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The co evolution of tumor cells and microenvironmental matrix components

almost determines the series of processes involved in cancer occurrence and

progression. However, many anti-cancer treatments are designed around tumor

cells, neglecting the supportive role of stromal cells. Cancer-associated

fibroblasts (CAFs), as the main stromal cells in tumor microenvironment, are

currently considered as a key component promoting tumorigenesis,

development, and regulating the transfer of tumor cells to distant locations

through secretion of different growth factors, cytokines, chemokines, and the

degradation of extracellular matrix. Therefore, the strategy of targeting both

cancer cells and CAFs shows great potential in cancer treatment. In

hematological malignancies, the role of CAFs in the progression of tumors has

gradually been recently tapped. This review describes the role and functional

characteristics of CAFs in tumors, mainly concentrates on the potential role of

CAFs in the disease progression of hematological malignancies according to

recent findings, and emphasizes the importance of CAFs as a key target to

overcome tumor progression and improve treatment efficacy.
KEYWORDS

cancer associated fibroblasts, microenvironment, tumor progression, hematological
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1 Introduction

The tumor microenvironment (TME) is a dynamic network which is composed of

stromal cells (fibroblasts, endothelial cells, immune cells, adipocytes, pericytes and bone

marrow-derived cells, etc.), extracellular matrix (ECM), soluble cytokines and growth

factors. The occurrence and development of stromal component provide a supportive

environment for a variety of cancers cells (1–3). During the occurrence and development of

tumors, tumor cells and their surrounding stromal microenvironment are in close

proximity, and the extensive and multi-layered “cross-talk” between them adapts TME

to support tumor survival, growth and metastasis (4, 5). Targeting the TME is currently one

of the directions to improve the efficacy of tumor therapy (6–9). In the treatment of
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hematological malignancies, part of the reason for the poor efficacy

may be that the tumor cells are protected by the “educated”

microenvironment, which offers a natural refuge for tumor cells

to escape the killing of chemotherapy drugs and thus becomes a

possible root cause of tumor progression (10–12).

Cancer-associated fibroblasts (CAFs), a major component of

TME, reside in symbiotic relationship with cancer cells, supporting

them to survive from cancer drugs (13–17). In the TME, CAFs are

in a continuously activated state, which not only promotes the

growth of tumor cells, but also secretes various cytokines,

chemokines and inflammatory mediators in a paracrine manner

through cell and cell interactions, initiates the proteolysis and

structural modification of the ECM, provides convenient

conditions for tumor cells to escape chemotherapeutics, initiates

metabolic reprogramming, and finally results in tumor progression

and tumor cell migration to distant locations (18–26). It is of note

that CAFs have been shown to have different origins, phenotypes,

and functions, while most of them contribute to tumor progression.

Considering its critical role in promoting tumor progression, CAFs

have recently become a therapeutic target for a variety of tumors

(25, 27). In the study of hematological malignancies, recent studies

have indicated that CAFs are also a vital component in promoting

tumor progression (28, 29). In addition, they may become a

potential target for the treatment of hematological malignancies.

This review introduces the origin, activation mechanism and role of

CAFs in tumors, mainly elaborates on the possible roles played by

CAFs in hematological malignancies, and potential therapeutic

strategies targeting CAFs, as well as elucidates the heterogeneity

of CAFs based on current research status.
2 Origins of CAFs

CAFs, as important stromal cells in the TME, usually originate

from stromal cells in the microenvironment. These interstitial cells

mainly include resident tissue fibroblasts, adipocytes, pericytes and

bone marrow-derived mesenchymal stem cells (BM-MSCs). In

addition, both epithelial cells and endothelial cells can be

activated into CAFs through interstitial transformation. Among

them, normal fibroblasts (NFs) are an important source of CAFs

(30, 31). NFs typically moderately express a-smooth muscle actin

(a-SMA), fibroblast activation protein (FAP), fibroblast specific

protein-1 (FSP-1), and vimentin, while CAFs often highly express

these proteins (32). Fibroblasts are in a quiescent state under

normal physiological conditions and can be activated in tissue

repair and TME. During tissue repair, the transient moderate

activation of myofibroblasts is beneficial for the repair of tissue

integrity. However, activated CAFs in the TME can maintain a

sustained state of activation and become important factors affecting

tumor occurrence and progression.

BM-MSCs are another important source of CAFs (33–35).

Quante et al. (33) considered that at least 25% of activated CAFs

were derived from BM-MSCs. The morphological characteristics of

CAFs are similar to BM-MSCs, being adherent and growing in a

spindle shape. Research has shown that the two have a high degree
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of consistency in immune phenotype and function (35, 36). On the

one hand, CAFs expresses cell surface markers of MSCs and has a

certain degree of multipotent differentiation potential. On the other

hand, MSCs also express certain surface marker proteins of CAFs,

such as a-SMA, nestin, and vimentin, but the expression levels of

CAFs surface markers, cytokines, growth factors, and chemokines

are higher.

