
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sharon R. Pine,
University of Colorado Anschutz Medical
Campus, United States

REVIEWED BY

Md Belal Bin Heyat,
Westlake University, China
Rajeshkannan S,
St Joseph’s College of Engineering, India

*CORRESPONDENCE

Min Li

lm979308367@163.com

RECEIVED 20 March 2025
ACCEPTED 19 August 2025

PUBLISHED 15 September 2025

CITATION

Wang S and Li M (2025) Comparative
analysis of machine learning techniques
on the BraTS dataset for brain
tumor classification.
Front. Oncol. 15:1596718.
doi: 10.3389/fonc.2025.1596718

COPYRIGHT

© 2025 Wang and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 September 2025

DOI 10.3389/fonc.2025.1596718
Comparative analysis of
machine learning techniques
on the BraTS dataset for
brain tumor classification
Shuping Wang1 and Min Li2*

1Information Statistics Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2School of Computer Science and Technology, Hubei
Business College, Wuhan, China
Introduction: Accurate classification of brain tumors from MRI scans is a critical

task for improving patient outcomes. Machine learning (ML) and deep learning

(DL) methods have shown promise in this domain, but their relative performance

remains unclear.

Methods: This study evaluates several ML and DL techniques using the BraTS

2024 dataset. The models assessed include traditional algorithms such as

Random Forest and advanced deep learning architectures including Simple

CNN, VGG16, VGG19, ResNet50, Inception-ResNetV2, and EfficientNet.

Preprocessing strategies were applied to optimize model performance.

Results: The Random Forest classifier achieved the highest accuracy of 87%,

outperforming all deep learning models, which achieved accuracy in the range of

47% to 70%. This indicates that traditional ML approaches can sometimes surpass

state-of-the-art DL methods in tumor classification tasks.

Discussion: The findings highlight the importance of model selection and

parameter tuning in automated brain tumor diagnosis. While deep learning

models are generally considered standard for image analysis, Random Forest

demonstrated superior performance in this context. This underscores the need

for fine-grained consideration of dataset characteristics, computational

resources, and diagnostic requirements.

Conclusion: The study shows that carefully selected and optimized ML

approaches can improve tumor classification and support more accurate and

efficient diagnostic systems for brain tumor patients.
KEYWORDS

brain tumor, classification accuracy, machine learning techniques, high-grade gliomas
(HGG), comparative study
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1 Introduction

The combination of deep learning and machine learning

techniques has resulted in advancement of brain tumor

segmentation and classification. The application of these

approaches has been a revolution in the field of medical imaging

primarily by automating the traditional manually driven processes

and accuracy of the tumor identification and classification. As

demonstrated by U-Net and Convolutional Neural Networks

(CNNs) type of deep learning models, tumor regions in 2D MRI

images can be accurately delineated with high Dice similarity

coefficients for tumor regions (1, 2). In addition to this,

mathematical and machine learning methods such as

thresholding, K-Means clustering, and CNN are employed to

solve the segmentation problem as an optimization problem by

using extracted features to precisely pinpoint tumor edges (3). The

segmentation process has been further refined by such other

advanced image processing techniques as noise reduction, image

enhancement and wavelet analysis (4). As for classification, CNNs

have been used effectively for differentiating various tumor types

with high classification (1, 5). Support Vector Machines (SVMs)

and Random Forests have also been used for tumor classification
Frontiers in Oncology 02
(Figure 1) by finding best separating hyperplanes or decision trees

grown in the feature space (extracted using other set of features) (3).

New and more sophisticated neural network architectures, such as

NeuraClassNet (6) and MDCNet (7) have reached 99.67%

accuracies via novel optimization techniques and multi-view

analyses. However, these advancements do not guarantee

solution, mainly due to data and model complexity. By using the

traditional image processing and the contemporary computational

intelligence methods, robust solutions for diverse imaging

modalities can be achieved by addressing these constraints,

thereby enhancing clinical applicability (8).

The steps include loading the MRI dataset, preprocessing the data,

computing tumor volume, creating binary labels, and splitting the data

into training and testing sets. The model architecture is selected from

various options, including Simple CNN, VGG16/VGG19, ResNet50,

Inception-ResNetV2, Efficient Net, and Random Forest. The models

are trained and subsequently evaluated for performance, with the

results visualized through ROC curves and accuracy metrics.

