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Cell-in-cell associated lncRNA
signature predicts prognosis
and immunotherapy response
in gastric cancer
Junzuo Lin1, Liancheng Wu1 and Zhengfei Zhao2*

1Department of Graduate School, Southwest Medical University, Luzhou, China, 2Department of
Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
Introduction: Gastric cancer (GC) remains a leading cause of cancer mortality,

necessitating robust prognostic biomarkers and personalized therapeutic strategies.

Materials and methods: We developed a risk model integrating three cell-in-cell-

associated lncRNAs (CICRlncRNAs: AP003392.1, AP000695.2, AL161785.1) using

transcriptomic data from 367 TCGA-GC patients. The cohort was randomly split

into training (n = 184) and test sets (n = 183) for model construction and external

validation. Statistical rigor included LASSO-Cox regression, Kaplan-Meier analysis, and

ROC curves assessing 1/3/5-year AUC.

Results: The model stratified patients into low- and high-risk groups with distinct

overall survival (OS, HR = 2.62, P <0.001) and progression-free survival (PFS, HR =

1.94, P <0.001). High-risk patients exhibited an immunosuppressive tumor

microenvironment (TME), characterized by elevated Tregs (P <0.05) and M2

macrophages (P <0.05), correlating with poor response to immune checkpoint

inhibitors (TIDE score, P <0.001). Drug sensitivity analysis revealed low-risk patients

responded better to gefitinib/entinostat, while high-risk patients benefited from

dasatinib/foretinib. Experimental validation confirmed AP000695.2 promoted

proliferation and invasion in GC cells (P <0.01).

Conclusion: This study establishes CICRlncRNAs as prognostic biomarkers and

provides insights for precision therapy, though clinical applicability requires

prospective validation.
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1 Introduction

Gastric cancer (GC) refers to malignant tumors from the cardia

to the pylorus and remains the second leading cause of cancer-

related death worldwide. Despite reductions in incidence and

mortality rates in several regions over the past half century, the

five-year survival rate for patients with GC is only 20% (1). The

prevalence and mortality of this disease vary widely across the world

and between ethnic groups. Approximately 95% of cases of GC are

pathologically classified as adenocarcinoma, which is mainly

divided into the intestinal type and the diffuse type (1). The

biological and clinical diversity of GC requires tailored

therapeutic approaches, as a one-size-fits-all strategy leads to

variable outcomes. The diversity in question encompasses a wide

array of aspects, spanning from the genomic level to the

environmental sphere. This complexity is manifested in the

various subtypes of the condition. The primary basis for

differentiating these subtypes lies in the molecular attributes of

the cancer cells (2). A central element of therapeutic strategies for

GC has become immune checkpoint inhibitors (ICIs). Pivotal

clinical trials (e.g., CheckMate-649 for nivolumab and

KEYNOTE-811 for pembrolizumab) have demonstrated that ICIs

targeting PD-1/PD-L1, particularly in combination with

chemotherapy, significantly improve survival outcomes in

advanced GC patients (3, 4). However, prolonged use of ICIs can

lead to the development of resistance to these drugs (5). Therefore,

investigating the novel mechanisms underlying GC pathogenesis

and identifying more effective therapeutic targets to ensure

treatment efficacy are imperative.

The phenomenon of cell-in-cell (CIC) configurations is

characterized by the occurrence of cells enclosed within the

cytoplasm of other cells (6). This peculiar arrangement exerts

various influences on the behavior and functionality of both the

encapsulating and the enclosed cells, including aspects such as

apoptosis, cell division and modulation of the immune system (7).

CIC is particularly prevalent in different types of cancer tissues (8,

9). Research has suggested that CIC-mediated ‘in-cell killing’ could

be a valuable approach in cancer immunotherapy (10). In addition,

the potential clinical relevance of CIC has been recognized in the

context of pancreatic cancer immunotherapy (11). Therefore,

elucidating the mechanisms underlying CIC in tumors is crucial

for gaining insight into the processes leading to cancer cell death.

In recent years, non-coding RNAs (ncRNAs) have received

considerable attention for their role in the molecular pathways that

contribute to cancer development (12). Research indicates that

ncRNAs have the potential to influence the proper expression of

associated genes, including proto-oncogenes and tumor suppressor

genes. Consequently, they have emerged as promising targets for

therapeutic intervention and potential biomarkers for the early

detection of cancer (13). Among the class of ncRNAs, long non-

coding RNAs (lncRNAs) have been particularly well studied in GC

(14). For example, the lncRNA NEAT1 has been implicated in the

pathogenesis of GC through multiple molecular pathways and has

been associated with resistance to radiotherapy and chemotherapy

as well as an unfavorable prognosis in GC patients. The observed
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correlation suggests that NEAT1 functions as an independent risk

factor. Furthermore, it demonstrates considerable promise in terms

of its potential applications in clinical therapy and as a prognostic

marker (15). In addition, lncRNAs associated with ferroptosis,

telomeres, and the immune response have been used to predict

survival in GC patients (16–18). These studies provide valuable

insights for therapeutic strategies. Notwithstanding the

documented involvement of a multitude of lncRNAs in GC,

further in-depth research on this topic is warranted. However,

lncRNAs specifically regulating cell-in-cell (CIC) structures—a

phenomenon linked to immunosuppressive TME remodeling and

therapy resistance (7, 19)—remain largely unexplored. Elucidating

CIC-specific lncRNAs (CICRlncRNAs) may reveal unique

mechanisms distinct from canonical lncRNAs (e.g., NEAT1 or

ferroptosis-related lncRNAs), given their potential to modulate

both cell-cell engulfment processes and immune evasion

pathways. This necessity arises from the limited availability of

clinical samples and the inherent constraints of existing cellular

and animal models.

The efficacy of ICIs is intrinsically tied to the tumor

microenvironment (TME), where CIC structures have emerged as

key regulators of immune suppression. Specifically, GC is

increasingly being treated with immunotherapy, which has

become a conventional approach. Recent research highlights the

critical role of the tumor microenvironment (TME) in determining

the immunotherapy response. For instance, CIC structures within

the TME may promote immune evasion by modulating

macrophage polarization (e.g., M2 macrophage enrichment) and

regulatory T cell (Treg) infiltration (19). This aligns with the

observed failure of ICIs in approximately 66% of advanced GC

patients, where an immunosuppressive TME is a key barrier (20).