In addition, adipocytes are also one of the sources of CAFs (37,

38). The study by Simiczyjew et al. (39) demonstrated that

adipocytes co-cultured with melanoma cells could exhibit

fibroblast characteristics and secrete higher levels of IL-6 and

serpine1, while producing less C-C motif chemokine ligand 2

(CCL2), chemokine (C-X-C motif) ligand 1 (CXCL1), and

angiogenic molecules. Lactic acidosis is a characteristic of the

TME, research has shown that human subcutaneous adipose-

derived stem cells committed to adipocytes can acquire

myofibroblast, pro-fibrotic, and pro-inflammatory phenotypes

when cultured in an acidic environment (40). In the study of

gastric cancer (GC), adipocytes, when co-cultured with GC cells,

significantly increased the expression levels of CAFs markers FSP-1,

inflammatory cytokines, PAI-1, and IL-6, while the invasiveness of

GC cells was enhanced, suggesting that adipocytes can acquire the

CAFs phenotype under the stimulation of GC cells, which further

promotes the invasion process of GC cells (41). Moreover, epithelial

cells, endothelial cells, stellate cells, and pericytes in the TME are

also possible sources of CAFs (42–44), and transformed CAFs may

play an important role in the occurrence and development of

various tumors.
3 The markers and characteristics of
CAFs

For the markers of CAFs, a number of intracellular,

extracellular and cell surface proteins with increased expression

have been used to isolate or identify CAFs, including a-SMA, FAP,

FSP-1, vimentin, periostein, platelet derived growth factor receptor-

a/b, and neuron glial antigen 2 (NG2), etc. In addition, there are

some negative indicators which can be used to help exclude CAFs.

For instance, the antibody against CD31 is employed to

demonstrate a lack of endothelial cell contamination, while

cytokeratin is used to exclude epithelial components. Among

these markers, a-SMA and FAP have been known as the specific

markers for myofibroblasts, and their high expression often

indicates a poor tumor prognosis (33, 45–52). However, till the

present, no unique marker can be identified to investigate the

existence of CAFs. Dzobo et al. (53) conducted a database

analysis and found that CAFs markers exhibit differential

expression in different tumors, and the expression patterns of

CAFs markers in different tumor types are also variable. CAFs are

mostly characterized based on a combination of the above markers

and different tumor types.

It is worth noting that due to the different sources of CAFs, they

have various phenotypes, including the myofibrotic CAFs subtype

(myCAFs) with a-SMA+FAP+ and lacking the expression of
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inflammatory cytokines, the inflammatory CAFs subtype with low

expression of a-SMA and secretion of interleukin-6 (IL-6) and

other inflammatory mediators, and the antigen-presenting CAFs

subtype (apCAFs) with high expression of major histocompatibility

complex (MHC) class II (MHCII)-related genes H2-Ab1, CD74 and

other regulators of immune activity (27, 54–56) (Figure 1).

Recently, reports by Cords et al. (57), Xiao et al. (58), and Zhang

et al. (59) have provided a more detailed classification of the

different CAF subtypes found in various tumors. Additionally,

Lavie et al. (44) summarized the main CAF subtypes and

characteristics of various organs in the body based on single-cell

sequencing data. Because of these different subtypes, CAFs exert a

variety of biological roles in tumorigenesis, progression, immune

regulation, tumor metabolism and metastasis. Sahai et al. (60)

suggested that a new naming framework could be constructed

based on the functions of CAFs, and standardized methods could

be established to detect and identify CAFs. This might lead to a

more detailed and accurate classification and understanding of the

characteristics of CAFs.
4 The activation mechanism of CAFs
in tumor microenvironment

Since the activation of CAFs in the TME is a vital factor leading

to malignant progression of tumors, understanding the activation

mechanism of CAFs in the TME may be a key measure to find

effective intervention methods to block the activation of CAFs in the

microenvironment and enhance the efficacy of tumor treatment.

In the TME, to obtain invasive and tumor-promoting

phenotypes, NFs and other stromal cells undergo continuous
Frontiers in Oncology 03
activation via different mechanisms. Cancer cells secrete cytokines

and soluble components into the surrounding microenvironment,

and then stimulate the recruitment and activation of fibroblasts.

During this process, transforming growth factor b (TGF-b) is

currently recognized as the key factor to stimulate the activation

of CAFs (33, 47, 61–65), which is a cytokine essential for inducing

the fibrotic response and activating the cancer stroma and can be

expressed by both tumor cells and CAFs. Under the action of TGF-

b, NFs or potential stromal cells undergo morphological changes

and transform into CAFs, while the latter exert an important role in

the occurrence, development and progression of tumors.

In addition to the classic TGF-b pathway stimulating CAFs

activation, there are also some other potential factors that can

stimulate CAFs activation. The study conducted by Weber et al.

(66) showed that tumor cell-derived osteopontin (OPN) mediated

the transformation of MSCs to CAFs and therefore increased tumor

cell growth and metastasis, while the process was still dependent on

myeloid zinc finger 1 and TGF-b1. In the study of GC, it was found

that helicobacter pylori (Hp) infection might induce the

transformation of MSCs into CAFs, contributing to the

occurrence and development of GC (67). The reduced

extracellular pH value may also be an important factor for

promoting the conversion of MSCs into CAFs (68). Additionally,

progranulin (PGRN) can directly or indirectly activate CAFs

through the epithelial-mesenchymal transition (EMT) program to

promote the invasiveness of ovarian cancer cells (69). A recent

study indicated that overexpression of galectin-1 could induce the

transformation of NFs into CAFs (70). These results suggest that the

activation mechanisms of CAFs may vary in different TME, and we

need to conduct categorical research on different tumors to better

comprehend the activation factors of CAFs in tumors.
FIGURE 1

Three common subtypes of CAFs and their characteristics. Slpi, secretory Leukocyte Peptidase Inhibitor; Saa3, serum Amyloid A3; Irf5, interferon
regulatory factor 5.
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5 CAFs in solid tumors - the tumor-
promoting function