Convolutional Neural Networks (CNNs) have become essential for

brain tumor classification because they perform automatic feature

extraction from medical imaging data. Pre-trained CNN models have

received validation from multiple research studies for their
FIGURE 1

Workflow diagram for tumor detection.
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effectiveness in this area. In brain tumor classification medical imaging

applications VGG-16 demonstrated its effectiveness by reaching a high

98% accuracy rate according to studies by Vellanki et al., 2024 (9) and

Vetrivelan et al., 2024 (10). The ResNet architecture, especially

ResNet50, produced strong results with validation accuracies

reaching up to 89.47% according to Muftic et al. and Padmakala &

Maheswari both in 2024. The EfficientNetB0 and EfficientNetB3

models shows effectiveness by achieving high accuracy levels of

98.36% and 99.44%, respectively (11–13). DenseNet models have

superior performance by achieving validation accuracies up to 95%

(14). The pretrained models that use transfer learning mechanism has

the capability to reuse features from large datasets thereby providing

significant benefits for medical imaging applications that has limited

dataset availability. Hybrid and ensemble learning approaches are

used to further enhance the classification accuracy by combining the

advantages of multiple models. As an example, the PDSCNN-RRELM

combines a lightweight parallel depthwise separable convolutional

neural network (PDSCNN) with a hybrid ridge regression extreme

learning machine (RRELM) and achieves a great average precision of

99.35% (15). The custom four residual deep learning architecture

(4RDL-DCNN) optimized by particle swarm optimization achieved

high effectiveness with the accuracy of 98.60% (16) was another

noteworthy model. Additionally, a classification accuracy of 95%

(17) was achieved on a ViT and EfficientNet-V2 ensemble

combined through a genetic algorithm. Ensemble methods

demonstrated consistently better results than individual models,

benefitting from the strength of combining different architectures to

obtain better results. Improvement of model performance and

building trust rely heavily on explain ability and optimization

techniques. The accuracies achieved for various datasets (11) with

the integration of the Quantum Genetic Algorithm (QGA) with

EfficientNetB0 are 98.36 and 98.25. In a similar manner, the Particle

Swarm Optimization (PSO) algorithm is introduced to optimize the

feature extraction process in the custom 4RDL-DCNN model

obtaining an accuracy of 98.60% (16). Moreover, weights in the

combined system of Vision Transformers (ViT) and EfficientNet-

V2models are optimized using the Genetic Algorithm (GA) to achieve

95% classification accuracy (17). The optimization approaches also

improve the feature selection and model weight adjustments to yield

improved classification performance. Although deep learning models

dominate the field, conventional machine learning (ML) techniques

have shown potential in brain tumor classification. The Gaussian

Process Classifier (GPC), combined with principal component

analysis (PCA), has exhibited notable improvements in accuracy,

precision, recall, and F1-score (18). Support Vector Machines

(SVMs) have also been utilized alongside feature selection methods

like the Gini index and mutual information, yielding competitive

results (18, 19). Despite their inherent advantages, traditional machine

learning (ML) models generally underperform compared to deep

learning architectures in image-based classification tasks.

In medical applications, explain ability is extremely important

in order to achieve clinical trust in model decisions. To clarify its

decision making process, the PDSCNN-RRELM model has been

incorporated with Shapley Additive Explanations (SHAP) (15).

Moreover, Gradient-weighted Class Activation Mapping (Grad-
Frontiers in Oncology 03
CAM) has been employed to visualize the decision making of

deep learning models in order to increase their interpretability

(20). These approaches make deep learning models in clinical

environments transparent and reliable. Significant improvement

of model performance was achieved through the application of

transfer learning and advanced data preprocessing techniques. Pre

trained models such as VGG16, Resnet50, EfficientNetB3 were fine-

tuned on brain tumor datasets to achieve the state of the art results

(12, 13). Additionally, data augmentation techniques such as sparse

auto encoder based augmentation and contrast limited adaptive

histogram equalization (CLAHE) (16, 20) were used to enhance the

diversity of the dataset and improve model generalization. Different

performance metrics such as accuracy, precision, recall and F1 score

have been used to evaluate various models effectiveness. Vellanki

et al. made noteworthy findings, namely that VGG-16 has achieved

98% accuracy in brain tumor classification while Gencer & Gencer

obtained 98.36% accuracy over traditional methods with

EfficientNetB0. The denseNet has shown good generalization to a

validation accuracy of 95% (14). In addition, the accuracies of

ensemble models using multiple deep learning architectures (21)

can reach up to 99.43%. There has been progress, but there are still a

lot of obstacles. It was observed that models such as EfficientNetB3

and VGG-19, when trained on a limited amount of data, exhibited

signs of overfitting (12, 13). In order to train more complex models,

larger datasets are required (12, 13). Furthermore, most of the

models have been tested on the standard datasets, which makes it

important to evaluate them further in real clinical settings (14, 22).

Other issues should be tackled in future studies and new

architectures and optimization methods explored to improve

model accuracy and dependability.

