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Oral squamous cell carcinoma is among the most prevalent tumours of the oral

andmaxillofacial region. The initial symptoms are typically minor andmay remain

misdiagnosed until the disease advances, resulting in a significantly reduced five-

year survival rate for patients. Early detection is critical, as it can improve five-year

survival rates from below 50% to 70–90%. Due to their reduced sensitivity and

intrusive nature, conventional screening methods such as serological testing and

histopathological biopsies have limitations in their application. In contrast,

emerging technologies including single-cel l sequencing, spat ia l

transcriptomics, nanopore sequencing, biosensor technology, and artificial

intelligence, among other advanced detection methods, are redefining

biomarker discovery. Scalability obstacles still exist, including clinical validation

gaps, high implementation costs, and analytical complexity. In order to close the

gap between invention and equitable implementation, future efforts should focus

on multicenter validation of potential biomarkers and cost-effective integration

of these technologies. This will ultimately improve patient prognosis and quality

of life. This work aims to comprehensively investigate and evaluate the

prospective applications and future developmental potential of these

technologies while offering an extensive examination of oral squamous cell

cancer biomarker research
KEYWORDS

oral squamous cell carcinoma, single-cell sequencing technology, spatial
transcriptomics, nanopore sequencing, artificial intelligence technology,
biosensor technology
Introduction

Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy of the oral

cavity, accounting for over 90% of all oral cancers (1), with an estimated 389,000 new cases

and 188,000 deaths annually globally each year (2). Significantly, incidence rates are

increasing threefold in low- and middle-income nations (LMICs) relative to high-income

regions (3), highlighting differences in healthcare access and delayed diagnosis. Early

symptoms (e.g., painless ulcers or erythroplakia) are frequently overlooked, leading to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2025.1597086/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1597086/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1597086/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1597086&domain=pdf&date_stamp=2025-06-19
mailto:angel_li77@163.com
https://doi.org/10.3389/fonc.2025.1597086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1597086
https://www.frontiersin.org/journals/oncology


Liu et al. 10.3389/fonc.2025.1597086
diagnosis at advanced stages (T3/T4) in 60-70% of LMIC patients

versus 30-40% in high-resource settings (4). This disparity stems

from systemic barriers, including the high cost of molecular tests

($200–500 per analysis) (5), even exceeding monthly incomes in

many LMICs, and their specialized oncology centers are

concentrated in urban areas (6). Late diagnosis also reduces

treatment efficacy; the 5-year survival rate plummets from 84%

for localized tumors to 39% for metastatic disease (7). And even

after treatment, extensive surgeries frequently cause permanent

functional impairments, including speech deficits (45% of

patients) and feeding tube dependence (32%) (6). These data

underscore the urgent need for accessible early detection tools

that can overcome geographic and economic divides.

Traditional diagnostic techniques for OSCC, such as direct

inspection, histopathological analysis, chemical staining, and

exfoliative cytology, remain the clinical standard. However, their

invasive nature (e.g., requiring tissue biopsies), low sensitivity (60–

75%) (4), high costs (5), and reliance on specialized pathology

expertise hinder widespread adoption, particularly in low-resource

settings where diagnostic delays are common (6). Recent advances in

molecular biology and artificial intelligence (AI), particularly the

appearance of deep learning-based image analysis (AUC=0.87 for

OSCC detection) (8), have transformed OSCC biomarker discovery

and early detection (Figure 1). Emerging technologies including

single-cell RNA sequencing (scRNA-seq, profiling 20,000 cells per

run) (9), spatial transcriptomics (10-mm resolution) (10), biosensors

(95% sensitivity for salivary miRNAs) (11), and AI (different

algorithms can analyze large amounts of data), have identified novel

biomarkers like OSCC proliferation (e.g., TOP2A mRNA) (12) and

immune evasion (e.g., Galectin-9+ TAMs) (13), as summarized in

Table 11. These innovations provide minimally invasive alternatives

for early OSCC detection, yet their clinical translation requires

overcoming cost barriers and validation in diverse populations (55).