Consequently, immunotherapy strategies have shifted from directly

targeting tumor cells to reprogramming the TME through immune

checkpoint inhibition and stromal modulation. Immunotherapy

strategies using ICIs, including those targeting PD-1/PD-L1 and

CTLA-4, focus primarily on modulating the TME (21). These

therapies have transformed the treatment of a wide range of

cancers (20). A recent review suggested that inhibitors of the PD-

1/PD-L1 pathway have therapeutic activity in the treatment of

advanced GC, particularly at later stages of the disease. However,

the benefit of using these inhibitors as the sole treatment modality is

relatively modest (22). Pretreatment with chemotherapy in GC has

been shown to significantly alter the immunological landscape

within the TME. Specifically, this treatment approach has been

associated with a decrease in regulatory T cells (Tregs) and a

concomitant increase in cytotoxic CD8+ T cells within the TME.

These changes are thought to contribute to the remodeling of the

TME in GC, thereby improving the clinical outcomes of affected

individuals (23).

We hypothesized that CICRlncRNAs constitute a novel class of

biomarkers capable of predict ing GC prognosis and

immunotherapy response by orchestrating CIC-driven TME

immunosuppression. To test this , we aimed to (1) a

CICRlncRNA-based risk model for prognostic stratification; (2)

decipher the functional roles of CICRlncRNAs in TME modulation
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and immune evasion; and (3) identify risk-group-specific

therapeutic vulnerabilities, including ICI responsiveness and

targeted drug sensitivity.

To increase the accuracy of predicting the prognosis of GC

patients, this research drew upon clinical data related to GC patients

sourced from The Cancer Genome Atlas (TCGA) database. R

software was subsequently used to construct a prognostic model,

which was grounded in the varied expression levels of

CICRlncRNAs. The research also investigated the biological roles

of CICRlncRNAs, associated pathways, immune cell infiltration,

somatic mutation profiles and responses to immunotherapy while

evaluating the impact of antitumor drugs on patients in different

risk categories. These results not only deepen our understanding of

the mechanisms by which CICRlncRNAs influence GC but also

provide potential guidance for the clinical prognostic management

of patients with GC.
2 Materials and methods

2.1 Data collection

RNA-seq, clinical and somatic mutation data from GC patients

were obtained from the TCGA database. This included

transcriptomic information from 412 tumor samples, 36 normal

tissue samples and 443 clinical records. The GC patients were then

randomly divided into a training set (n = 184) and a test set (n =

183). To assess the disparities in clinical features between the two

patient groups, the chi-square test was utilized. Concurrently, genes

associated with cell-in-cell phenomena were extracted from a

recently released research study (24).
2.2 Construction of a risk model based on
CICRlncRNAs

A comprehensive review of the relevant literature was

conducted, leading to the identification of 101 genes associated

with intracellular processes. An assessment of the relationships

between lncRNAs and the expression profiles of these intracellular-

related genes was subsequently performed, utilizing Pearson

correlation coefficients with thresholds of P <0.001 and |R| >0.4.

A stepwise reduction process was subsequently employed to

identify CICRlncRNAs with prognostic significance.

In the initial phase of the study, 18 CICRlncRNAs were

identified as being associated with the prognosis of GC patients

through univariate Cox regression analysis. LASSO (Least Absolute

Shrinkage and Selection Operator) Cox regression analysis was then

performed using the ‘glmnet’ R package. The optimal penalty

parameter (l) was determined via 10-fold cross-validation,

resulting in l.min = 0.0338 and l.1se = 0.0856. To achieve a

more parsimonious model with stronger generalization potential,

the l.1se criterion was selected. Applying this l value, subsequent

dimensionality reduction via the lasso algorithm revealed that a

subset of 3 CICRlncRNAs was associated with the OS of GC
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patients. In conclusion, a multivariate Cox regression analysis was

performed. This analysis successfully identified these three

CICRlncRNAs (AP003392.1, AP000695.2, and AL161785.1) as

crucial indicators of prognosis. Following the discovery of these

results, a prognostic model was developed. The risk score for each

patient was ascertained via a formula generated by the model.

Following this computation, the patients were divided into two

distinct risk categories, with the division being based on the median

value of the risk scores.
2.3 Assessing the accuracy and
independence of the risk model and
constructing nomograms

To evaluate the predictive capacity of the risk model, Kaplan–

Meier (K–M) curves were generated. To further evaluate the

model’s predictive ability, receiver operating characteristic (ROC)

curves were generated. Specifically, the model’s performance in

forecasting survival was assessed at 1-year, 3-year, and 5-year

intervals. In addition, principal component analysis (PCA) was

performed for two objectives: (i) to visualize intrinsic clustering

patterns of CICRlncRNAs across subgroups and (ii) to validate the

risk model’s stratification capability by projecting risk scores into

reduced-dimensional space. The reliability of the risk model as a

predictor of outcomes was further examined through both

univariate and multivariate Cox regression analyses. Furthermore,

a nomogram was constructed by synthesizing multiple clinical

features along with the corresponding risk scores. Calibration

curves were subsequently constructed to assess the predictive

accuracy of the nomogram.
2.4 Functional enrichment analysis

DEGs were identified using the limma R package with

thresholds of |log2FC| >1.0 and nominal P <0.05, followed by

Benjamini-Hochberg FDR correction (P <0.05) to control false

discoveries. To further understand the biological roles of the

DEGs, a Gene Ontology (GO) analysis was conducted. The GO

analysis encompassed three primary aspects: biological processes

(BPs), cellular components (CCs), and molecular functions (MFs).

Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis was employed to investigate the signaling pathways related

to these DEGs. In conclusion, gene set enrichment analysis (GSEA)

was carried out to characterize differential signaling pathways

within the low- and high-risk groups.
2.5 Tumor microenvironment, analyzing
somatic mutations and predicting drug
response

The ESTIMATE algorithm was used to assess differences in the

TME between the two risk groups (25). To ascertain the infiltration
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degrees of 22 distinct immune cell types within these groups, the

CIBERSORT algorithm was employed, as referenced in the

literature (26). Furthermore, the ssGSEA algorithm was utilized to

explore immune cell infiltration and immune function across

various risk categories (27). Tumor immune dysfunction and

exclusion (TIDE) scores were calculated to assess the immune

escape of tumor cells and their responsiveness to ICIs (28). The

TIDE algorithm has been extensively validated in gastric cancer

cohorts for predicting ICI response. For instance, studies have

confirmed its prognostic utility in GC patients treated with anti-

PD-1/PD-L1 therapy (29, 30). Somatic mutation data from the

TCGA database were analyzed to determine the tumor mutational

burden (TMB) of patients in the two risk groups, with patients

categorized into low and high TMB groups on the basis of the

median TMB score. In addition, the R package ‘oncoPredict’ was

used to calculate the IC50 values of common antitumor drugs using

the GDSC2 (Genomics of Drug Sensitivity in Cancer, version 2)

reference dataset to predict the drug response of GC patients in

different risk groups. The GDSC2 database provides drug sensitivity

profile (IC50) and transcriptomic data from over 1,000 cancer cell

lines, enabling robust prediction of patient-specific drug responses.
2.6 Cellular cultivation techniques coupled
with quantitative reverse transcription
polymerase chain reaction methodologies

The GC cell lines AGS and HGC-27, along with the normal

control cell line GES-1, were procured from Procell located in

China. These cell lines were maintained in RPMI-1640 medium,

which was supplied by Gibco (USA). The culture medium was

supplemented with 10% fetal bovine serum sourced from Gibco,

USA, as well as a 1% mixture containing streptomycin and

penicillin. The culture conditions were a humidified environment

at 37°C with 5% CO2. Total RNA was extracted via TRIzol

(Invitrogen, USA), and CICR lncRNA expression was measured

via qRT–PCR. PCR amplification was performed on the ABI 7500

platform utilizing UltraSYBR (CWBIO, China) following standard
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protocols. In this process, GAPDH served as the internal control to

ensure the reliability and accuracy of the experimental results.