The BraTS 2024 database (32) contains T1w, T1w contrast

enhancement (T1c), T2w, and FLAIR sequence types, each offering

distinct information for imaging various aspects of tumor morphology

and structure (23). This research concentrated on utilizing a subset of

these modalities, specifically contrast-enhanced T1 (T1c), T2w, and

T2-FLAIR (or T2w) images for tumor classification. Additionally, the

corresponding segmentation masks were employed to extract

quantitative measurements (such as tumor size) used to create

binary labels. Patients with tumor volumes exceeding the median

were classified as having high tumor burden, while those below the

median were categorized as having low tumor burden. For decades,

deep learning has the potential to solve the complex patterns in

medical images. The architectures used in this study include VGG16

(24), VGG19 (25), ResNet50 (26), Inception-ResNetV2 (27), and

EfficientNet (28), all of which are known to achieve state-of-the-art

performance in various image classification tasks. Even in this case,

classical machine learning techniques, e.g., Random Forests, are very

competitive (and in combination with PCA robust feature extraction,

which is in particular useful when there is a lack of data and/or the

features are very discriminative) (29, 30). Despite numerous studies

utilizing these methods, no comprehensive evaluation of this nature

on the BraTS 2024 dataset has been reported in the existing literature.

This gap is filled by evaluating several state of the art deep learning

models as well as Random Forest classifier on PCA reduced features.

Additionally, the models were compared in terms of accuracy, loss,
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and confusion matrices, and the results were visualized at both

individual and aggregate levels (40–42).

This research has three main goals. First, it evaluates how

different deep learning models and a traditional Random Forest

classifier perform when applied to the BraTS 2024 dataset. Second,

it examines how various data preprocessing techniques and labeling

approaches affect model effectiveness. Lastly, this investigation

provides valuable insights and suggestions for enhancing brain

tumor classification methods. The findings are intended to inform

future studies and practical applications of automated brain tumor

detection and analysis.
2 Materials and methods

This section describes the BraTS 2024 dataset and outlines the

preprocessing pipeline implemented to prepare the data for model

training. The focus was on leveraging multimodal MRI scans,

extracting relevant features, and generating labels for

binary classification.
2.1 Dataset

The BraTS 2024 dataset provides a comprehensive collection of

multimodal MRI scans of patients with brain tumors https://

arxiv.org/abs/2405.18368 (32). The dataset was obtained from a

Kaggle repository and organized into patient-specific folders. For

example, a typical folder (for example, BraTS-GLI-02632-102)

contains files named according to the following pattern:
Fron
• BraTS-GLI-02632-102-t1c.nii

• BraTS-GLI-02632-102-t2w.nii

• BraTS-GLI-02632-102-t2f.nii

• BraTS-GLI-02632-102-seg.nii
This hierarchical structure facilitates individual patient-level

processing, ensuring that each modality and its corresponding

segmentation mask are correctly associated with each other.

Harmonizing data for training requires a preprocessing step. For

the data preprocessing pipeline, nibabel library was used to load the

NIfTI files. Middle slices were extracted from each modality (T1c,

T2w, and T2-FLAIR) assuming that they represent the tumor

region. Finally, each extracted slice was resized to 128×128 pixels

using the resize function from skimage. Transform and normalized

to the [0,1] range to reduce variability across scans. A stack of 3

channel image was formed for each patient by stacking the

processed slices from the three modalities along the channel

dimension. Then, a segmentation mask was used to compute the

tumor volume by counting nonzero voxels, which served as a

quantitative measure used to develop classification labels. As

there is no explicit clinical labels in the dataset, the binary

classification labels were computed based on the tumor volume.

More specifically, for all patients the median tumor volume was

calculated and if a tumor volume exceeded the median, 1 was
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assigned as its label (indicative of a high tumor burden). Patients

with volumes above the median were labelled with a value of 1,

indicating a high tumor burden, and patients with volumes below

the median were given a label of 0. It also leads to a balanced binary

labelling scheme for the classification task. The data were

preprocessed and labeled, and the data were partitioned into

training and testing subsets by 80/20 ratio. The partition was

done at patient level so that there are no patient data in both the

training and the testing sets. This approach helps in keeping the

independence of the evaluation data and gives a fair estimate of the

model performance. The following section details how the BraTS

2024 dataset was prepared for classification. The first step of

preprocessing made sure that the imaging data were the same size

and intensity, and the second step ensured that the label generation

step allowed for a clear definition of classes in terms of the tumor

burden. These procedures were used to guide subsequent model

training and evaluation as laid out in the next sections. Each patient

folder in the dataset contained several NIfTI files corresponding to

different imaging modalities, including:
• T1c (Contrast-Enhanced T1): Highlights regions with

blood–brain barrier disruption.

• T2w (T2-Weighted): Provides a high signal intensity for

fluid regions.

• T2-FLAIR (Fluid-Attenuated Inversion Recovery):

Suppresses cerebrospinal fluid signals to better visualize

the lesions.

• Segmentation Masks: Contain expert annotations

delineating the tumor regions.
The T1c, T2w, and T2-FLAIR modalities were utilized to

construct a 3-channel input image for each patient, while the

segmentation mask was used to derive quantitative measures,

such as tumor volume.