CAFs have been widely studied in promoting tumor

angiogenesis, facilitating tumor invasion and metastasis, enhancing

tumor resistance and tumor immune escape in a variety of solid

tumors. For tumor angiogenesis, tumor growth depends on the

formation of new blood vessels, and CAFs can promote tumor

angiogenesis through secretion or high expression of various pro-

angiogenic and other factors, including vascular endothelial growth

factor (VEGF) (71–73), interleukin-6 (IL-6) (72), fibroblast growth

factor (FGF) (71), CCL2 (74), galectin-1 (75), milk fat globule-EGF

factor 8 (MFGE8) (76), Wingless-type MMTV integration site family

member 2 (WNT2) (77) and FOS-like 2 (FOSL2) (78). Meanwhile,

the exosome (79), exosome microRNA (80) and extracellular vesicles

(EVs) (81) derived from CAFs are also key components that promote

tumor angiogenesis. These angiogenic factors derived from CAFs

provide convenient conditions for the growth and metastasis of

tumors. In terms of tumor invasion and metastasis, CAFs stimulate

the invasion and metastasis of cancer cells by promoting epithelial

mesenchymal transformation (82, 83), overexpressing its own

markers (24, 48), or secreting of growth factors (23, 84), cytokines

such as IL1b/IL-1R (85–87), IL-6 (88), IL-11 (89), IL-17a (90), IL-22

(91) and leukemia inhibitory factor (92), chemokine receptors (93),

adhesion factors (94, 95), exosomes (96–102), and various

metalloproteinases (MMPs) (23, 71, 88). In addition, CAFs secrete

a large amount of ECM proteins to promote ECM synthesis and

reshape tumor matrix, which is also one of the vital reasons for the

formation of tumor aggressive microenvironment. These proteins

mainly include collagen type I, collagen type III, fibronectin (FN) and

vimentin. Among them, FN is the main ECM protein, which

promotes tumor targeted migration and invasion through

interacting with its integrin receptors (103, 104). Recent studies

have also indicated that CAFs that overexpression of FN1 and

periosteal protein can significantly promote the wound healing and

invasion ability of tumor cells (105). For tumor resistance, CAFs can

secrete various factors making cancer cells develop drug resistance.

Among them, IL-6 secreted by CAFs can reduce the response of

cancer cells to chemotherapeutics (106, 107), and stromal cell-derived

factor-1 (SDF-1) secreted by CAFs (108) can stimulate the malignant

progression of pancreatic cancer and mediate the development of

gemcitabine resistance. CAFs can also secrete CCL5, which promotes

up-regulation of androgen receptor expression in prostate cancer

cells, resulting in resistance to enzalutamide treatment, and improves

the expression of tumor programmed death ligand 1 (PD-L1),

causing immune escape (109). In addition, CAFs inhibit ferroptosis

and reduce cisplatin sensitivity in nasopharyngeal carcinoma by

secreting FGF5 and activating downstream FGFR2/Nrf2 signaling

pathways (110). In the study of esophageal squamous cell carcinoma,

CAFs promote tumor cell growth by secreting plasminogen activator

inhibitor-1 (PAI-1) and attenuate the therapeutic sensitivity of

cisplatin (111). Meanwhile, the secretion of exosomes by CAFs is

also one of the important factors which can mediate tumor drug

resistance. The exosomes secreted by CAFs promote tumor cell

metastasis and drug resistance to chemotherapy drugs by
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maintaining tumor cell stemness and promoting epithelial

mesenchymal transformation (101). Moreover, CAFs may enhance

drug resistance through inhibiting drug accumulation and combating

drug-induced oxidative stress (112). For tumor immune escape,

CAFs can induce immunosuppressive cell infiltration and create

immunosuppressive TME, contributing to poor prognosis (105,

113–115). A high proportion of CAFs is more likely to cause

distant metastasis of the tumor and present a higher level of

immune invasion (116, 117). Additionally, The interaction between

CAFs and immune cells in TME is also an important factor in

promoting tumor progression (118). CAFs can enhance the

infiltration and function of myeloid suppressor cells, T cells and

other immune cells, reduce the number and activity of tumor-

infiltrated cytotoxic T cells in tumor tissues, and make tumors

insensitive to PD-1 treatment. Depletion of CAFs can improve the

efficacy of tumor immunotherapy (119).

In addition to the above-mentioned aspects, CAFs have been

shown to alter the architecture and physical properties of the ECM,

influencing tumor cells growth, migration and invasion (120–122).

Meanwhile, the age-related secretion phenotype (SASP) of CAFs is

also an important factor influencing tumor progression (123). Fan

et al. (124) identified a new myCAFs subpopulation of aging like

tetraspanning protein-8 (TSPAN8) (+) in breast cancer. TSPAN8

(+) myCAFs can resist chemotherapy by secreting SASP related

factors IL-6 and IL-8, thus enhancing the stemness of surrounding

breast cancer cells. Therefore, the combination of traditional tumor

therapy and anti-aging drugs may also be one of the strategies to

improve the effectiveness of tumor treatment. These findings

demonstrate that CAFs exert an important role in the progression

of solid tumors (Figure 2), and targeting CAFs may be an effective

strategy to improve the therapeutic efficacy of multiple

solid tumors.
6 CAFs in solid tumors - the tumor-
restraining function

Although most studies have confirmed that CAFs are closely

related to tumor progression, some research has also shown that

CAFs have a tumor-suppressing effect. The cell surface and

secretory protein meflin is expressed in cultured MSCs,

fibroblasts, and pericytes. meflin-positive CAFs are related to a

better prognosis in pancreatic ductal cel l carcinoma.

Overexpression of meflin inhibits tumor growth, while lack of

meflin results in significant tumor progression and poor

histological differentiation (125). In the research on lung cancer,

CD200+ CAFs can increase the sensitivity of epidermal growth

factor receptor (EGFR) gene mutation-positive lung cancer cells to

gefitinib (126). Similarly, the IL-8 produced by CAFs can inhibit the

proliferation of biliary tract cancers cell line OCUCh-LM1 (127).

Yes-associated protein 1 (YAP1) is a protein with multiple

functional domains and belongs to the Yes-related protein family.