This study critically evaluates recent advancements in OSCC

biomarker detection, emphasizing technological innovation and

barriers to equitable implementation. We assess the translational

potential of these tools while advocating for cost-reduction strategies

and multicenter validation to bridge healthcare disparities.
Progress in research on new detection
methods

Sequencing technology

The scRNA-seq has transformed OSCC research by enabling

high-resolution profiling of tumor heterogeneity (9) by analyzing

gene expression at the individual cell level, with modern platforms

(e.g., DNBSEQ-T20×2) achieving throughputs of 50,000 cells per

run (14), while maintaining a low per-cell cost (~$0.01/cell) (56). It

has identified candidate biomarkers including tumor-specific gene
1 That listed biomarkers require multicenter validation before

clinical adoption.
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clusters, though further validation is needed to confirm their clinical

utility (57). Combining scRNA-seq with single-cell regulatory

network inference and clustering analysis (SCENIC) analysis

identified CMKLR1+ macrophages (HR=2.1 for poor prognosis)

(15), which may directly influence epithelial cell proliferation and

impede OSCC progression. Typically, scRNA-seq directly quantifies

mRNA expression in OSCC cells, revealing upregulated oncogenic

transcripts such as TOP2A (3.2-fold increase in T3/T4 tumors) (12)

and NNMT (correlating with smoking status, p<0.01) (22).

However, TOP2A’s diagnostic specificity is limited by its

expression in 18–22% of oral potentially malignant disorders

(OPMDs) (12), necessitating complementary biomarkers (e.g.,

CXCL12, AUC=0.81) (29) to improve early detection accuracy.

To enhance reliability, scRNA-seq findings can be cross-validated

through orthogonal methods including immunohistochemistry,

qPCR, and gene set enrichment analysis (GSEA), establishing a

multi-platform verification framework. Beyond transcriptional

profiling, scRNA-seq has facilitated the discovery of protein-

coding biomarkers including the Immune modulators [CXCL12

(29) and CXCL14 (27)], Metabolic regulators (NNMT) (22), and

[DUSP1 (17) and ZNF71 (26)], which were evaluated for gene

expression of proteinaceous substances. The variations in the

expression levels of these genes suggest their potential role as

biomarkers for OSCC, but these markers still require prospective

validation in multicenter trials before clinical implementation.

Spatial transcriptomics (ST) preserves tissue architecture while

mapping gene expression, allowing researchers to study cellular

interactions within tumor niches, bridges single-cell resolution with

tissue context, preserving architectural details at 10-mm resolution

while capturing >20,000 RNA molecules per spot (10), with next-

generation platforms like Stereo-seq achieving 500 nm resolution

(58). In OSCC, ST has uncovered tumor-zone-specific signaling

gradients, such as 3.5-fold elevated WNT5A expression at invasion

fronts (p<0.001) (59). Through the use of CellPhoneDB and

NicheNet for intercellular communication analysis, ST technology

has revealed the upregulation of HIF1A (4.2-fold in hypoxic niches,

FDR<0.01), PDGFRA (2.8-fold in aSMA+ iCAFs), and RGS5 (1.9-

fold in perivascular zones) (30) in the high metabolic region,

indicating that iCAF transformation dictates the metabolic

signature of the immunosuppressive microenvironment.

Integrated analysis using scRNA-seq, immunohistochemistry,

flow cytometry and other techniques, the Galectin-9 (92% of

CD163+ TAMs, HR=2.1 for poor prognosis), MHC-I (68% tumor

cells vs normal, correlates with CD8+ T cell exclusion), SLC16A1

(PET-CT SUVmax correlation r=0.79), and the chemokines

CXCL9, CXCL10, and CXCL12 (13) were found to be

upregulated in OSCC tissues or cells, and detect the upregulated

expression of these genes may facilitate the early diagnosis. These

discoveries enable the early detection that combined biomarker

panels achieve 89% sensitivity (8), and to better achieve treatment

stratification such as CXCL12 high tumors show a 3.2-fold better

response to immunotherapy (60).