Primarily one needs to load the dataset and perform pre-

processing on the data and utilize PCA for dimensional

reduction. The information undergoes division into training

batches and testing batches. The Random Forest model receives

its training through application of the training data. The testing data

receives predictions from the model and its performance undergoes

evaluation. The visual representation includes the ROC curve.
2.2 Methodology

This section outlines the overall experimental design, including

the models evaluated, training procedures, and the evaluation metrics

and visualizations used to compare performance (Figure 2). To

capture the intricate patterns, present in brain MRI data, several

state-of-the-art deep learning architectures were implemented using

transfer learning. The foundational baseline model employed was a

Simple CNN, representing a custom-designed convolutional neural

network. Subsequently, the VGG16 architecture, consisting of 16

layers, was utilized due to its suitability for transfer learning by

freezing the convolutional base and appending custom fully
frontiersin.org
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connected layers. This was followed by the use of VGG19, which

extends the architecture to 19 layers to enable the extraction of more

abstract features. Additionally, ResNet50, a 50-layer residual network

with shortcut connections, was incorporated to facilitate the training

of deeper models. Inception modules and the residual connection-

based advanced hybrid architecture, InceptionResNetV2, were

introduced to capture multi-scale features. Lastly, EfficientNet was

employed, which balances model depth, width, and resolution through

compound scaling, representing a modern and efficient network

design. In neural models, an increase in the number of layers

generally results in a higher number of trainable parameters

(weights and biases), allowing the network to model more complex

relationships. However, deeper architectures are more prone to

overfitting, particularly when the dataset is limited, and thus require

additional regularization and tuning strategies to generalize effectively

(38, 39). A Random Forest classifier is the classical machine learning

approach which, in addition to deep learning models, was used for

classification. Then, for this method, image detecting features were

extracted through flattening the pixel intensities and followed by the

dimensionality reduction method of Principal Component Analysis

(PCA). Under conditions where the dataset size was limited, this

classical technique acted as a benchmark for the deep learning models.

In this study on brain tumor classification using the BraTS 2024

dataset, a Random Forest classifier was employed to distinguish

between cases of high and low tumor volumes. Prior to

classification, each patient’s multi-modal brain MRI comprising

t1c, t2w, and t2f sequences is preprocessed and flattened into a

high-dimensional feature vector x. To reduce dimensionality and
Frontiers in Oncology 05
mitigate overfitting, Primary Component Analysis (PCA) is applied

to project these feature vectors onto a lower-dimensional space.

This transformation is mathematically expressed in Equation 1

as:

z = wT (x − x) (1)

Where x represents the mean of the training data and W is the

projection matrix containing the top principal components. The

transformed feature vector z thus captures the most significant

variance in the data while discarding redundant information.

The Random Forest classifier then operates on these PCA-

reduced features. Let (z) denote the prediction made by the k − th

decision tree in the ensemble for the transformed input z. In a

binary classification setting (with class labels 0 for low tumor

volume and 1 for high tumor volume), the final prediction y   is

obtained through a majority voting scheme as presented in

Equation 2:

y ^   =  modeT1z,  T2z,  …,  TKz (2)

This process can also be formulated in Equation 3 as:

y ^ = arg max
c o

K

k=1

1 Tk(z) = cf g (3)

Where it1= c=it  is an indicator function that equals 1 if the k −

th tree predicts class c and 0 otherwise.

Alternatively, if each tree provides a probabilistic estimate pk for

class c, the ensemble’s class probability is calculated as the average

of these estimates as shown in Equation 4:
FIGURE 2

A flowchart presents the complete procedure for data analysis.
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p^  (c ∣ x) =  
1
ko

K
k=1pk  (c ∣ x) (4)

The final class label is then determined by selecting the class

with the highest average probability as presented in Equation 5:

y  = argmax
c

  p^  (c ∣ x) (5)
2.2.1 Data preprocessing pipeline
In the context of the BraTS2024 dataset, this approach leverages

the multi-modal imaging data by first condensing it via PCA and

subsequently classifying patients based on tumor volume. The

middle slice from each modality (T1c, T2w, and T2-FLAIR) was

extracted and resized to 128×128 pixels. The three modalities were

stacked to form a three-channel image, with each channel

corresponding to a specific modality. All images were normalized

to the [0, 1] range to maintain consistency across models.

2.2.2 Training configuration
The dataset was split into training and testing sets using an 80/

20 ratio, ensuring no patient appeared in both sets. Data

augmentation techniques (rotation, flip, and scaling) were applied

to enhance generalization. The Adam optimizer was employed with

learning rates (1e-4 to 1e-3), and Categorical Cross-Entropy served

as the loss function for binary classification with one-hot encoded

labels. Training used a batch size of 8 and initially spanned five

epochs, extended as needed for improved performance.