Song et al. (128) recently discovered that YAP1 can regulate the

phenotype of CAFs, which can transform CAFs from the tumor-

promoting subtype that promotes ECM deposition to the tumor-
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suppressing subtype that stimulates anti-tumor immunity, thereby

increasing the treatment sensitivity of immune-checkpoint

blockade. myCAF is one of the important subtypes that promote

tumor progression. Bhattacharjee et al. (129) found that the

collagen type I expressed by myCAF can inhibit tumor growth by

collagen physically restricting tumor spread, and the absence of

collagen type I can promote the growth of metastatic tumors. In the

research on rectal cancer, Qin et al. (130) showed that neoadjuvant

chemotherapy can significantly reshape the CAF subtypes, and the

reshaped CAF subtypes regulate the TME through spatial

recruitment and crosstalk, activate immunity through multiple

cytokines, and inhibit tumor progression. In addition, CD143+

CAFs can predict better survival outcomes for colorectal cancer

patients (131). In the research on malignant melanoma, it was

found that CD9+ exosomes derived from CAFs have a significant

inhibitory effect on the proliferation of malignant melanoma cells,

and compared with CD9- patients, CD9+ patients have better

disease-free survival rates (132). These research results suggest

that in addition to the well-known tumor-promoting functions of

CAFs, they also possess potential anti-tumor functions and

subtypes. These functions and subtypes should be given

due attention.
7 CAFs in hematological malignancies

Hematological malignancies mainly include various kinds of

leukemia, multiple myeloma (MM) and malignant lymphoma.

With the continuous improvement of treatment programs, the

five-year survival of hematologic malignancies has increased in

recent years. However, whether this has translated into greater long-
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term survival is unknown (133). TME is an important factor

affecting blood tumor survival, drug resistance and disease

progression. CAFs in TME have been shown to exert a key role

in promoting tumor progression in studies of acute myeloid

leukemia (AML), acute lymphoblastic leukemia (ALL), chronic

lymphoblast ic leukemia (CLL) , MM, lymphoma and

myeloproliferative neoplasm (MPN) (Table 1). In the following

content, we focus on elaborating on the biological functions of

CAFs in the above-mentioned diseases based on current research

progress, hoping to provide reference for the search for potential

therapeutic targets.
7.1 CAFs promote the progression of acute
leukemia

Acute leukemia (AL) is a common malignant tumor type in

hematological system. Most patients with AL achieve complete

remission after induction chemotherapy. However, the prognosis

of quite a few high-risk patients is still poor, and the long-term

survival is not optimistic. Therefore, the new treatment strategy

provides great hope for further improving the efficacy of leukemia.

During the past few years, the significant rise of immunotherapy has

revolutionized the treatment of leukemia.

Recently, studies have shown that the TME has played a key role

in leukemia progression (10–12, 156–159). The TME is a

contributing factor to the failure or success of leukemia

treatment, which may lead to a shift in treatment methods and

concepts. CAFs are important stromal cells in TME, and their role

in AL has been gradually revealed, which is expected to become a

potential therapeutic target for leukemia.
FIGURE 2

Schematic illustration of CAFs activating in TME and promoting tumor progression. TGF-b, transforming growth factor b; OPN, osteopontin; Hp,
helicobacter pylori; PGRN, progranulin; MMPs, metalloproteinases; EMT, epithelial-mesenchymal transition; ECM, extracellular matrix.
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TABLE 1 The role of CAFs in hematological malignancies and possible molecular mechanisms.

Disease types Source of CAFs Activation factors Makers Biological function Potential
mechanisms

Reference
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Zhai et al.
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TABLE 1 Continued

Disease types Source of CAFs Activation factors Makers Biological function Potential
mechanisms

Reference
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promote MM cells proliferation
and invasion

u-PA/u-PAR system Ciavarella et al.
(148)

a-SMA, FAP promote MM angiogenesis CAF-derived exosome
microRNA-21

Miaomiao et al.
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lymphoma cells and induce
drug resistance
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Kunou et al.
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FAPa Reduce the therapeutic sensitivity of
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Research on AML has shown that the interaction between

leukemia cells and bone marrow niche can affect hematopoietic

function in AML, promote leukemia cell survival, and lead to

chemotherapy resistance (157, 160–162). For CAFs in AML

microenvironment, Zhai et al. (134) found that CAFs co-cultured

with AML cell lines could significantly prolong the survival of

leukemia cells, reduce apoptosis, and lower the sensitivity of

leukemia cells to chemotherapy drugs. Growth differentiation

factor 15 (GDF15) secreted by CAFs may be an important factor

for the protective effect of CAFs-mediated chemotherapy. Targeting

or down-regulating GDF15 can significantly improve the sensitivity

of leukemia cells to chemotherapy drugs. Another study

demonstrated that the high expression of the CAFs marker FAPa
in bone marrow stromal cells reduced the sensitivity of leukemia

cells to cytarabine by stimulating the b-catenin signaling pathway

(135). Suggesting that CAFs and its marker FAPa in AML

microenvironment may be an important factor for the poor

prognosis of AML patients.

ALL is one of the common types of leukemia. Research has

shown that there are abnormally activated stromal cells in the bone

marrow of patients with ALL, which can form specific stromal

niches to protect leukemia cells from chemotherapy drug damage

(163). Targeting TME is an important direction in the treatment of

ALL (156). The study performed by Burt et al. (136) on ALL found

that MSCs could be activated into CAFs under the stimulation of

daunorubicin or cytarabine to promote the progression of leukemia.

Moreover, co-culturing leukemia cells with human choroid plexus

fibroblasts could enable the latter to obtain CAFs phenotype (137).