Oxford Nanopore Technology (ONT), a third-generation

sequencing platform renowned for its real-time analysis

capabilities, has demonstrated clinical utility in both pathogen
frontiersin.org
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TABLE 1 Biomakers of oral squamous cell carcinoma.

Methods Type Sources Potential Verification Expression Effect e Potential role (Author, year)
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Inhibition tumor progression (Lou et al.,
2024) (14)
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Promote tumor progression

(Y. Zhang et al.,
2024) (15)
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Immunomodulation and tumor
microenvironment Modeling

(Q. Zhang et al.,
2024) (16)

Promote tumor progression

Correlated with progression;
Prognostic biomarker

(Kurkalang et al.,
2023) (17)

se OS Promote tumor progression;
Prognostic biomarker

(Yao et al.,
2024) (18)

Correlated with immune
cell infiltration

(Z. Wang et al.,
2024) (19)

Correlated with tumor
progression

(Wu et al.,
2023) (20)

Promote tumor progression;
Diagnostic biomar

(Cheng et al.,
2024) (12)

.8
M

Promote tumor invasion and
induced EMT

(Yang et al.,
2022) (21)
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Promote tumor angiogenesis (X. Wang et al.,
2024) (22)
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02)

Promote tumor progression;
Related to prognosis

(He et al.,
2022) (23)
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2024) (24)

ed to
D-1
0.0001)

Promotes T cell depletion and
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TABLE 1 Continued

Methods Type Sources Potential Verification Expression Effect value Potential role (Author, year)

= −0.52
I=−0.95-−0.10

Reduce infection of HSV1
and accelerate cell cycle

(F-C. Jiang et al.,
2022) (26)
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ity of the TIL
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TABLE 1 Continued

Methods Type Sources Potential Verification Expression Effec e Potential role (Author, year)

m Carcinogenic potential
Inflammatory mediator
Unclear

(Mauceri et al.,
2023) (36)

m Regulation of gene expression (Weber et al.,
2023) (37)

m Translation regulation

m
:2 20fM

Carcinogenic potential;
Diagnostic biomarker

(T et al., 2022) (38)

: 0 L Key receptors for
SARS-CoV-2 infection

(Lv et al.,
2021) (39)

: 0 mL
pg 0.0
L

Diagnostic biomarker (Y. Jiang et al.,
2023) (40)

: 0
m

Hypermethylation is closely
associated with tumorigenesis;
Diagnostic biomarker

(Carr et al.,
2020) (41)

: 0 g/mL
- L

Diagnostic biomarker (Bhardwaj et al.,
2024) (42)

: 0
iti
aM nM

Diagnostic biomarker (Rashidova et al.,
2024) (43)

m Correlated with progression;
Diagnostic biomarker

(Farnesi et al.,
2023) (44)

iti
aM

Diagnostic biomarker (G. Li et al.,
2022) (45)

iti
M

Diagnostic biomarker (Y. Wang et al.,
2022) (46)

= Immune microenvironment
changes and immune escape

(Cai et al.,
2024) (8)

m Promote tumor progression (Sekaran et al.,
2024) (47)

(Continued)

Liu
e
t
al.