2.2.3 Model architectures and training
For deep learning models, the convolutional bases of pretrained

models were frozen during initial experiments, with options for

unfreezing and fine-tuning in future trials. For the Random Forest

approach, images were flattened, and PCA reduced feature

dimensionality (minimum of 50 components). The Random

Forest classifier was trained with 100 estimators and default

parameters as a classical benchmark.

2.2.4 Performance evaluation
Model performance was assessed through:
Fron
• Training/validation accuracy and loss curves across epochs

• Confusion matrices analyzing true/false positives/negatives

• ROC curve analysis with AUC values

• Aggregate plots comparing final accuracies and losses

• Grid layouts of all confusion matrices
This comprehensive evaluation framework enabled robust

comparison of both deep learning and classical machine learning

approaches on the BraTS 2024 dataset.
3 Results

This section presents the experimental results of the BraTS

dataset 2024 used in this study. Deep learning models and classical
tiers in Oncology 06
Random Forest classifier are evaluated for comparison. The

performances of both individual and aggregated models are

visualized in terms of accuracy, loss and confusion matrices. The

experiments are evaluated using the BraTS 2024 dataset. The data in

the dataset is preprocessed for each patient by extracting the middle

slices of three imaging modalities (T1c, T2w, T2-FLAIR) and

normalizing them. To create binary labels from the tumor volume

computed based on the segmentation masks, the median volume

was chosen as the threshold (Table 1). The following accuracy

results were obtained for the test set:

The Random Forest model with PCA features had the highest

accuracy of 87.5%. More complex CNN models performed with

lower accuracy rates. The results suggest that the evaluated deep

learning models failed to match the performance of the classical

Random Forest classifier by a large margin. On the other side of

comparison, different deep models showed more ranges of

performance, simple architecture (Simple CNN and VGG based

networks) got higher accuracy than complex networks (ResNet50

and EfficientNet) (Table 2, Figure 3).

Table 2 displays the model’s overall accuracy (0.88) along with

more detailed measures: precision (0.90) indicates how many of the

positive predictions were correct; sensitivity or recall (0.86) shows

the model’s ability to correctly identify actual positive cases;

specificity (0.89) reflects how well the model identifies negative

cases; and the F1 Score (0.88) provides a balance between precision

and recall. Together, these metrics offer a comprehensive overview

of the classifier’s performance. The key performance metrics for the

Random Forest classifier offer a comprehensive overview of the

model’s effectiveness. The overall accuracy is 0.88. More detailed

measures include precision at 0.90, indicating the proportion of

correct positive predictions; sensitivity (or recall) at 0.86, reflecting
TABLE 1 Obtained results of accuracy.

S. No Model Accuracy

1 Random Forest (with PCA features) 87.5%

2 Simple CNN 70.0%

3 VGG16 67.5%

4 VGG19 62.5%

5 Inception-ResNetV2 60.0%

6 ResNet50 47.5%

7 Efficient Net 47.5%
TABLE 2 Performance metrics for a Random Forest classifier.

Performance Metric Accuracy

Accuracy 0.88

Precision 0.90

Sensitivity (Recall) 0.86

Specificity 0.89

F1 Score 0.88
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the model’s ability to identify actual positive cases; specificity at

0.89, demonstrating how well the model recognizes negative cases;

and an F1 Score of 0.88, which balances precision and recall.

Together, these metrics clearly and effectively illustrate the

classifier’s performance.

The graph displays an accuracy of 0.88, precision of 0.90,

sensitivity (recall) of 0.86, specificity of 0.89, and an F1 score of

0.88. These metrics collectively demonstrate that the classifier

effectively balances true positive and true negative rates, ensuring

robust discrimination between high and low tumor burden cases.

The visualization underscores the efficacy of the traditional Random

Forest approach, particularly when leveraging PCA-reduced

features for brain tumor classification. Each model was trained

and validated independently in their respective loss curves and

plotted the training and validation accuracies, and revealed
Frontiers in Oncology 07
themselves to be very good at learning. Accuracy of the Simple

CNN increased with each training epoch and corresponding loss

decreased. Same trends were observed in VGG16 and VGG19, but

with slightly worse final accuracies (Figure 4). In contrast, more

complex architectures such as ResNet50 and EfficientNet exhibited

poor convergence, as indicated by static accuracy curves and

relatively high loss values (Figure 5). At the same time, the better

performance of the shallow architectures was complemented by

moderate improvement of the InceptionResNetV2 model, which,

however, could not achieve performance levels comparable to the

straight architectures.