Meanwhile, our previous research found that MSCs in the ALL

microenvironment acquired CAFs phenotype, which played an

essential role in promoting ALL cell migration and invasion

(138). The SDF-1/C-X-C chemokine receptor type 4 (CXCR4)

axis, as a signaling axis facilitating the interaction between tumor

cells and stromal cells, promotes the integration a5b1 on leukemia

cells to bind to FN in MSCs with CAFs phenotype, thus stimulating

the interaction between ALL cells and MSCs with CAFs phenotype,

which may be a potential molecular mechanism that fosters the

progression of ALL. Application of CXCR4 inhibitor AMD3100 or

targeting down-regulation of integrin b1 can weaken the promoting

effect of MSCs with CAFs phenotype on leukemia cell migration

and invasion (139).

Adult T-cell leukemia/lymphoma (ATLL) refers to a rare

aggressive T-cell malignant tumor caused by human T-cell

leukemia virus type 1 infection. Joo et al. (140) employed single-

cell RNA sequencing and T-cell receptor clone analysis to dissect

different cell types, and identified a new subset of CAFs showing

abundant EGFR-related transcripts, including early growth

response 1 and 2 (EGR1 and EGR2). Further study showed that

CAFs in ATLL exerted an essential role in CD4 T cell proliferation

through FGF7-FGF1 and PDGFA-PDGFRA/B signaling.

Based on the above research, CAFs promote leukemia

progression to varying degrees. To this end, Li et al. (164)

constructed a leukemia-associated fibroblastic tumor cell line

HXWMF-1. This provides a convenient way to further explore

the role of CAFs in leukemia.
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7.2 CAFs promote the progression of
chronic lymphoblastic leukemia

Chronic leukemia is a type of malignant tumor which is

originated from bone marrow hematopoietic stem cells, including

CLL and chronic myeloid leukemia. Studies on CAFs in chronic

leukemia mainly concentrate on CLL, which is a clonal malignant

disease of lymphocytes, and the survival and proliferation of tumor

cells cannot be separated from the surrounding stromal

microenvironment. In the TME of CLL, the activation of CAFs is

mainly dependent on CLL-derived factors (165). Co-culturing CLL

cells with MSCs can promote the acquisition of CAFs phenotype in

MSCs (166). Yang et al. (141) showed that exosomes secreted by

leukemia cells could transport miR-146a to MSCs, and miR-146a

transported to MSCs promoted the transformation of MSCs into

CAFs by targeting the down-regulation of ubiquitin-specific

peptidase 16. In Paggetti’s study (142), CLL-derived exosomes

facilitated the acquisition of CAFs phenotype by fusing with BM-

MSCs and endothelial cells, and further accelerated the disease

progression of CLL. LYN protein is a non-receptor tyrosine protein

kinase, belonging to the Src family of kinases. A recent study

showed that it was overexpressed in fibroblasts of lymph nodes in

CLL patients, which could regulate the polarization of fibroblasts

towards inflammatory cancer-associated phenotype, therefore

promoting leukemia survival (143). These results suggest that

stromal cells in the CLL microenvironment can be activated to

CAFs in response to the stimulation of leukemia cells, which may be

a key component in the study of the pathogenesis of CLL.
7.3 CAFs promote the progression of
multiple myeloma

CAFs exerts a vital role in the biobehavior of MM, and myeloma

cells can induce MSCs differentiate into CAFs in a dose-dependent

manner (167). Ge et al. (144) found that the FAP, a marker of CAFs,

was highly expressed in MM bone marrow and could promote the

growth of myeloma cells. Zi et al. (145) also showed similar results,

and demonstrated that FAP could protect MM cells from apoptosis

induced by bortezomib via b-catenin signaling pathway. In another

study, Frassanito et al (146) showed that the expression levels of

CAFs markers (FSP-1, a-SMA, FAP) in bone marrow of patients

with active MM were obviously higher than those in patients with

MM remission, patients with monoclonal gammopathy of

undetermined significance, and patients suffering from iron

deficiency anemia. In the MM microenvironment, activated CAFs

promote the chemotaxis, adhesion, proliferation and reduce

apoptosis of MM cells through cytokine signaling and

intercellular contact. In further studies, the research team found

that CAFs were insensitive to bortezomib treatment and protected

MM cells from bortezomib-induced apoptosis. Bortezomib can

trigger CAFs to secrete high levels of IL-6, IL-8, insulin-like

growth factor (IGF)-1 and TGF-b, induce reactive oxygen species

and activate autophagy in bortezomib resistant CAFs to reduce

treatment sensitivity (147). Ciavarella et al. (148) also suggested that
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CAFs promoted the proliferation and invasion potential of MM

cells, and inhibition of urokinase plasminogen activator receptor (u-

PAR) gene expression in CAFs significantly weakened the above

biological effects. CAFs-derived exosomes are also a key component

promoting the progression of MM, and CAF-derived exosome miR-

21 can enter MM endothelial cells in a time-dependent manner and

initiate angiogenesis by promoting proliferation, migration, and

tubule formation (80).

Considering role of CAFs in the progression of MM, the use of

recombinant human erythropoietin as a potential therapeutic

strategy can inhibit cell proliferation of MM patient-derived CAFs

while increasing CAFs apoptosis (168). Recently, study has also

shown that CAFs can hinder the anti-tumor activity of CAR-T cells

and promote MM progression, further demonstrating that dual

target CAR-T cell therapy targeting both MM cells and CAFs can

significantly improve the therapeutic efficacy of CAR-T cell therapy

(169). These results indicate that CAFs exert a vital role in the MM

microenvironment, and targeting CAFs may be an effective

intervention to improve the therapeutic efficacy of MM patients.
7.4 CAFs promote the progression of
lymphoma

Lymphoma is one of the most common malignancies in blood

system, including non-Hodgkin lymphoma (NHL) and Hodgkin

lymphoma (HL). In lymphoma TME, CAFs can support lymphoma

cell survival by increasing glycolysis and induce drug resistance in

lymphoma cells by secreting exosomes (149). CAFs also promote

the survival of lymphoma cells by secreting pyruvate (150).