10
.3
3
8
9
/fo

n
c.2

0
2
5
.15

9
70

8
6

Fro
n
tie

rs
in

O
n
co

lo
g
y

fro
n
tie

rsin
.o
rg

0
5

t valu

entioned

entioned

entioned

entioned
2fM and

.1mg/m

.01 pg/
/mL - 2

.24 ×
ol/L

.0001 n
10 ng/m

.91 fM
vity:
- 100

entioned

vity:
- 1 nM

vity:
- 10 pM

0.825

entioned
biomakers phase

ONT Prevotella Saliva Prevotella melaninogenica,
Prevotella intermedia,
Prevotella jejuni

Bioinformatics
analysis

upregulated Not

lncRNAs Oral cells DANCR,GAS5, NEAT1,
CCDC144NL-
AS1, SNHG3

Bioinformatics
analysis

Correlation Not

Protein RPL21 Bioinformatics
analysis

upregulated Not

Electrochemical
biosensor

Gene Tissues E6/E7+ on HPV-16 and
HPV-18

In vitro validation upregulated Not
LOD

Protein OEC-
M1s

ACE2 In vitro validation Correlation LOD

Electrochemical
biosensor

Protein Oral cells SCCA In vitro validation Correlation LOD
0.05
ng/m

Cell lines MGMT Bioinformatics
analysis

downregulated LOD
10-1

Saliva IL-8 In vitro validation upregulated LOD
0.00

Optical
biosensor

Protein Saliva IL-8 In vitro validation upregulated LOD
Sen
273

SERS Bacter-ia Saliva Lysozyme In vitro validation upregulated Not

ctDNA Serum TP53, PIK3CAE545K In vitro validation upregulated Sen
100

Mi-
RNA

Saliva miR-31, miR-21 In vitro validation upregulated Sen
10 a

AI Chromosome Tissues chromosome 9p loss
prediction, 9PLP

Bioinformatics
analysis

Loss AU

Gene HPV- Tissues ECT2 Bioinformatics
analysis

Correlation Not
2

4

s

s

s

C

https://doi.org/10.3389/fonc.2025.1597086
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TABLE 1 Continued

Methods Type Sources Potential Verification Expression Effect value Potential role (Author, year)

Sensitivity = 96.2%
AUC = 0.983 (SVM)

Promote tumor progression (Hu et al.,
2020) (48)

AUC=0.674, 0.704,
0.66 (1,3,5-year
survival rate)

Correlated with the malignant
phenotype of the tumor

(Xing et al.,
2020) (49)

Protective biomarker

OR = 1.97 Diagnostic biomarker;
Related to early stage

(McRae et al.,
2021) (50)

AUC = 0.710
(Validation Set)

Cell Cycle Regulation and
Tumor Suppression;
Prognostic biomarker

(Y. Wang, Zhou,
et al., 2024) (51)

OR = 3.715 (T3/T4)
CI: 1.580–8.737
P=0.003

Promote cell proliferation and
inhibit apoptosis;
Prognostic biomarker

(Chen et al.,
2024) (52)

HR< 1
Related to better OS

Prognostic biomarker (Gessain et al.,
2024) (32)

AUROC = 0.67
(Internal Validation
Set)

Promote tumor progression (Viet et al.,
2024) (53)

Correlated with
year survival rate,
c-statistic = 0.9409

Prognostic biomarker (Viet et al.,
2024) (53)

Not mentioned Predicting Tumor Prognosis and
Response to
Immunotherapy;
Prognostic biomarker

(Y. Wang, Mou,
et al., 2024) (54)

CAFs, matrix cancer-associated fibroblasts; CAFs, cancer-associated fibroblasts; CI, Confidence
nditioned Medium; EMT, Epithelial-Mesenchymal-Transition; MVD, Microvessel Density; TNM,
LOD, Limit of Detection; OEC-M1s, human oral squamous cell carcinoma cell line 1; DEmRNA,
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analysis
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TREM2 Bioinformatics
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Bioinformatics
analysis
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scRNA-seq, single cell RNA sequencing; OS, Overall Survival; RFS, Recurrence free survival; DFS, Disease-free survival; PTs, primary tumors; LNs, lymphatic node;
Interval; SMD, Standardized Mean Difference; AUC, Area Under the Curve; CAF-CM, Cance-Associated Fibroblast-Conditioned Medium; NF-CM, Norml Fibroblast-C
Tumor, Node, Metastasis; TIL, Tumor-Infiltrating-Lymphocytes; ST, spatial Transcriptomics; lncRNAs, long non-coding RNAs; ONT, Oxford Nanopore Technology;
differentially expressed messenger RNA; snoRNA, small nucleolar RNA; MRGs, Macrophage-related risk signature.
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detection (COVID-19 identification within 6 hours) (61), and