While multi-reference genes (e.g., b-actin and 18S rRNA) are

sometimes recommended, GAPDH alone has been widely

adopted as a stable control in GC transcriptomic studies due to

its consistent expression across gastric tissue types (16, 31, 32).

Notably, qRT–PCR validation of AL161785.1 was not feasible

because of the lack of specific primer sequences for the lncRNA

AL161785.1 in public databases such as NCBI and Ensembl and

unsuccessful attempts at online primer design using tools such as

Primer-BLAST. The primer sequences utilized in the PCR are

enumerated in Table 1.
2.7 Cell transfection assay

To investigate the functional role of AP000695.2 in gastric

cancer progression, siRNA-mediated gene silencing was

performed. Custom-designed siRNA duplexes targeting

AP000695.2 (GenBank accession: NR_135734.1). AGS gastric

cancer cells were seeded in 6-well plates at a density of 5 × 105

cells/well and cultured until reaching 60–70% confluence.

Transfection complexes were prepared according to the

manufacturer’s protocol using Lipofectamine™ 3000 (Invitrogen,

USA). Briefly, 100 pmol of siRNA and 5 mL of Lipofectamine 3000

were mixed in 250 mL of serum-free Opti-MEM medium (Gibco,

USA), incubated at room temperature for 15 min, and then added

to cell cultures. After 6 h of transfection, the medium was replaced

with fresh complete DMEM containing 10% fetal bovine serum

(FBS), followed by 24 h of additional incubation prior to functional

assays. Knockdown efficiency was confirmed via qRT–PCR 24 h

post-transfection using GAPDH for normalization, with primers

listed in Table 1.
2.8 Cell proliferation analysis

Cell proliferation capacity was evaluated using the CCK-8 assay

(TargetMol, Catalog# TP1197) to determine the biological effects of

AP000695.2 knockdown in gastric cancer cells. At 24 h post-

transfection, the cells were harvested and seeded into 96-well

plates at 3 × 10³ cells/well with 100 mL of RPMI-1640 medium

supplemented with 10% FBS. To minimize proliferation-dependent

confounding, measurements at early timepoints (24 h) primarily

reflect metabolic activity rather than proliferation rates (33). Optical

density measurements were performed at 0, 24, 48, and 72 h

intervals using the following protocol: 10 mL of CCK-8 reagent

was added to each well, followed by a 2 h incubation at 37°C under

standard culture conditions. The absorbance values were quantified

using a microplate reader (BioTek Instruments, USA) with dual-

wavelength detection (450 nm measurement wavelength vs. 650 nm

reference wavelength). Three technical replicates were included per

experimental group, with all the assays independently repeated

in triplicate.
TABLE 1 Primer sequences for qRT–PCR.

Primer name Primer sequence (5’−3’)

AP000695.2 F: 5’
GGACACTCTGAAGGAACTC 3’

R: 5’
GATGACCATTAGCCAACAAG 3’

AP003392.1 F: 5’
GAATTCACCCACCTCAGCC 3’

R: 5’
GTGTGCGTTTTCCCACTGTC 3’

GAPDH F: 5’
CCCCACCACACTGAATCTCC 3’

R: 5’
GTACATGACAAGGTGCGGCT 3’
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2.9 Wound healing assay

To assess the impact of AP000695.2 knockdown on gastric

cancer cell migration dynamics, a standardized wound healing assay

was implemented. Twenty-four hours post-transfection, AGS cells

were seeded into 6-well plates at 2 × 106 cells/well and cultured to

form confluent monolayers. Mechanical wounds were generated

using 200 mL sterile pipette tips, with three parallel scratches created
perpendicular to the plate surface. The detached cells were removed

by gentle washing with PBS, followed by incubation with serum-

reduced medium (Gibco, USA) containing 1% FBS to minimize

proliferation interference. Wound closure was documented at 0 and

24 h post-scratching through systematic image acquisition of five

random fields per well under phase-contrast microscopy (Olympus,

Japan) at 40× magnification. Quantitative analysis was performed

using ImageJ software (National Institutes of Health, USA) by

calculating the relative wound area reduction: Migration rate (%)

=(1−Ainitial/Aterminal)×100%, where Ainitial and Aterminal represent

the wound areas at baseline and post-migration timepoints,

respectively. Triplicate experiments with three biological replicates

ensured statistical robustness.
2.10 Transwell migration and invasion
assay

The cell migration capacity was evaluated using 8 mm pore

Transwell chambers (Corning, USA). A Transwell chamber system

was employed to evaluate the cellular migration capacity.

Transfected AGS cell suspensions (1×104 cells/chamber) in

serum-free conditions were plated in the upper chambers, with

complete growth medium containing 10% fetal bovine serum

serving as a chemoattractant in the lower compartments (600 mL
volume). After 24 hours of incubation under standard culture

conditions (37°C, 5% CO2), residual non-migratory cells retained

on the upper chamber surface were mechanically eliminated using

sterile cotton applicators. The transmembrane migratory

population was subsequently processed through sequential steps:

primary fixation with 4% paraformaldehyde solution, followed by

0.1% crystal violet histochemical staining. Given that the assay

duration (24 h) is significantly shorter than the cell doubling time

(AGS: ~32 h), the observed differences predominantly reflect

migration/invasion capacity rather than proliferation effects.