The accuracy and loss curves provide valuable insights into the

training progress and performance of both Simple CNN and

VGG16 models. Accuracy curves plot training and validation

accuracy against the number of epochs, where higher accuracy
FIGURE 3

Performance metrics on the BraTS 2024 dataset.
FIGURE 4

Performance metrics for the simple CNN and VGG16 transfer learning models over four epochs: (a) Training and validation accuracy (b) Training and
validation loss (c) Training and validation accuracy for the VGG16 transfer learning model (d) Training and validation loss for the VGG16 model.
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indicates better prediction capability. Similarly, loss curves depict

the model’s error over time, with separate plots for training and

validation loss. A decreasing loss suggests improved performance

and more accurate predictions. Comparing the two models, the

graphs highlight differences in generalization, with VGG16, a pre-

trained model, typically converging faster and achieving higher

accuracy than Simple CNN, which is trained from scratch.

Observing the intersection points and divergence of curves helps
Frontiers in Oncology 08
evaluate which model performs better on unseen data,

demonstrating the advantage of transfer learning in achieving

efficient and effective model training.

Three neural network architectures evaluate their training

performance through multiple epochs in the figure. The accuracy

plots show training and validation results that might reveal

overfitting or under fitting symptoms through their changing

patterns. Loss graphs demonstrate the training error reduction
FIGURE 5

Performance metrics for ResNet50 and Inception-ResNetV2 models over four epochs. (a) Training and validation accuracy for the ResNet50 model
(b) Training and validation loss for the ResNet50 model (c) Training and validation accuracy for the Inception-ResNetV2 model (d) Training and
validation loss for the Inception-ResNetV2 model (e) Training and validation accuracy for the VGG19 transfer learning model (f) Training and
validation loss for the VGG19 model.
FIGURE 6

Performance metrics for the EfficientNet model over four epochs (a) Training and validation accuracy (b) Training and validation loss.
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pattern of the model throughout its learning process. The large

difference between training and validation accuracy can indicate

pronounced overfitting when training deeper networks such as

ResNet50 and Inception-ResNetV2. The stable performance of

VGG19 results from transfer learning because it uses pre-trained

models to achieve improved generalization capabilities on

unknown data.

The experimental training performance of the EfficientNet model,

including trends in accuracy and loss over training epochs, is presented

in Figure 6. The illustration in this figure shows how the Efficient Net

model performed throughout its training process. During training the

accuracy graph demonstrates model learning effectiveness through

increasing training accuracy levels and occasionally fluctuating

validation accuracy which might lead to overfitting because the

model adapts to training data patterns. This graph shows error rate

measurements alongside the training process which indicates that

effective error reduction occurs when loss values decrease. Each

model was used to generate its own class specific confusion matrix.

Overall accuracy for the Random Forest classifier was quite high, and

the confusion matrix of the classifier revealed strong discrimination

between the two classes. A balanced distribution of true positive vs. true

negative was observed for the Simple CNN and VGG16 although some

misclassifications could be found (Figure 7). On the contrary, models
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including ResNet50 and EfficientNet had slightly higher confusion rate

between the classes, which matched their slightly lower accuracy values

for a couple of seconds (Figure 8). The Random Forest classifier had

high overall accuracy and had a robust discrimination of the two classes

in the confusion matrix of the predicted model. The true positives and

true negatives were distributed balanced with some misclassifications

for the Simple CNN and VGG16models. On the other hand, ResNet50

and EfficientNet showed higher level of confusion between classes as

they had lower accuracy scores. The confusion matrices for various

models provide a detailed view of their classification performance by

comparing the true labels with the predicted labels. In the case of the

Simple CNN model, the confusion matrix (a) displays the distribution

of predictions across different classes, indicating a moderate

performance with some misclassifications. The VGG16 model (b)

shows improved classification accuracy, as reflected in its confusion

matrix, where most predictions align correctly with the actual classes.

The VGG19 model (c) further enhances this trend, demonstrating

strong classification performance with very few misclassified instances,

suggesting better feature extraction and generalization. Lastly, the

ResNet50 model (d) stands out with its confusion matrix revealing

high classification accuracy and minimal errors, underlining the

effectiveness of residual connections in preserving learned features

and improving model depth without performance degradation.
FIGURE 7

Confusion matrices for various models illustrating their classification performance: (a) For Simple CNN model (b) For the VGG16 model.(c) For the
VGG19 model (d) For the ResNet50 model.
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The confusion matrix displays quantitative data about correct

and incorrect predictions between categories which enables detailed

strength and weakness assessments of each predictive model.

Superior model accuracy correlates with the number of correctly

identified instances that appear along the diagonal of the confusion

matrix yet the off-diagonal elements show misclassified classes. The
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accuracy levels alongside generalization ability of Inception-ResNet

V2 and Efficient Net surpass Random Forest classifier because these

deep learning models use modern machine learning technology.

The developed confusion matrices reveal classification capabilities

of each model to help choose the optimal method for the dataset.
3.1 ROC curve analysis

Softmax probabilities were plotted as ROC curves (Figure 9) for

each of deep learning models. Additional evidence of performance

disparities between the models was obtained through the area under

the curve (AUC) values (Figure 10).