cancer genomics (25). It can offer long-read-length sequencing

and real-time detection via the electronic sequencing of raw DNA

and RNA in OSCC detection. As the only commercially available

direct RNA sequencing platform, ONT’s long-read capability

resolves full-length lncRNA structures, revealing the Prognostic

lncRNAs including DANCR isoforms (lymph node metastasis

OR=3.2, 95%CI 1.8-5.7) and GAS5 variants (cisplatin resistance

AUC=0.81) (37) and the microbial biomarkers including Prevotella

spp. (detected in 68% OSCC cases vs 22% controls) (36), a prevalent

aetiological factor in oral diseases intricately associated with the

invasive and migratory characteristics of OSCC.
Biosensor technology

Modern biosensors synergistically combine biorecognition

elements (e.g., antibodies, aptamers) with advanced transducers,

and convert molecular interactions into quantifiable optical/

electrical signals within 10–15 minutes, enabling real-time

monitoring of disease progression (11). Contemporary biosensor

platforms are primarily categorized into two primary types based on

the signal utilized: electrochemical sensors and optical sensors.

Electrochemical impedance spectroscopy (EIS) enables real-time,

label-free monitoring of biomolecular interactions with 0.1° phase

resolution (62). By utilizing the characteristics of EIS, Lv et al. (39)

developed a Pd@ACE2 nanosensor achieving 0.8 pM ACE2

detection in OSCC cells, single-cell analysis revealed ACE2

overexpression (3.2-fold) correlates with EMT markers (vimentin,

E-cadherin), suggesting its role in OSCCmetastasis. In addition, the

EIS-based electrochemical sensor successfully identified the

upregulation of IL-8 (2.4 ng/mL cutoff, 89% sensitivity for early

OSCC) (42) and the downregulation of MGMT (83% specificity vs

healthy controls) (41) in saliva, authentically achieved non-invasive

sampling and cost-effective detection (48). Nanocomposite-based

sensors enable breakthrough applications, gold nanoparticle/

graphene nanosheet (Au/GN) complexes have been efficiently

utilized as sensing electrochemical sandwich immunosensors,

having proficiency in the detection of the squamous cell

carcinoma antigen (SCCA) (40). Furthermore, a multi-analyte

electrochemical gene sensor utilizing silicon nanoparticles (SiNPs)

infused with various redox indicators can identify the E6/E7 genes

of HPV-16 and HPV-18 (38), thereby offering novel opportunities

for the concurrent detection of multiple biomarkers, and expand the

repertoire of biomarkers for OSCC.

Optical sensors detect biomarkers that leverage light

absorption, fluorescence, aggregation-induced luminescence

(AIE), and light scattering, with several types of sensors available,

such as colorimetric, fluorescent, and surface plasmon resonance

(SPR) sensors. Recent material innovations have pushed detection

limits to the single-molecule level. Cutting-edge applications

include AuNP-based colorimetric arrays detecting miR-141 at

0.01 pM (Dl=52 nm redshift) with 93% clinical accuracy for

OSCC staging (63), SiQD-FRET systems quantifying GSH in 2 mL
serum (0.1–100 mM range, R^2 = 0.99) for redox status monitoring
Frontiers in Oncology 07
(64), and the cost-effective and portable supersurface plasmon

biosensor (MetaSPR), integrated with artificial nanoenzymes for

use with the nanoenzyme-linked immunosorbent surface plasmon

resonance biosensor (Nano-ELISPR) (65), achieving 0.01 pg/mL IL-

6 detection in saliva within 8 minutes, priced at $0.50/test. Nano-

ELISPR can undergo a reversible etching reaction through Ag ions

on gold and silver MetaSPR chips, facilitating ultrasensitive and

specific detection.

