random Forest classifier had
high overall accuracy and had a robust discrimination of the two classes
in the confusion matrix of the predicted model. The true positives and
true negatives were distributed balanced with some misclassifications
for the Simple CNN and VGG16 models. On the other hand, ResNet50
and EfficientNet showed higher level of confusion between classes as
they had lower accuracy scores. The confusion matrices for various
models provide a detailed view of their classification performance by
comparing the true labels with the predicted labels. In the case of the
Simple CNN model, the confusion matrix (a) displays the distribution
of predictions across different classes, indicating a moderate
performance with some misclassifications. The VGG16 model (b)
shows improved classification accuracy, as reflected in its confusion
matrix, where most predictions align correctly with the actual classes.
The VGG19 model (c) further enhances this trend, demonstrating
strong classification performance with very few misclassified instances,
suggesting better feature extraction and generalization. Lastly, the
ResNet50 model (d) stands out with its confusion matrix revealing
high classification accuracy and minimal errors, underlining the
effectiveness of residual connections in preserving learned features
and improving model depth without performance degradation.
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Confusion matrices of Inception-ResNet V2, Efficient Net and
Random Forest classifiers.

The confusion matrix displays quantitative data about correct
and incorrect predictions between categories which enables detailed
strength and weakness assessments of each predictive model.
Superior model accuracy correlates with the number of correctly
identified instances that appear along the diagonal of the confusion
matrix yet the off-diagonal elements show misclassified classes. The
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accuracy levels alongside generalization ability of Inception-ResNet
V2 and Efficient Net surpass Random Forest classifier because these
deep learning models use modern machine learning technology.
The developed confusion matrices reveal classification capabilities
of each model to help choose the optimal method for the dataset.

3.1 ROC curve analysis

Softmax probabilities were plotted as ROC curves (Figure 9) for
each of deep learning models. Additional evidence of performance
disparities between the models was obtained through the area under
the curve (AUC) values (Figure 10).

The ROC curve for the Random Forest classifier illustrates its
ability to distinguish between different classes by plotting the True
Positive Rate (sensitivity) against the False Positive Rate at various
threshold values. A well-performing model has a curve that leans
toward the top-left corner, indicating a high True Positive Rate with
a low False Positive Rate. The Area Under the Curve (AUC) serves
as a key performance metric, where a higher AUC value signifies
better classification capability. Random Forest, as an ensemble
learning method, typically achieves a strong AUC by leveraging
multiple decision trees to enhance predictive accuracy and reduce
overfitting. The ROC curve provides insights into the classifier’s
effectiveness and helps in comparing its performance against deep
learning models.

3.2 Combined visualization

To enable a holistic comparison across all models, the final
performance metrics were aggregated (Figure 11) and visualizations
(Figure 12) as follows:

Comparison for various classification models, including Simple
CNN, VGG16, VGG19, RESNET50, Inception-ResNet V2, efficient
Net, and Random Forest is presented in Figure 11. The Area Under
the Curve (AUC) values are indicated for each model, showing the
model’s ability to distinguish between classes. The dotted diagonal
line represents the performance of a random classifier, with an AUC
of 0.5.

It is clear from Figure 12 that Random Forest outperforms other
models with an accuracy of 87%. Model Accuracy Comparison for
Simple CNN, VGG16, VGG19, RESNET50, Inception-ResNet V2,
efficient Net, and Random Forest. This bar chart illustrates the
accuracy of each model, highlighting Random Forest as the highest-
performing model. A bar chart was used to compare the final
validation accuracies of all models whereas another bar chart shows
the final validation losses of the deep learning models. Overall, these
aggregated plots show that the Random Forest classifier achieved
the highest accuracy on the whole. They also worked moderately
well on deep learning architectures in terms of accuracy and loss
metrics and far worse than Simple CNN, VGG16 and VGG19,
ResNet50, Inception-ResNetV2 and EfficientNet. In addition to the
individual plots, all confusion matrices were arranged into a single
grid to facilitate direct visual comparison of class predictions across
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different models. This consolidated view illustrates that the Random
Forest classifier outperforms the deep learning models in terms of
class separation and classification accuracy. However, under these
preprocessing and training conditions, it was shown that the
Random Forest classifier with PCA reduced features
outperformed the evaluated deep learning models. This indicates
that feature extraction through PCA and the robustness of the
classical machine learning methods can be incredibly effective for
this task in the presence of a small dataset or when a deep model is
not well fine-tuned. Detailed visualizations here help extend and
understand each model’s behavior before hyperparameter tuning,
fine tuning of pre trained networks and data augmentation
strategies to achieve better performance if any of these potential
deep learning model performance improvement techniques.

4 Discussion

The integration of deep learning with other machine learning
techniques has gained significant attention in brain tumor
classification, segmentation, and detection, particularly using MRI
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datasets, as highlighted in recent studies (31, 32). These hybrid
approaches have demonstrated notable potential in achieving both
clinical accuracy and computational efficiency. For example,
frameworks incorporating the Artificial Intelligence of Things (AIoT)
have validated the feasibility of embedding AI models into smart
healthcare systems to enable more effective real-time diagnostic
support (33). Similarly, traditional machine learning models, when
combined with optimized feature extraction strategies, have proven
effective in the classification and detection of tumors from MRI scans

(34). Comparative and benchmarking studies further emphasize the
strong predictive capabilities of classical machine learning algorithms,
especially in scenarios involving limited data or high-dimensional input
features (35). Moreover, empirical evaluations underscore the
continued importance of performance tuning and algorithm
selection in refining outcomes within biomedical imaging
applications (36-42). These findings support the conclusions of the
current study and justify the inclusion of both conventional and deep
learning models in the experimental framework.