Hodgkin and Reed Sternberg (HRS) cells are characteristic cells of

HL. Studies have demonstrated that HRS cells adhered to fibroblasts

are usually protected from damage induced by the therapeutic drug

Brentuximab Vedotin (151). FAP is one of the common markers of

CAFs. Jin et al. (170) found through 68Ga-FAPI PET/CT that the

uptake of FAP in HL lesions increased and was correlated with the

intensity of immunostaining. In aggressive NHL lesions, FAP has

moderate to severe immunostaining, while in indolent NHL lesions,

FAP staining is weaker. Fungal granuloma (MF) is a primary

cutaneous T-cell lymphoma (CTCL). Mehdi et al.’s (171) study

also showed that the expression of CAFs marker FAP a increased

with disease staging. Co-culture of MF fibroblasts with CTCL cell

line MyLa cells could increase the expression of IL16 and IL4 in

MyLa cells, and inhibit the expression of Th1 markers IFNG and

TBX21. Additionally compared with MF fibroblasts, normal

fibroblasts inhibited MKI67 expression in MyLa cells. Another

study revealed that CAFs protected MF cells from doxorubicin-

induced cell death and increased their migration by secreting

CXCL12 (152). It is suggested that monitoring FAP expression

may be a way to characterize lymphoma. Diffuse large B-cell

lymphoma is the most common type of NHL. Apollonio et al.

(153) found that co-culturing primary human lymphoid fibroblasts

(HLF) with DLBCL cell lines induced the expression of CAFs
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markers FAP a and a-SMA in HLF, and exhibited significant

changes in the cytoskeleton and matrix remodeling ability, while

up-regulating PD-L1 expression and driving immune suppression.

In further research, the research team found that DLBCL tumor

cells also converted fibroblast reticular cells (FRCs) into

immunosuppressive CAFs. Lymphoma FRCs can exhibit CAFs

like immunophenotypes, including FAP, a-SMA, and

upregulation of immune regulatory MHC class I, PD-L1, and PD-

L2 molecules (172). For therapeutic interventions, the study

performed by Aoki et al. (173) showed that the compound

emetine hindered the potential of CAFs to support tumor cell

viability in vitro and significantly inhibit tumor growth in vivo.

Additionally, emetine induced cell death in primary refractory

lymphoma cells with MYC rearrangement. Collectively, these

findings suggest that CAFs may be a key factor in the progression

of lymphoma.
7.5 CAFs in myeloproliferative neoplasm

MPN is a clonal and chronic disease characterized by myeloid

cell proliferation. Regarding the study of CAFs in MPN, Schmitt-

Graeff et al. (174) showed that the expression of CAFs marker a-
SMA was up-regulated in MPN, and its expression increased with

the aggravation of fibrosis degree. In previous studies, our research

group also found that CAFs markers were expressed to varying

degrees in MPN, among which, the expression of a-SMA, FAP, and

lysyl-oxidase-like 2 (LOXL2) was related to the degree of bone

marrow fibrosis. In vitro cell experiments demonstrated that the use

of recombinant human LOXL2 significantly increased the

expression of a-SMA and FAP in MSCs, suggesting that LOXL2

might be capable of stimulating MSCs to obtain the CAFs

phenotype (154). Insulin like growth factor binding proteins

(IGFBPs) are a family of six highly homologous protein members

with high affinity for IGF. Longhitano et al. (155) found that

IGFBP-6 expression significantly increased in primary

myelofibrosis (PMF), and IGFBP-6 stimulated the up-regulation

of CAFs markers a-SMA, FAP, and TGF-b expression in human

bone marrow stromal cells HS5, suggesting that IGFBP-6 could

stimulate the transformation of MSCs into CAFs and might be

correlated with the progression of myelofibrosis. However, there is

currently no detailed report on the mechanism by which CAFs exert

a role in MPN.

In the aforementioned study, we found that CAFs mainly play a

tumor-promoting role in hematological malignancies. Whether

they possess certain tumor-suppressing subtypes or tumor-

inhibitory biological functions remains to be further explored and

demonstrated. In light of this, we have summarized the activation of

CAFs and the main molecular pathways through which they

promote the progression of hematological malignancies

(Figure 3), and compared the different roles played by CAFs in

solid tumors and hematological malignancies (Figure 4) to make the

research situation of CAFs in tumors more visually clear.
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FIGURE 3

The activation of CAFs and the main molecular pathways that promote the progression of hematological malignancies. GDF15, growth differentiation
factor 15; SDF1a, stromal cell-derived factor-1 a; u-PA/u-PAR, urokinase plasminogen activator/urokinase plasminogen activator receptor; PDGF,
platelet-derived growth factor; TGF-b, transforming growth factor b; LOXL2, lysyl-oxidase-like 2; IGFBP-6, insulin like growth factor binding protein 6.
FIGURE 4

CAFs in solid tumors and hematological malignancies. ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; YAP1, Yes-associated
protein 1.
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8 Strategies for targeting CAFs

For the therapeutic strategies targeting CAFs, many studies have

conducted corresponding explorations. Through exploring the

various related published research works, a series of studies and

explorations are currently focused on inhibiting the poor prognostic

markers of CAFs, inactivating CAFs, targeting the signaling pathway

activated by CAFs and its downstream factors, or preventing the

interaction between tumor cells and CAFs (42, 59, 175).