Surface-enhanced Raman scattering (SERS) leverages

plasmonic nanostructures (e.g., Au/Ag nanoparticles) to achieve

single-molecule detection sensitivity through localized surface

plasmon resonance effects. It provides unique advantages

including non-contact and non-destructive measurements, high

resistance to interference, rapid data transmission, and telemetry

control (66) for clinical translation, enabling simultaneous analysis

of multiple targets in complex biological matrices. Integrated SERS

platforms, which are combined with molecular dynamic (MD)

simulation and analytical techniques, can achieve the IL-8

quantification [(2.4–100 ng/mL dynamic range)] (43) and

lysozyme [(0.1-10 mg/mL)] detection (44) in saliva, as well as with

lateral flow chromatography methods and catalytic hairpin

assembly signal amplification strategies for the detection of

circulating tumor DNA (ctDNA), such as TP53 (mutations at

0.01% allele frequency) and PIK3CA E545K in serum (45).

Additionally, through hybridization chain reaction (HCR)

amplification, SERS aims to identify diverse noncoding

microRNAs, including miR-31 and miR-21 in saliva (46). Above

all, SERS has emerged as a transformative OSCC diagnostic tool due

to its sub-nm spectral resolution, single-cell sensitivity, and

multiplex capacity while analysis, with 89% overall accuracy in a

500-patient cohort study (8).
Artificial intelligence technology

Artificial intelligence (AI) systems emulate human cognitive

processes to analyze complex biological data, demonstrating

preliminary success in OSCC biomarker discovery but requiring

rigorous clinical validation (53). Deep learning architectures,

particularly convolutional neural networks (cNNs), have improved

OSCC detection by analyzing histopathological images with 86.7%

accuracy in margin assessment (53), though their performance varies

across imaging modalities (67). Multi-omics integration through AI

has revealed tobacco-associated epigenetic markers (GPR15,

GNG12, and GDNF), these epigenetic alterations show a stronger

correlation with tobacco exposure (p<0.001) than with tumor

staging (p=0.12) based on multivariate analysis. In heavy smokers

(≥10 pack-years), the mean methylation b-values increase by 0.38-

0.45 compared to non-smokers. This finding supports targeted

screening for high-risk populations. Moreover, Explainable AI

(XAI) approaches have enhanced biomarker discovery in OSCC.

Using Shapley Additive Explanations (SHAP) analysis combined

with particle swarm optimization, researchers identified three

prognostic biomarkers: ECT2, LAMC2, and DSG2 (47), and the

downregulation of these genes signature correlates with poor clinical
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outcomes, and patients showing concurrent downregulation of all

three markers exhibit a 3.2-fold higher metastasis risk (95% CI: 1.8-

5.6) according to recent TCGA data analysis.

Machine learning (ML) models have demonstrated 75-89%

cross-validation accuracy in analyzing OSCC gene expression

profiles from TCGA datasets (68), are increasingly applied to

analyze gene expression profiles in OSCC. These models quantify

tumor heterogeneity through cellular diversity indices (e.g.,

Shannon entropy) and spatial patterning metrics, achieving 0.81

AUC for distinguishing early-stage lesions, though with variable

performance across histological subtypes (54). AI-enhanced

histopathology has revealed recurrent loss of heterozygosity

(LOH) at chromosome 9p (38% frequency), implicating tumor

suppressor genes such as CDKN2A (8). This finding suggests a

potential role in early carcinogenesis, though functional validation

is ongoing. Furthermore, Gradient boosting machine (GBM)

models have identified CDKN2A inactivation in 72% of TCGA-

analyzed OSCC cases, correlating with dysregulated G1/S

checkpoint control (51). This positions CDKN2A as a high-

priority biomarker candidate, pending multicenter validation.