The ROC curve for the Random Forest classifier illustrates its

ability to distinguish between different classes by plotting the True

Positive Rate (sensitivity) against the False Positive Rate at various

threshold values. A well-performing model has a curve that leans

toward the top-left corner, indicating a high True Positive Rate with

a low False Positive Rate. The Area Under the Curve (AUC) serves

as a key performance metric, where a higher AUC value signifies

better classification capability. Random Forest, as an ensemble

learning method, typically achieves a strong AUC by leveraging

multiple decision trees to enhance predictive accuracy and reduce

overfitting. The ROC curve provides insights into the classifier’s

effectiveness and helps in comparing its performance against deep

learning models.
3.2 Combined visualization

To enable a holistic comparison across all models, the final

performance metrics were aggregated (Figure 11) and visualizations

(Figure 12) as follows:

Comparison for various classification models, including Simple

CNN, VGG16, VGG19, RESNET50, Inception-ResNet V2, efficient

Net, and Random Forest is presented in Figure 11. The Area Under

the Curve (AUC) values are indicated for each model, showing the

model’s ability to distinguish between classes. The dotted diagonal

line represents the performance of a random classifier, with an AUC

of 0.5.

It is clear from Figure 12 that Random Forest outperforms other

models with an accuracy of 87%. Model Accuracy Comparison for

Simple CNN, VGG16, VGG19, RESNET50, Inception-ResNet V2,

efficient Net, and Random Forest. This bar chart illustrates the

accuracy of each model, highlighting Random Forest as the highest-

performing model. A bar chart was used to compare the final

validation accuracies of all models whereas another bar chart shows

the final validation losses of the deep learning models. Overall, these

aggregated plots show that the Random Forest classifier achieved

the highest accuracy on the whole. They also worked moderately

well on deep learning architectures in terms of accuracy and loss

metrics and far worse than Simple CNN, VGG16 and VGG19,

ResNet50, Inception-ResNetV2 and EfficientNet. In addition to the

individual plots, all confusion matrices were arranged into a single

grid to facilitate direct visual comparison of class predictions across
FIGURE 8

Confusion matrices of Inception-ResNet V2, Efficient Net and
Random Forest classifiers.
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different models. This consolidated view illustrates that the Random

Forest classifier outperforms the deep learning models in terms of

class separation and classification accuracy. However, under these

preprocessing and training conditions, it was shown that the

Random Forest class ifier with PCA reduced features

outperformed the evaluated deep learning models. This indicates

that feature extraction through PCA and the robustness of the

classical machine learning methods can be incredibly effective for

this task in the presence of a small dataset or when a deep model is

not well fine-tuned. Detailed visualizations here help extend and

understand each model’s behavior before hyperparameter tuning,

fine tuning of pre trained networks and data augmentation

strategies to achieve better performance if any of these potential

deep learning model performance improvement techniques.
4 Discussion

The integration of deep learning with other machine learning

techniques has gained significant attention in brain tumor

classification, segmentation, and detection, particularly using MRI
FIGURE 9

Receiver Operating Characteristic (ROC) curves for various models, illustrating their classification performance. (a) ROC curve for the Simple CNN
model (b) ROC curve for the VGG16 model (c) ROC curve for the VGG19 model (d) ROC curve for the ResNet50 model. (e) ROC curve for the
Inception-ResNetV2 model (f) ROC curve for the EfficientNet model.
FIGURE 10

ROC curve for Random Forest classifier.
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datasets, as highlighted in recent studies (31, 32). These hybrid

approaches have demonstrated notable potential in achieving both

clinical accuracy and computational efficiency. For example,

frameworks incorporating the Artificial Intelligence of Things (AIoT)

have validated the feasibility of embedding AI models into smart

healthcare systems to enable more effective real-time diagnostic

support (33). Similarly, traditional machine learning models, when

combined with optimized feature extraction strategies, have proven

effective in the classification and detection of tumors from MRI scans
Frontiers in Oncology 12
(34). Comparative and benchmarking studies further emphasize the

strong predictive capabilities of classical machine learning algorithms,

especially in scenarios involving limited data or high-dimensional input

features (35). Moreover, empirical evaluations underscore the

continued importance of performance tuning and algorithm

selection in refining outcomes within biomedical imaging

applications (36–42). These findings support the conclusions of the

current study and justify the inclusion of both conventional and deep

learning models in the experimental framework.
FIGURE 11

Combined ROC curve.
FIGURE 12

Accuracy comparison of various deep learning models.
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The experimental results revealed significant performance

differences between classical and deep learning approaches. Notably,

the feature set derived using Principal Component Analysis (PCA)

achieved an accuracy of 87.5% with the Random Forest classifier—

surpassing all tested deep learning models. In contrast, the Simple

CNN reached only 70% accuracy, while other architectures such as

VGG16, VGG19, ResNet50, Inception-ResNetV2, and EfficientNet

performed even lower, with accuracies ranging from 47.5% to 67.5%.