Quantitative analysis was performed through microscopic

enumeration of stained cellular elements adhering to the lower

membrane surface. For invasion assessment, Transwell inserts were

pre-coated with 50 mL of Matrigel matrix (Corning, USA) diluted

1:8 in serum-free medium and polymerized at 37°C for 1 h prior to

cell seeding. Subsequent processing mirrored the migration

protocol. Cell quantification was performed by imaging five

random fields per chamber under 200× magnification (Nikon

Eclipse, Japan). Stained cells within each field were manually

counted using ImageJ software (National Institutes of Health,

USA). The results from three independent experiments (each

with three technical replicates) are expressed as the mean ±
Frontiers in Oncology 05
standard deviation (SD) of the number of cells per field. The

relative migration/invasion rate was calculated as follows: (mean

cell count of the experimental group/mean cell count of the control

group) × 100%.
2.11 Statistical analysis

In this study, R software (version 4.3.3) was employed to

conduct all the statistical analyses. For comparing different

groups, the t test was utilized. To assess the differences in survival

rates across distinct risk strata, the K–M method coupled with the

log-rank test was employed. A series of univariate and multivariate

Cox regression analyses were subsequently systematically

conducted with the objective of pinpointing the factors associated

with the prognosis of patients with GC. It was determined that a P

<0.05 would indicate statistical significance.
3 Results

3.1 Data of patients with GC

A flowchart of the study design is shown in Figure 1. In this

study, 367 GC patients were recruited and randomly assigned to a

training group of 184 patients and a test group of 183 patients at an

approximate 1:1 ratio. Data from the training cohort were used to

screen for prognostically relevant CICRlncRNAs and to develop a

prognostic model. In contrast, the accuracy of the model was

assessed via data derived from the test group. Table 2 shows that

there were no statistically significant disparities in clinical features,

including age, gender, grade, and TNM staging between the two

groups (P >0.05).
3.2 GC prognosis risk model based on
CICRlncRNAs

We retrieved 101 CIC-related genes from the literature. By

employing the Pearson correlation coefficient method, we analyzed

the correlation between lncRNAs and CIC-related mRNAs within

the TCGA database. Ultimately, 684 CICRlncRNAs were filtered

out (Supplementary Table S1). As shown in Figure 2A, the Sankey

diagram illustrates the coexpression network between 101 CIC-

related genes and 684 CICRlncRNAs. Univariate Cox regression

analysis was performed on the OS data of the GC patients in the

training set. This analysis revealed that 18 CICRlncRNAs were

associated with the OS of GC patients (Supplementary Table S2).

LASSO Cox regression analysis with 10-fold cross-validation was

performed (Figures 2B, C). Applying the l.1se criterion (l = 0.0856)

for model parsimony, a subset of 3 key lncRNAs closely associated

with the prognosis of GC patients was identified. Finally, three

prognostically relevant lncRNAs were selected, namely,

AP003392.1, AP000695.2 and AL161785.1. A multivariate Cox

regression model was then constructed (Figure 2D). The risk
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score was calculated by multiplying the expression levels of specific

lncRNAs by their respective Cox regression coefficients, as

descr ibed be low: r i sk score va lue = AP003392 .1 ×

(-0.668208656275531) + AP000695.2 × (0.393189166858392) +

AL161785.1 × (0.80085986373646). Furthermore, the interactions

between 101 CIC-associated genes and 3 CIC-related lncRNAs were

examined (Figure 2E). Figure 2F shows the expression levels of

these three CIC-related lncRNAs in the low-risk and high-risk

groups. To assess differences in overall survival and progression-

free survival (PFS) between the two groups, K–M curves were

generated. The results revealed that individuals in the low-risk

group had significantly better overall survival and PFS than those in

the high-risk group did (P <0.001 for all groups) (Figures 2G, H).
3.3 Validating the CICRlncRNA-based risk
model and PCA

The reliability of the risk model was verified in the test set. As

shown by the risk curves and scatter plots, when comparing scores,

patients in the low-risk group were positioned relatively lower than

those in the high-risk group (Figure 3A). Furthermore, the heatmap
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confirmed that AP003392.1 acted as a protective factor for GC, whereas

AP000695.2 and AL161785.1 were identified as risk factors. K–M

analysis revealed that the low-risk group had longer OS (P = 0.010) and

PFS (P = 0.013) than did the high-risk group (Figures 3B, C). In both

the training and test datasets, the risk model’s area under the curve

(AUC) for predicting 1-year, 3-year, and 5-year OS exceeded 0.6

(Figure 3D). ROC curves were used to assess the sensitivity and

specificity of the risk scores for the test set. The AUCs of the risk

scores in both the training and test sets were greater than those of the

other clinical risk indicators (Figure 3E). PCA based on CICRlncRNAs

expression (Figure 3F) revealed partial subgroup separation, indicating

that these lncRNAs capture biological heterogeneity. Critically, PCA of

the risk scores (Figure 3G) revealed clear divergence between the low-

and high-risk groups (PC1 contribution: 35.7%), confirming the

model’s stratification robustness.
3.4 Independent analysis of the prognosis
and the nomogram

To independently assess the predictive power of the three

CICRlncRNAs for OS in GC patients, we executed Cox
FIGURE 1

Flow chart of the study protocol.
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proportional hazards regression analyses, encompassing both

single-variable and multiple-variable approaches. Our findings

from these analyses revealed that the calculated risk score served

as a significant and independent prognostic indicator for OS in the

context of GC, with a p value <0.001 (Figures 4A, B). The AUC of

the risk model for predicting 1-, 3- and 5-year survival probabilities

within the entire cohort was greater than 0.6. This demonstrated the

predictive accuracy and reliability of the model (Figure 4C). In

addition, the risk model had higher AUC values for the entire

cohort (AUC = 0.722) than the other clinical risk indicators did

(Figure 4D). A nomogram was created by incorporating multiple

clinical factors and risk scores to predict the 1-, 3- and 5-year

survival of patients with GC (Figure 4E). A calibration curve was

then plotted to validate the accuracy of the nomogram (Figure 4F).
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K–M curves were plotted to assess the efficiency of the risk model in

predicting various clinical characteristics, including age, gender and

TNM stage. The results revealed that the low-risk group had a more

favorable prognosis (Figure 5).
3.5 Analysis of functional enrichment

GO and KEGG enrichment analyses were carried out to clarify

the functions of the 183 DEGs (Supplementary Table S3). These

DEGs were enriched predominantly in immune-related BPs. The

immune system comprises several key components, such as

leukocyte-mediated immunity and lymphocyte-mediated

immunity. Additionally, it encompasses an adaptive immune
TABLE 2 The clinical characteristics of the GC patients in the training, validation and overall sets.