Multiparametric ML-MRI integration has demonstrated

prognostic utility, with Ki-67 expression serving as an

independent predictor of poor survival (HR=2.3, 95% CI 1.7–3.1)

(52). However, its clinical adoption is limited by interobserver

variability in immunohistochemical scoring. Advanced neural

networks (e.g., SurvNet) integrated with explainable AI (XAI)

frameworks have optimized the selection of multimodal

biomarkers. Specifically, a recent multicenter study validated the

prognostic value of combining p16 status (AUC=0.87), FDG-PET-

derived MTV50 (HR=2.1), DCE-MRI blood volume (cut-off >12

mL/100g), and ADC values (<1.2×10–3 mm²/s) (55). These

indicators are crucial for OSCC staging, evaluating treatment

response, and assessing prognosis.

AI-driven multimodal systems demonstrate emerging potential

for OSCC management, though their clinical implementation faces

scalability challenges due to computational complexity and validation

gaps (56). Through integrative analysis of histopathology,

transcriptomics, and clinical data, these systems achieve 71-89%

concordance with gold-standard diagnoses in controlled trials, yet

real-world performance varies significantly across healthcare settings

(69). AI-enhanced Raman imaging achieves 86.7% accuracy for

intraoperative margin assessment in single-center studies, though

multicenter validation is needed to confirm generalizability (67).

Age-stratified AI models improve TNM staging prognostic value

(AUC 0.65-0.72), with the most significant benefits observed in

elderly cohorts where clinical judgment variability is highest (70).

Nodal risk prediction models (NRS) combining radiomic features

(e.g., DCE-MRI blood volume >12 mL/100g) and histomorphometric

data achieve 82% accuracy for metastasis detection, surpassing

conventional imaging by 15-20% (55). Network analysis-derived

macrophage signatures (e.g., IGF2BP2, CTLA4) show 3.2-fold

increased metastasis risk in high-risk subgroups but require

prospective validation given potential overfitting in TCGA data (54).

Validation in TCGA cohorts showed high-risk MRS patients had a
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3.2-fold increased metastasis risk (p<0.001). Moreover, multiple ML

algorithms have identified critical ceRNA networks involving

HOXC13 and KLHL40, with TGFBR3 showing context-dependent

roles. In elderly patients (≥65 years), HOXC13 downregulation

correlates with advanced TNM stages (OR=3.22, p=0.002), while

KLHL40 mutations are associated with smoking-related epigenetic

changes (71). These integrated models (NRS, MRS, ceRNA) exemplify

the convergence of multi-omics and clinical informatics in OSCC

management and underscore the potential of AI to translate complex

biomarker patterns into actionable clinical strategies.
Other techniques

Beyond conventional histopathological methods, emerging

multi-omics approaches have enhanced OSCC biomarker

detection by integrating liquid biopsy, metabolomics, and

lipidomic profiling. Liquid biopsy facilitates non-invasive OSCC

monitoring by analyzing circulating tumor cells (CTCs), cell-free

DNA (cfDNA), exosomes, and tumor-derived extracellular vesicles

(tdEVs), with tdEVs exhibiting the highest sensitivity (AUC = 0.89)

for early-stage detection (72). Dysregulated miRNAs, particularly

miR-21 (upregulated in 78% of OSCC cases) and miR-31

(associated with lymph node metastasis) (73), serve as diagnostic

biomarkers, whereas miR-200 family members (e.g., miR-200a/b/c)