FAP is an important marker of CAFs. The study performed by

Akai et al. (176) showed that near-infrared light immunotherapy

(NIR-PIT) targeting FAP effectively induced CAFs-specific cell

death without damaging adjacent normal cells. At the same time,

the use of FAP inhibitor Talabostat (PT100) might also be one of

the options to improve the efficacy of tumor treatment (177). The

CXCR4/SDF-1 axis exerts an important role in coordinating tumor

cells and CAFs (32). The use of CXCR4 inhibitor AMD3100 may be

one of the strategies to reduce the interaction between CAFs and

tumor cells and then improve therapeutic efficacy (139). Bao et al. ‘s

(178) study revealed that the combination of FAP-targeted

radiopharmaceutics [177Lu] Lu-DOTAGA.(SA.FAPi)2 and

AMD3100 significantly inhibited cell proliferation, migration and

colony formation in triple-negative breast cancer cells, and showed

synergistic effects on the 4T1 tumor models, while reducing the

number of bone marrow-derived suppressor cells. It is suggested

that [177Lu] Lu-DOTAGA.(SA.FAPi)2 combined with AMD3100

may be an effective treatment for tumor. Ripretinib is a potent

receptor tyrosine kinase inhibitor. Mori et al. (179) showed that in

the presence of the chemotherapy drug carboplatin, ripretinib could

prevent CAFs survival and inhibit the proliferation of ovarian clear

cell carcinoma. The use of the flavonoids Oroxylin A (OA) can also

inactivate CAFs and hinder the proliferation and invasion of tumor

cells (180). Meanwhile, appropriate digoxin can inhibit the sub-

population of tumor stem cells and the production of CAFs

cytokines in the CAFs-tumor cell co-culture system, and digoxin

combined with chemotherapy can improve the therapeutic effect of

tumor (181). Low dose digoxin can inhibit the expression of TGF-b-
induced CAFs marker fibronectin expression without producing

adverse cytotoxicity (30). In addition, 1,25 (OH) 2D3 can inhibit the

activation of CAFs in tumors (182). It is indicated that the

combination of conventional chemotherapy and CAFs targeting

drugs may be a potential strategy to enhance the therapeutic effect

of tumor treatment. In addition, The use of dual targeting strategy

to simultaneously target tumor cells and CAFs may be an effective

treatment option (169, 183).

Moreover, multiple clinical trials have been conducted to

explore the potential impact of intervention and targeting CAFs

on the therapeutic efficacy of tumor treatment. Among them, the

clinical trials of the therapy targeting CAFs marker FAP

(NCT05442151, NCT05641896, NCT04621435, etc.) are currently

underway. Some clinical experiments have been completed, but no

research results have been posted (NCT05547321, NCT04857138,

NCT05043714). As CXCR4/SDF-1 is a key signaling axis mediating

the interaction between CAFs and tumor cells, several clinical

studies targeting CXCR4 have also been carried out. A phase 2
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in metastatic pancreatic patients (NCT02907099) showed that the

application of BL-8040 and pembrolizumab could increase the

quantity of T cell infiltration in tumor tissues, but was

accompanied by 26.67% severe adverse events and 33.33% non-

severe adverse events. In hematological malignancies, several

clinical trials using CXCR4 antagonists or targeting CXCR4 have

also been conducted, but some completed clinical trials

(NCT01120457, NCT04274738, NCT01236144, NCT01010880)

have not posted experimental results. A recent phase 1 clinical

trial of CXCR4 modified B-cell maturation antigen CAR-T for

relapsed/refractory MM is currently recruiting, but no preliminary

results have been presented (NCT04727008). Moreover, several

clinical trials using targeting downstream signaling pathways of

CAFs (NCT01333475, NCT02392572) and intervention of their

adverse prognostic secretory factors (TGF-b, PDGFR, VEGF,
MMP, etc.) have also been conducted (NCT02423343,

NCT02146222, NCT02202746, NCT00033215, NCT00001683),

expecting to directly or indirectly consume CAFs, reduce or

eliminate their tumor-promoting characteristics to improve the

therapeutic efficacy of tumor treatment. However, the results of

some clinical trials are not satisfactory and are accompanied by

varying degrees of adverse events. At present, there are still some

clinical trials underway, with the expectation that the therapeutic

efficacy based on the intervention of CAFs will be further verified in

more types of tumors.

Overall, although a number of basic and clinical trial studies on

the treatment of CAFs have been carried out, due to the various

subtypes and mechanisms of CAFs in different tumors, there is

currently no unified treatment target. Additionally, although

multiple clinical trials have been conducted, some results are not

satisfactory and are accompanied by varying degrees of adverse

events, which may be a challenge for current treatment. This

requires further exploration and argumentation in future research.
9 The heterogeneity of CAFs needs
attention

In the aforementioned content, we mentioned that CAFs can

originate from various stromal cells in the TME, and can promote

tumor progression through multiple mechanisms and signaling

pathways. However, they also possess the biological function of

inhibiting tumor progression. Simultaneously, CAFs may present

different subtypes in different tumor or different stages of the tumor

(43, 175, 184–186). These results reveal the heterogeneity of CAFs

in the TME.

To explore the composition of bone marrow stromal cells,

Baryawno et al. (187) performed single-cell RNA sequencing on

non-hematopoietic bone marrow cells of C57Bl/6 mice and found

17 subtypes of stromal subsets, including fibroblast subpopulations

consisting of 5 clusters. Fibroblasts-1 and 2 expressed progenitor

cell markers CD34 and MSCs markers, but did not express

endothelial and pericyte genes. Fibroblasts-3, 4, and 5 correlated

with tendon/ligament cells. They jointly express Sox9 and TF
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Scleraxis. This indicates the existence of different subtypes of

fibroblasts in the bone marrow microenvironment. In addition,

numerous studies on single-cell sequencing analysis have revealed

that CAFs can exhibit distinct subtypes, markers, and biological

functions in tumors and different organs (44, 188–191). In recent

years, an increasing number of CAFs subtypes have been discovered

and defined, which makes CAFs more heterogeneous.