Overall Validation Training P

Age 0.8157

<60 106(32.42%) 52(31.52%) 54(33.33%)

≥60 221(67.58%) 113(68.48%) 108(66.67%)

Gender 0.415

FEMALE 119(36.39%) 56(33.94%) 63(38.89%)

MALE 208(63.61%) 109(66.06%) 99(61.11%)

Grade 0.2669

G1 8(2.45%) 3(1.82%) 5(3.09%)

G2 110(33.64%) 62(37.58%) 48(29.63%)

G3 209(63.91%) 100(60.61%) 109(67.28%)

Stage 0.7404

Stage I 42(12.84%) 21(12.73%) 21(12.96%)

Stage II 108(33.03%) 52(31.52%) 56(34.57%)

Stage III 145(44.34%) 73(44.24%) 72(44.44%)

Stage IV 32(9.79%) 19(11.52%) 13(8.02%)

T classification 0.8004

T1 15(4.59%) 8(4.85%) 7(4.32%)

T2 68(20.8%) 37(22.42%) 31(19.14%)

T3 156(47.71%) 79(47.88%) 77(47.53%)

T4 88(26.91%) 41(24.85%) 47(29.01%)

N classification 0.5766

N0 102(31.19%) 46(27.88%) 56(34.57%)

N1 89(27.22%) 47(28.48%) 42(25.93%)

N2 67(20.49%) 37(22.42%) 30(18.52%)

N3 69(21.1%) 35(21.21%) 34(20.99%)

M classification 0.5157

M0 307(93.88%) 153(92.73%) 154(95.06%)

M1 20(6.12%) 12(7.27%) 8(4.94%)
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response that is dependent on the somatic recombination of

immune receptors, which are composed of immunoglobulin

superfamily domains. In CCs, the DEGs were strongly enriched

in the immunoglobulin complex and the extracellular matrix

containing collagen. For MFs, DEGs were involved in antigen

binding, glycosaminoglycan binding and extracellular matrix

structural components (Figure 6A). KEGG enrichment analysis

revealed that the DEGs were predominantly enriched in pathways
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related to Staphylococcus aureus infection and phagosome and

neutrophil extracellular trap formation (Figure 6B).

Furthermore, GSEA revealed that pathways related to cell

adhesion molecules, complement and coagulation cascades,

cytokine–cytokine receptor interactions, lysosomal function and

systemic lupus erythematosus were significantly enriched in the

high-risk group (Figure 6C). Conversely, pathways related to

nitrogen metabolism and the spliceosome were significantly
FIGURE 2

Construction of the risk model based on CICRlncRNAs. (A) Sankey diagram demonstrating CIC-related genes and CICRlncRNAs. (B, C) Eighteen
CICRlncRNAs were identified via LASSO regression analysis. (D) Three CICRlncRNAs were used to construct the multivariate Cox regression model.
(E) Correlation heatmap of 3 CICRlncRNAs and 101 CIC-related genes included in the multivariate Cox regression model. *P <0.05, **P <0.01, ***P
<0.001. Red colours indicate positive correlation, blue colours indicate negative correlation. (F) Distribution of risk scores, survival status and survival
time patterns of patients in different risk groups in the training set and the expression heatmap of the 3 CICRlncRNAs. OS (G) and PFS (H) of patients
in different risk groups in the training set.
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enriched in the low-risk group (Figure 6D). On the basis of these

observations, we hypothesize that CIC is closely linked to immune-

related pathways, inflammatory responses and metabolic processes.
3.6 Analyzing the immune infiltration
landscape and immunotherapeutic efficacy

The TME is central to the progression and treatment of GC.

Therefore, we analyzed the TME in different risk categories using

different algorithms. The ESTIMATE algorithm indicated that both the

immune score and the ESTIMATE score were notably lower in the low-

risk group than in the high-risk group (P <0.001 for all) (Figure 7A). To

assess the proportions of 22 types of tumor-infiltrating immune cells,

the CIBERSORT algorithm was utilized. The analysis results revealed

disparate distributions within the two distinct risk groups (Figure 7B).

As shown in Figure 7C, the box plot revealed that the low-risk group

presented reduced numbers of M1 macrophages, M2macrophages and

resting dendritic cells, whereas the numbers of memory B cells, CD4
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resting memory T cells, Tregs and activated dendritic cells were higher

(P <0.05). The ssGSEA algorithm was also used to examine immune

cell infiltration and immune function in different risk groups. The

results revealed that the low-risk group had lower frequencies of various

immune cells and weaker immune responses (P <0.05 for all)

(Figure 7D). Finally, the TIDE algorithm was used to investigate the

correlation between the risk score and response to immunotherapy. The

results revealed that the high-risk group displayed a suboptimal

response to ICI therapy. Although clinical ICI response data (e.g.,

objective response rates) are lacking here, TIDE has been extensively

validated in GC cohorts for predicting anti-PD-1/PD-L1 efficacy (29,

30). Our risk score alignment with TIDE (Figure 7E) thus provides a

bioinformatic proxy for immunotherapy resistance, which is consistent

with the immunosuppressive TME features observed in high-risk

patients (e.g., elevated Tregs/M2 macrophages).

This paradox essentially reflects a ‘quality-quantity imbalance’ in

the TME: although the total immune cell count increases in the high-

risk group (ESTIMATE score), the dominance of suppressive subsets

(e.g., Tregs and M2 macrophages; Figure 7C) leads to ‘functional
FIGURE 3

Validation of the CICRlncRNA-based risk model and PCA. (A) Risk score distribution, survival status and survival time patterns of patients in different
risk groups in the test set and the expression heatmap of 3 CICRlncRNAs. (B, C) Kaplan-Meier curves for OS and PFS between low-risk and high-risk
groups. (D) ROC curves for predicting 1-, 3- and 5-year OS in training and test sets. (E) ROC curves of the clinical risk indicators and risk scores in
training and test sets. (F) PCA between different risk groups based on CICRlncRNAs. (G) PCA between different risk groups based on the risk model.
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immune silencing.’ This finding aligns with the ‘immunosuppressive

network’ theory proposed by Zheng et al. (34), where Tregs directly

suppress effector T cells via IL-10 and TGF-b secretion, and M2

macrophages remodel the immunosuppressive stroma through ARG1
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and MMP9 expression. Additionally, the elevated TIDE score in the

high-risk group suggests T cell exhaustion, potentially associated with

high PD-L1 expression in suppressive cells or tumor cell-secreted

chemokines (e.g., CCL2) recruiting suppressive cells (19).
FIGURE 4

Independent prognostic analysis and construction of a nomogram. (A) Forest plot of univariate Cox regression analysis. (B) Forest plot of multivariate
Cox regression analysis. (C) ROC curves of clinical risk indicators and risk scores for the entire cohort. (D) ROC curves of the risk model for
predicting 1-, 3- and 5-year OS for the entire cohort. (E) Nomogram. (F) Calibration curves of the nomogram.
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3.7 Analysis of the landscape of somatic
mutations

When the somatic mutation rates between the two risk

categories were compared, the low-risk group presented a higher

mutation rate, with 163 out of 180 samples (90.56%) showing

mutations, than did the high-risk group, where 158 out of 179

samples (88.27%) presented mutations. The top 15 genes

responsible for these mutations are shown in Figure 8A. In

addition, our analysis revealed no significant difference in TMB

scores between the two risk categories (P = 0.59) (Figure 8B). When

GC patients were stratified into low- and high-TMB groups on the

basis of the median TMB score, K–M analysis revealed that

individuals in the low-TMB subgroup had significantly better OS

than those in the high-TMB subgroup did (P = 0.005) (Figure 8C).