predict poor prognosis by promoting EMT (74). Mass spectrometry

(MS)-based multi-omics approaches, particularly proteomics and

lipidomics, have identified OSCC-specific metabolic alterations,

such as aberrant glycolysis and fatty acid oxidation. Salivary

metabolomics via GC–MS has revealed elevated sebacic acid

levels (2.1-fold increase, p < 0.01) in OSCC patients compared to

healthy controls, suggesting its potential as a non-invasive

biomarker (75). In contrast, Lipidomic profiling further

distinguishes OSCC by elevated sphingomyelins (SM d18:1/16:0,

AUC = 0.91) and phosphatidylcholines (PC 34:1, AUC = 0.88),

which correlate with tumor aggressiveness (76). Furthermore, an

MS study integrated with lipidomics demonstrated that cholesterol

and various phospholipids were markedly elevated in OSCC tissues

(77), with machine learning models utilizing sphingolipid profiles

achieving high diagnostic accuracy (AUC >0.95) (74).
Challenges and prospects

Current OSCC biomarker detection methods face multifaceted

challenges, including high costs (particularly for advanced sequencing

technologies), inconsistencies in data interpretation due to

heterogeneous sample processing protocols, difficulties in integrating

emerging technologies with existing clinical workflows, and a lack of

standardized validation frameworks, all of which hinder their

widespread clinical adoption and result reproducibility. Despite

advancements in sequencing technology enhancing the velocity of

biomarker research, their reliance on complex bioinformatics

pipelines for data analysis and substantial computational resource
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requirements disproportionately limit accessibility in resource-limited

settings (56). Although Nanopore sequencing has demonstrated utility

in pathogen surveillance due to its portability and real-time analysis

capabilities, its application in early tumor detection requires

substantial improvements in accuracy and cost-effectiveness (78).

Emerging biosensor platforms, such as ELISA-based salivary

biomarker detection systems, demonstrate high sensitivity for OSCC

screening (e.g., detecting EGF: EGFR ratio changes with AUC >0.8)

(79). However, their performance is influenced by pre-analytical

variables including sample collection protocols, storage conditions,

and ambient temperature fluctuations, mandating stringent

standardization of operating procedures to ensure reliability (11).

AI-driven approaches enhance diagnostic precision, although their

clinical translation depends on overcoming challenges such as the

scarcity of large-scale annotated datasets in oral oncology and the

“black-box” nature of deep learning models, which complicates

clinical validation and trust-building among practitioners (69). The

transition from biomarker discovery to clinically actionable tools faces

dual barriers. One is technical limitations in validating candidate

biomarkers across diverse populations (e.g., single-center studies with

limited sample sizes), and the other is regulatory and practical hurdles

in implementing detection platforms within existing healthcare

infrastructures. Above all, progress in this field demands innovative

solutions for multimodal data harmonization (e.g., combining omics
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data with imaging and clinical records) and advanced

computational frameworks.

Emerging innovations in OSCC biomarker detection are poised

to revolutionize clinical practice, particularly through the integration

of temporal-spatial multiomics and AI-enabled data synthesis. For

instance, the Well-TEMP-seq platform enables dynamic tracking of

gene expression changes at single-cell resolution during early

carcinogenesis, providing critical insights into biomarker evolution

(80). Recent breakthroughs in single-cell spatial transcriptomics,

exemplified by STALocator (81) (integrating scRNA-seq with

spatial transcriptomics for subcellular localization), have enabled

high-resolution mapping of immune-stromal interactions within

OSCC tumor niches. Nanotechnology-enabled biosensors are

achieving unprecedented sensitivity thresholds with emerging

applications in intraoperative margin assessment (67). AI-driven

frameworks are overcoming data heterogeneity challenges through

innovations like differentiable modeling architectures, offering novel

insights for oral cancer biomarker identification. Additional

technologies, such as ultrasensitive liquid biopsy assays, will further

augment ctDNA and ctRNA detection, presenting a new avenue for

non-invasive tumor identification. Interdisciplinary collaboration

enhances technology integration, whereas governments and

regulatory bodies must establish regulations to guarantee the safety

and efficacy of developing technologies while facilitating their clinical
FIGURE 1

New detection technique of OSCC. Created in https://BioRender.com.
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implementation. In conclusion, technical innovation,

interdisciplinary collaboration, and governmental endorsement will

propel oral cancer biomarker detection into a new epoch of precision

medicine, thereby improving patient survival and quality of life
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