Model Accuracy Comparison
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Accuracy comparison of various deep learning models.
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TABLE 3 Comparison with state of the art.

Ref Dataset Method Accuracy (%)
(43) Kaggle ‘ Probabilistic Neural Net 83.33
Vision
44 )
(“44) BraT$ Transformer (ViT) 81.50
Our BraTS 2024 | Random Forest + PCA 87.50
Method al andom Fores .

The experimental results revealed significant performance
differences between classical and deep learning approaches. Notably,
the feature set derived using Principal Component Analysis (PCA)
achieved an accuracy of 87.5% with the Random Forest classifier—
surpassing all tested deep learning models. In contrast, the Simple
CNN reached only 70% accuracy, while other architectures such as
VGGI16, VGG19, ResNet50, Inception-ResNetV2, and EfficientNet
performed even lower, with accuracies ranging from 47.5% to 67.5%.
These findings underscore the robustness of PCA-based features in
conjunction with classical machine learning algorithms within the
current experimental setup. Although deep learning models
inherently offer greater complexity and theoretical potential, their
performance in this study was hindered by factors such as limited
training data, overfitting, and insufficient benefit from transfer learning
using pre-trained networks. The processing pipeline played a crucial
role in shaping these results. Specifically, it involved extracting the
middle slice from each MRI modality, normalizing the images, and
employing segmentation masks to compute tumor volumes. Binary
labels were then assigned using the median tumor volume as a
threshold. While these preprocessing and labeling strategies provided
a standardized framework for model comparison, they may also have
introduced certain limitations. For instance, relying solely on the
middle slice may fail to capture the full spatial heterogeneity of the
tumor. Likewise, deriving binary labels based solely on tumor volume
oversimplifies the complex clinical distinctions between high-grade and
low-grade tumors, which are not strictly dichotomous. Refining these
preprocessing and labeling methods could potentially enhance the
performance of deep learning models in future studies. The proposed
method demonstrates competitive performance when compared with
recent approaches in brain tumor classification. As shown in Table 3,
our Random Forest model with PCA-based feature reduction achieved
superior classification accuracy (87.5%) compared to existing methods:
the Probabilistic Neural Network (83.33%) (43) and Vision
Transformer (81.5%) (44). This 4.17-6.0% improvement
demonstrates the efficacy of our hybrid approach, where PCA
optimally preserves discriminative features while Random Forest’s
ensemble learning mitigates overfitting—particularly advantageous
for limited medical imaging datasets.

4.1 Potential causes for underperformance
of certain deep learning models

The underperformance of certain deep learning architectures—
such as ResNet50 and EfficientNet—compared to simpler models
like the Simple CNN appears to be driven by several underlying
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factors. A primary issue is that complex models typically require
large and diverse datasets to effectively learn robust feature
representations. However, the dataset used in this study was
relatively small and sourced from real-world clinical data, which
may have constrained the learning capacity of these deeper
networks. Additionally, limitations in fine-tuning further
contributed to this performance gap. The pre-trained networks
were primarily employed as fixed feature extractors, restricting their
ability to adapt to the specific characteristics of brain tumor MRI
data. To enhance domain-specific learning, selectively unfreezing
and fine-tuning deeper layers could enable these models to capture
more relevant features. Overfitting was also likely exacerbated by a
lack of extensive data augmentation and the application of strong
regularization techniques. Implementing a broader range of
augmentation strategies such as rotation, flipping, and intensity
variation could improve generalization and help mitigate the risk of
overfitting in future implementations.

4.2 Limitations and considerations

The current study has several limitations. First, although the
dataset comprises real BraTS 2024 images, the effective sample size,
particularly after splitting into training and testing sets remains
relatively small, potentially preventing more complex deep learning
models from achieving optimal performance. Next, the choice to
extract only the middle slice from each modality simplifies the data
representation but may forfeit valuable spatial information that
could enhance the classification. Furthermore, employing tumor
volume as the basis for binary labels offers a straightforward
mechanism for class differentiation but may not encompass all
clinically relevant factors. Future studies should consider alternative
or supplementary labelling strategies that integrate additional
clinical data. The reliance on fixed, pre-trained models may have
limited their potential in the medical imaging context. A more
nuanced fine-tuning process tailored specifically to the BraTS
dataset could enable better adaptation and improved performance
for these architectures. Although the Random Forest classifier
demonstrated superior performance compared to the deep
learning models in the current analysis, the findings highlight
several opportunities for enhancing the effectiveness of deep
learning approaches. Addressing these issues through enhanced
data preprocessing, fine-tuning strategies, and robust augmentation
may bridge the performance gap and lead to more clinically useful
models in the future.

5 Conclusion

This study evaluated various machine learning techniques for
classifying intra-brain tumors using the BraTS 2024 dataset. The
Random Forest model combined with PCA for feature reduction
achieved the highest accuracy (87.5%), showing that classical
methods with proper preprocessing can be very effective. Some
deep learning models, such as ResNet50 and EfficientNet,
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performed worse, suggesting that these require careful tuning and
training strategies to reach their potential. Future work should focus
on combining classical and deep learning approaches, including
ensemble methods, to improve accuracy and robustness.
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