The efficiency of the TMB and risk score in predicting the prognosis
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of GC patients was evaluated by integrating these two factors. K–M

analysis revealed that patients with both low TMB and low risk

scores had the best OS, whereas patients with high TMB and high

risk scores had the worst OS (P <0.001) (Figure 8D).
3.8 Analyzing drug reactions

Considering the notable disparities in prognosis and the

immune microenvironment between the two risk categories, we

conducted a search for drugs that are responsive to precision

therapy for patients in each group. The R package oncoPredict

facilitates the association of antitumor drugs with biomarkers,

enabling the prediction of patient responses to various anticancer

medications (35). Using oncoPredict, we identified potential

antitumor drugs for patients with GC across different risk
FIGURE 5

K–M analysis of OS in different subgroups based on the clinical characteristics of patients with GC in the TCGA cohort. (A) Age ≤ 60 years. (B)
Age > 60 years. (C) Male. (D) Female. (E) T1–T2. (F) T3–T4. (G) Stages I–II. (H) Stage III–IV.
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categories. The IC50 values of four drugs (ML323, MK-1775,

gefitinib and entinostat) were lower in the low-risk group. This

indicates that these drugs provide more benefit to low-risk GC

patients (Figures 9A–D). Conversely, the IC50 values of the other

five drugs (AZD2014, WZ4003, BMS-754807, dasatinib and

foretinib) were higher in the low-risk group. These findings

suggest that these drugs are more effective in patients with high-

risk GC (Figures 9E–I).
3.9 Expression patterns of CICRlncRNAs

The expression levels of three CICRlncRNAs were initially

assessed in GC and normal samples via the TCGA database. As

depicted in Figure 10B, AL161785.1 exhibited decreased expression,

whereas AP000695.2 and AP003392.1 presented increased

expression in GC samples relative to normal samples, as

illustrated in Figures 10A, C. To assess the reliability of the

CICRlncRNA-based risk model, qRT–PCR was conducted to

quantify the expression levels of AP000695.2 and AP003392.1 in

both human gastric mucosal epithelial cells (GES-1) and GC cells

(AGS and HGC-27). As depicted in Figures 10D, E, these two genes

were markedly upregulated in GC cells compared with normal
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gastric cells. Taken together, these results suggest that the

CICRlncRNA-based risk model has a certain degree of reliability.
3.10 Verification of the impact of
AP000695.2 gene silencing on the
malignant phenotype of GC cells

Based on the prominent AP000695.2 expression in AGS cells

within the GC cell model (Figure 10A), we selected this cell line for

functional studies. Given its significant clinical relevance in the

prognostic model and differential expression, we used shRNA

interference to establish a stable AP000695.2-knockdown cell

model and evaluate its biological functions. QRT–PCR analysis

(Figure 11A) confirmed that AP000695.2 expression in the siRNA

group was reduced by >80% compared to the negative control (P

<0.0001). In the cell motility assays, the scratch - wound healing

assays revealed a significant reduction in migration speed in the

interference group (P <0.05, Figures 11B, C). Transwell assays

showed a 42% decrease in migrated cells indicating impaired

migration capacity independent of proliferation in the treated

group (P <0.01, Figures 11D, E), and Matrigel invasion assays

indicated a roughly 35% drop in invasive ability post - silencing (P
FIGURE 6

Functional enrichment analyses. (A) Gene Ontology (GO) analysis of biological processes (BPs), cellular components (CCs), and molecular functions
(MFs). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. (C, D) Gene Set Enrichment Analysis (GSEA) of signaling pathways in
high- and low-risk groups.
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<0.01, Figure 11F). Moreover, CCK-8 assays demonstrated that

AP000695.2 inhibition significantly reduced metabolic activity, with

a 28% lower absorbance in the treated group at 72 hours

(Figure 11G). The statistical evidence from these experiments

aligns with prior bioinformatics predictions, confirming that

AP000695.2 plays a key role in promoting tumor cell migration,

invasion, and proliferation during GC progression.
4 Discussion

GC is a common malignancy worldwide. The absence of early

symptoms and the rarity of screening often result in the majority of

patients being diagnosed at advanced stages (36). Traditional

diagnostic approaches, such as gastroscopy and histopathological
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analysis, are not effective in the early detection of GC. The clinical

utility of common protein biomarkers, such as carcinoembryonic

antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and

carbohydrate antigen 72-4 (CA72-4), is limited due to their

insufficient sensitivity and specificity for GC screening (37).

Although immunotherapy is an option for the treatment of GC,

approximately two-thirds of patients with advanced disease do not

respond well to ICI therapy. This resistance may be due to certain

factors in the TME that allow tumor cells to evade immunotherapy (21,

38). In conclusion, to improve the diagnosis of early-stage GC and

minimize the risk of metastasis, we used bioinformatics tools to identify

biomarkers associated with GC prognosis. These biomarkers could aid

in the development of more effective immunotherapy strategies.

Entosis is a cellular process in which one cell is engulfed by

another, resulting in the formation of a ‘cell-in-cell’ (CIC) structure.
FIGURE 7

Immune infiltration analysis and assessment of immunotherapy outcomes. (A) The ESTIMATE algorithm was used to assess differences in immune,
stromal and ESTIMATE scores between the two groups. (B, C) The CIBERSORT algorithm was used to evaluate differences in the abundances of 22
types of immune cells between the two groups. (D) The single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to analyze
immune cell infiltration and immune functions. (E) Tumor Immune Dysfunction and Exclusion (TIDE) scores were calculated to predict immune
evasion and response to immune checkpoint inhibitors. *P <0.05, **P <0.01, ***P <0.001.
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This phenomenon has been implicated in the development and

progression of cancer (39). The term “cell-in-cell” describes the

internalization of a viable cell by another, with the engulfed cell

being encapsulated within large vesicles of the host cell (40, 41).