These findings underscore the robustness of PCA-based features in

conjunction with classical machine learning algorithms within the

current experimental setup. Although deep learning models

inherently offer greater complexity and theoretical potential, their

performance in this study was hindered by factors such as limited

training data, overfitting, and insufficient benefit from transfer learning

using pre-trained networks. The processing pipeline played a crucial

role in shaping these results. Specifically, it involved extracting the

middle slice from each MRI modality, normalizing the images, and

employing segmentation masks to compute tumor volumes. Binary

labels were then assigned using the median tumor volume as a

threshold. While these preprocessing and labeling strategies provided

a standardized framework for model comparison, they may also have

introduced certain limitations. For instance, relying solely on the

middle slice may fail to capture the full spatial heterogeneity of the

tumor. Likewise, deriving binary labels based solely on tumor volume

oversimplifies the complex clinical distinctions between high-grade and

low-grade tumors, which are not strictly dichotomous. Refining these

preprocessing and labeling methods could potentially enhance the

performance of deep learning models in future studies. The proposed

method demonstrates competitive performance when compared with

recent approaches in brain tumor classification. As shown in Table 3,

our Random Forest model with PCA-based feature reduction achieved

superior classification accuracy (87.5%) compared to existing methods:

the Probabilistic Neural Network (83.33%) (43) and Vision

Transformer (81.5%) (44). This 4.17–6.0% improvement

demonstrates the efficacy of our hybrid approach, where PCA

optimally preserves discriminative features while Random Forest’s

ensemble learning mitigates overfitting—particularly advantageous

for limited medical imaging datasets.
4.1 Potential causes for underperformance
of certain deep learning models

The underperformance of certain deep learning architectures—

such as ResNet50 and EfficientNet—compared to simpler models

like the Simple CNN appears to be driven by several underlying
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factors. A primary issue is that complex models typically require

large and diverse datasets to effectively learn robust feature

representations. However, the dataset used in this study was

relatively small and sourced from real-world clinical data, which

may have constrained the learning capacity of these deeper

networks. Additionally, limitations in fine-tuning further

contributed to this performance gap. The pre-trained networks

were primarily employed as fixed feature extractors, restricting their

ability to adapt to the specific characteristics of brain tumor MRI

data. To enhance domain-specific learning, selectively unfreezing

and fine-tuning deeper layers could enable these models to capture

more relevant features. Overfitting was also likely exacerbated by a

lack of extensive data augmentation and the application of strong

regularization techniques. Implementing a broader range of

augmentation strategies such as rotation, flipping, and intensity

variation could improve generalization and help mitigate the risk of

overfitting in future implementations.
4.2 Limitations and considerations

The current study has several limitations. First, although the

dataset comprises real BraTS 2024 images, the effective sample size,

particularly after splitting into training and testing sets remains

relatively small, potentially preventing more complex deep learning

models from achieving optimal performance. Next, the choice to

extract only the middle slice from each modality simplifies the data

representation but may forfeit valuable spatial information that

could enhance the classification. Furthermore, employing tumor

volume as the basis for binary labels offers a straightforward

mechanism for class differentiation but may not encompass all

clinically relevant factors. Future studies should consider alternative

or supplementary labelling strategies that integrate additional

clinical data. The reliance on fixed, pre-trained models may have

limited their potential in the medical imaging context. A more

nuanced fine-tuning process tailored specifically to the BraTS

dataset could enable better adaptation and improved performance

for these architectures. Although the Random Forest classifier

demonstrated superior performance compared to the deep

learning models in the current analysis, the findings highlight

several opportunities for enhancing the effectiveness of deep

learning approaches. Addressing these issues through enhanced

data preprocessing, fine-tuning strategies, and robust augmentation

may bridge the performance gap and lead to more clinically useful

models in the future.
5 Conclusion

This study evaluated various machine learning techniques for

classifying intra-brain tumors using the BraTS 2024 dataset. The

Random Forest model combined with PCA for feature reduction

achieved the highest accuracy (87.5%), showing that classical

methods with proper preprocessing can be very effective. Some

deep learning models, such as ResNet50 and EfficientNet,
TABLE 3 Comparison with state of the art.

Ref Dataset Method Accuracy (%)

(43) Kaggle Probabilistic Neural Net 83.33

(44) BraTS
Vision

Transformer (ViT)
81.50

Our
Method

BraTS 2024 Random Forest + PCA 87.50
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performed worse, suggesting that these require careful tuning and

training strategies to reach their potential. Future work should focus

on combining classical and deep learning approaches, including

ensemble methods, to improve accuracy and robustness.
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