Meanwhile, CAF markers may exert differential biological

functions in tumors, and undergo subtype changes during the

tumor progression process. a-SMA is an important marker of

CAFs, and studies have suggested that its high expression can

promote tumor progression (33, 52). However, there were also

study showing that depletion of a-SMA+ myofibroblasts leads to

enhanced EMT and cancer stem cells, and low myofibroblasts in

tumors is associated with poor survival (192). In the study of

cervical cancer, recent research performed by Bueno-Urquiza

et al. (46) showed that CAFs exhibited a myofibroblast like

phenotype (CAF a-SMA+FAP+) in the early stages of cervical

cancer, while in the late stages, they exhibited a primitive

phenotype (CAF a-SMA- FAP+). In the study of pancreatic

ductal adenocarcinoma, Tao et al. (193) identified NFs and nine

different subtypes of CAFs, and found that the CAFs subtypes

exhibited plasticity in differentiation, transitioning from early

normal-like CAFs (nCAFs) to iCAFs and myCAFs, ultimately

leading to more invasive proliferative CAFs (pCAFs). In addition,

in breast cancer, Kashyap et al. (194) found that when CAFs

conditioned medium from different subtypes of breast cancer and

different breast cancer cell lines were cultured and treated with

chemotherapy drugs, there exited differences in the abundance of

CAFs secreted proteins in each group, suggesting that there were

heterogeneous CAFs populations in the microenvironment of

different cancer subtypes. In the study of intrahepatic

cholangiocarcinoma, Hu et al. (195) showed that CAFs could be

categorized into cancer suppressive or cancer promoting types

(rCAFs or pCAFs). Among them, polycomb group ring finger 4

(PCGF4) promoted cell migration, drug resistance activity and stem

cell characteristics. rCAFs triggered proteasome-dependent

degradation of PCGF4, while pCAFs enhanced the stability of

PCGF4 by activating the IL-6/p-STAT3 pathway.

Apart from the fact that different CAFs subtypes may lead to the

heterogeneity of CAFs, the role that CAFs play in promoting or

inhibiting tumor growth in different tumors is also one of the

characteristics that reflect their heterogeneity. Just as we mentioned

in the previous content. These findings suggest that CAFs from

different tumor types or different CAFs sources may have variable

typical markers and present different phenotypes and functions.

Researchers need to focus on these issues in the study process to

more accurately explore the possible role of CAFs in different

tumors and contribute to finding potential treatment strategies.
10 Discussion and conclusion

TME is a complex and dynamic microenvironment that

supports the survival and proliferation of tumor cells. The
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occurrence, development and metastasis of tumors are closely

related to the internal and external environments in which tumor

cells are located. This includes not only the structure, function and

metabolism of the tissue where the tumor is located, but also the

intrinsic environment surrounding the tumor cells. The interaction

between the two enables TME to adapt to support the survival,

growth and metastasis of tumors.

CAFs, as an important stromal cell component in the TME, play

a significant role in the occurrence and development of tumors. In

this review, we summarize and elaborate on the origin, markers,

characteristics, and research progress and treatment strategies of

CAFs in solid tumors and hematological malignancies, and

emphasize the heterogeneity of CAFs. Based on literature reports,

we found that the activation of CAFs in the TME can originate from

multiple stromal cells and has various markers and biological

subtypes. In the research of solid tumors, most studies have

found that they play an important role in promoting tumor

angiogenesis, growth, proliferation, and mediating tumor

resistance, invasion, and immune escape. However, some studies

have also reported that CAFs can have biological subtypes and

functional characteristics that inhibit tumor progression. Recently,

based on single-cell sequencing studies, more biological subtypes of

CAFs have been revealed, and these different subtypes of CAFs

further reveal the heterogeneity and diversity of the functions of

CAFs. In the research of hematological malignancies, the possible

roles of CAFs have been revealed in diseases such as AML, ALL,

CLL, MM, lymphoma and MPN. Most of them have exerted tumor-

promoting biological functions. Whether CAFs have more

biological subtypes and whether they have the function of

inhibiting tumor progression require further exploration and

verification in the future.

Regarding the therapeutic strategies targeting CAFs, studies

have achieved satisfactory results in basic research. However, in

clinical trials, the intervention treatments targeting CAFs still face

many issues that need to be addressed, including long-term efficacy,

drug safety, and adverse events.

In conclusion, CAFs are not only considered to be a vital factor

for promoting tumor progression and leading to tumor immune

escape in solid tumors, but also a key component in promoting

tumor progression in hematological malignancies. It interacts with

tumor cells, secretes cytokines, promotes tumor EMT, promotes

ECM remodeling, and directly interacts with tumor cells, thereby

promoting tumor cell growth and proliferation, and mediating the

process of tumor drug resistance and invasion. Blocking the

interaction between CAFs and tumor cells may enhance the

sensitivity of tumor cells to chemotherapeutic drugs, and reduce

the proliferation and invasion of tumor cells.

Based on this, targeting CAFs might be an important

therapeutic measure to improve TME and reduce tumor

progression. However, during the research process, we need to

pay attention to the heterogeneity of CAFs, as well as the inhibitory

subtypes and functions of CAFs on tumors. Precisely targeting the

tumor-promoting subtypes of CAFs or inhibiting CAFs activation

and inhibiting the interaction between CAFs and tumor cells might

be one of the effective options for improving tumor treatment
frontiersin.org

https://doi.org/10.3389/fonc.2025.1596947
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2025.1596947
strategies in the future. Overall, an increasing number of studies are

still needed to demonstrate the therapeutic efficacy of targeted

CAFs to accurately achieve the purpose of improving the long-

term survival of tumors.
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