Although this structure was first observed over a century ago, its

biological significance has often been neglected (42). In several

types of cancer, the presence of intracellular structures is associated

with a poor prognosis (8). Research on the role of intracellular cells

in cancer is still limited. However, one study suggested that these

structures may serve as potential prognostic biomarkers, with their

predictive value depending on the breast cancer subtype and the

underlying biological mechanisms of intracellular cell formation

(43). Elevated levels of homotypic CICs, a specific category of

intracellular structures, have been shown to be significantly

correlated with reduced overall and disease-free survival in

patients with non-small cell lung cancer. The aggressive nature of

tumor cells may facilitate the formation of CICs, thereby promoting

tumor invasion, progression and metastasis (44). Leonardo et al.

pioneered the use of sphere bioprinting to investigate intracellular

cell events in oral cancer and reported that intracellular cells are

more frequently detected in the proliferative regions of spheres

where cancer cells are cocultured with cancer-associated fibroblasts

(CAFs) (45). Collectively, these studies offer significant perspectives

on the identification of prognostic biomarkers and the exploration

of potential therapeutic targets.
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Extensive studies have shown that lncRNAs can either promote

or inhibit tumor formation by modulating gene signaling pathways,

making them potential biomarkers (46–48). Researchers have

developed a model using seven non-coding RNA molecules to

predict the prognosis of breast cancer patients, suggesting that

these molecules may play specific roles in breast cancer

development (49). However, the function of CICRlncRNAs in GC

is still unclear. In this study, we identified CICRlncRNAs based on

genes related to cellular nesting and investigated their effects on

tumor progression and prognosis in patients with GC.

A sequential approach to dimensionality reduction was

employed, utilizing LASSO regression followed by Cox regression

analysis. This process aimed to minimize the number of feature

parameters, thereby facilitating the construction of a prognostic

model. This technique has been documented in several studies (50,

51). Three CICRlncRNAs, AP003392.1, AP000695.2 and

AL161785.1, were significantly associated with GC prognosis and

were used to develop a prognostic model. A nomogram was used to

improve the accuracy of survival prediction for GC patients at 1, 3

and 5 years. All three CICRlncRNAs were correlated with GC. Min

Jiang and colleagues constructed a prognostic risk model for GC

based on long non-coding RNAs associated with pyroptosis

(PRlncRNAs). Six CICRlncRNAs, including AP003392.1, were

selected using techniques such as univariate and multivariate Cox

regression analyses. The study further revealed that AP003392.1 is
FIGURE 8

Analysis of the somatic mutation landscape. (A) Mutation distribution in the low-risk group and the high-risk group. (B) Differences in TMB scores
between different risk groups. (C, D) K–M analysis of OS in different TMB groups.
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significantly differentially expressed in GC cell lines compared to

normal cell lines, indicating its potential as an important prognostic

biomarker for GC (31). In a recent investigation, scientists

developed a molecular signature model that included four

lncRNAs associated with ferroptosis prognosis, such as

AP003392.1, to assess their predictive power for GC outcomes.
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The results showed that this model is a reliable predictor of GC

prognosis. Furthermore, four lncRNAs, including AP003392.1,

were confirmed in GC cell lines (16). Yun Cheng and colleagues

investigated the expression profile, diagnostic significance and

prognostic implications of the lncRNA AP000695.2 in GC. Their

results revealed that AP000695.2 is abnormally upregulated in 19
FIGURE 9

Analysis of therapeutic sensitivity. (A) ML323. (B) MK-1775. (C) Gefitinib. (D) Entinostat. (E) AZD2014. (F) WZ4003. (G) BMS-754807. (H) Dasatinib.
(I) Foretinib.
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different types of cancer, including GC, and is associated with

reduced patient survival. Multivariate Cox regression analysis

validated AP000695.2 as an independent predictor of OS and

PFS. In addition, ROC analysis highlighted its potential as a

diagnostic tool (52). Additionally, AP000695.2 is positively

associated with various tumor-infiltrating immune cells. A recent

study developed a robust prognostic model using eight

costimulatory molecules, which may broaden the spectrum of

cancer treatment strategies. Importantly, the lncRNA AP000695.2

is overexpressed in GC cell lines. In vitro experiments revealed that

it promotes the proliferation, invasion, and migration of GC cells,

indicating its potential as a therapeutic target for GC (53). In a

particular study, six lncRNAs, including AL161785.1, were

identified through univariate Cox regression and multivariate Cox

analysis. A predictive model was subsequently developed. The

model classified patients with GC into high-risk and low-risk

groups. Subsequent survival analysis revealed a statistically

significant disparity in survival outcomes between the two groups

(P <0.001). Moreover, the ROC analysis revealed an AUC of 0.686.

On the basis of these findings, researchers drew the conclusion that

AL161785.1 is among the lncRNAs related to the prognosis of GC

and has potential predictive value for the prognosis of GC patients

(54). Combining these findings with our research results, these three

lncRNAs may be involved in different pathogenesis patterns of GC,

and further investigation of their specific roles in GC is warranted.
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To explore the biological roles and signaling pathways associated

with the three CICRlncRNAs, enrichment analysis was performed. The

results showed that these lncRNAs are associated mainly with immune

andmetabolic pathways.According to theGSEA results, CICRlncRNAs

have the potential to impact pathways related to immunity and

apoptosis. Additionally, they are linked to the spliceosome and

nitrogen metabolism pathways. While our bioinformatic analyses and

previous studies provide a foundation for these hypotheses, direct

experimental evidence is required to confirm these mechanisms. For

example,previous studieshavedemonstrated that lncRNAscan function

as ceRNAs by competitively binding to microRNAs, thereby relieving

the repression of immunosuppressive factors. Our analysis shows that

AP000695.2 is highly expressed in gastric cancer and positively

correlated with multiple tumor-infiltrating immune cells, which

provides a basis for our speculation (19). Furthermore, research has

highlighted theroleofCICstructures in secretingcytokines suchasTGF-

b and IL-10, which recruit Tregs and polarize macrophages to the M2

phenotype, establishing an immune-excluded TME (7). This evidence

supports our hypothesis regarding the potential role of AP000695.2 in

enhancing cytokine production. However, we fully acknowledge that

these mechanisms require direct experimental validation.

A thorough analysis of the characteristics of the TME in GC is

essential to help understand how the tumor responds to

immunotherapy. Moreover, it provides innovative approaches for

cancer therapy (55). This study investigated the correlation between
FIGURE 10

Exploration of the expression of CICRlncRNAs in GC. Expression pattern of (A) AP000695.2. (B) AL161785.1. (C) AP003392.1. qRT‒PCR was used to
detect the expression of (D) AP000695.2. (E) AP003392.1 expression in normal human gastric mucosal epithelial cells (GES-1) and GC cells (HGC-27,
AGS). *P <0.05, ***P <0.001, ****P <0.0001.
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the risk score and changes in the TME in GC patients. The stromal

score, immune score and ESTIMATE score were significantly

elevated in the high-risk cohort. The heightened immune cell

infiltration and augmented immune function in the high-risk

group offer a partial rationale for the disparity in OS between the

two risk categories. Existing studies have demonstrated that Tregs

play a pivotal role in dampening antitumor immune responses.

They achieve this by either inhibiting the functions of effector cells

or secreting immunosuppressive cytokines, which are essential for

preserving immune tolerance and mitigating immune reactions

(34). Research has revealed substantial disparities in Treg cell

counts across various clinical stages of GC. Moreover, Treg

infiltration is linked to an unfavorable prognosis in the majority
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of solid malignant tumors. For instance, in colorectal cancer, Treg

infiltration serves as an independent prognostic indicator, with a

higher infiltration rate correlating to a reduced OS for patients.

Additionally, a meta-analysis ascertained the prognostic and

clinicopathological significance of tumor-associated macrophages

(TAMs) in GC patients. The findings revealed that a high density of

M1-type TAMs is associated with increased OS, whereas a high

density of M2-type TAMs is indicative of a poorer prognosis (56).

Several references also mention the same view (57–59).

Prior research has demonstrated that M1-type TAMs are capable of

releasing IL-24, CCL2, and TNF-a. The secretion of these cytokines

serves to diminish cellular activity and increases the susceptibility of cells

to chemotherapy agents. Consequently, this mechanism effectively
FIGURE 11

Exploration of the expression of CICRlncRNAs in GC. (A) qRT‒PCR analysis of the relative expression of AP000695.2 in the transfected cells. (B, C) A
scratch assay for assessing migration ability of the cells. (D–F). Transwell assays for assessing the invasion ability of the cells. (G) A CCK-8 assay was
performed to evaluate the proliferative capacity of transfected GC cells. *P <0.05, **P <0.01, ****P <0.0001.
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impedes the advancement of GCs (60–62). M2-type TAMs exert a

significant influence the progression of GC. Specifically, they secrete

exosomes (63), miR-588 (64), lncRNAs (65), and the proteins MMP2

(66) and MMP9 (67). While high-risk patients exhibited elevated

immune infiltration, the dominance of immunosuppressive subsets

(Tregs and M2 macrophages) creates a ‘deceptive hot ’

microenvironment that actively suppresses antitumor immunity. This

finding aligns with emerging evidence that not all immune-rich tumors

are immunotherapy responsive (68). Specifically, CIC structures may

secrete cytokines (e.g., TGF-b and IL-10) that recruit Tregs and polarize

macrophages toward the M2 phenotype (19), thereby establishing an

immune-excluded TME despite high cellularity. Our data corroborate

this finding: high-risk patients showed increased TIDE dysfunction

scores (Figure 7E), indicating T-cell exhaustion, and elevated Treg/M2

ratios (Figure 7C), which are established biomarkers of ICI resistance

(69). Thus, the paradoxical coexistence of abundant infiltration and poor

ICI response reflects qualitative defects in immune activation rather than

quantitative deficiencies. In addition to these secretions, M2 TAMs

release various chemotactic factors (70) and engage in metabolic

reprogramming (71, 72). These actions collectively promote cell

proliferation and metastasis, confer chemoresistance, and ultimately

intensify the progression of GC (73). M2 macrophages play a

predominant role in the TME (74). Our research revealed that within

the TME of patients with GC, the proportion of Tregs and M2

macrophages was markedly elevated in the high-risk group. This

immunosuppressive shift aligns with the known role of CIC structures

in secreting cytokines (e.g., TGF-b and IL-10) that recruit Tregs and

polarize macrophages toward an M2 phenotype (7, 19). Based on the

strong co-expression of CICRlncRNAs with CIC-related genes

(Figure 2E) and established lncRNA functions in GC (15, 74), we

hypothesize that AP000695.2 could potentially contribute to

immunosuppression via (i) acting as a competitive endogenous RNA

(ceRNA) to derepress immunosuppressive factors and/or (ii) enhancing

cytokine production within CIC formations. However, these

mechanisms remain speculative and warrant experimental validation.

Critically, our data demonstrate that the CICRlncRNA signature

correlates with functional outcomes (T cell dysfunction, M2

polarization; Figure 7) consistent with CIC-mediated immune evasion

(7, 67), providing a rationale to investigate direct CIC regulation in

future work. The experimental validation of the role of AP000695.2 in

promoting GC cell invasion (Figure 11) supports its functional impact

on TME remodeling. Nevertheless, the precise molecular pathways

require further investigation. Furthermore, in the present study, the

abundance of the majority of immune cells and the immune function

scores were greater in the high-risk group than in the low-risk group.

These findings suggest that individuals with high-risk scores exhibit

heightened immune activity.

Regarding tumor mutational burden (TMB), the non-significant

difference between risk groups warrants nuanced interpretation beyond

sample size considerations. Gastric cancer exhibits profound

mutational signature heterogeneity—including microsatellite

instability (MSI), Epstein-Barr virus (EBV) infection, and

chromosomal instability (CIN) subtypes—that may confound TMB-

risk associations (75). Crucially, these molecular subtypes demonstrate

divergent TMB profiles and clinical behaviors: MSI-high tumors
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typically show elevated TMB and favorable immunotherapy

response, whereas CIN tumors often exhibit intermediate TMB but

poorer outcomes (76). The balanced representation of these subtypes

across our risk groups (inferred from comparable prognosis

stratification) likely contributes to the observed TMB homogeneity.

This further underscores that our CICRlncRNA-based model captures

biological features distinct from conventional genomic classifiers.

Additionally, the TIDE algorithm was employed to assess the

correlation between the risk score and the response to ICIs. The

findings revealed that the high-risk group displayed a suboptimal

response to ICI therapy. This implies that CICRlncRNAs could

potentially serve as promising biomarkers for forecasting the

response of GC patients to ICIs.

Several researches have explored the correlation between the TMB

and immune infiltration in the progression and prognosis of GC. These

findings suggest that a high TME is likely linked with an unfavorable

prognosis for patients with GC (77). Within the scope of this research, a

significant positive correlation was identified between the risk score and

TMB. Specifically, patients in the high-risk score and high-TMB groups

had the shortest survival and the most unfavorable prognosis.

Conversely, patients in the low-risk score and low-TMB score groups

had the longest survival and the most favorable prognosis. Such a

finding underscores the precise predictive capability of the risk score

regarding the outcomes of immunotherapy in individuals suffering from

GC. In addition, the sensitivity of patients with GC to various anticancer

drugs was assessed in two different risk categories. In the low-risk cohort,

USP1-UAF1 inhibitors (ML-323), adavosertib, gefitinib and entinostat

showed superior therapeutic efficacy. Conversely, in the high-risk group,

vistusertib (AZD2014), NUAK kinase inhibitors (WZ4003), IGF-1R/IR

inhibitors (BMS-754807), dasatinib and foretinib showed improved

efficacy. These results could serve as a valuable reference to guide the

clinical management of patients with GC. For clinical translation,

CICRlncRNAs could be detected in liquid biopsies (e.g., plasma

exosomal RNA via RT–qPCR) or tumor tissues (via RNA in situ

hybridization), similar to established lncRNA biomarkers such as H19

in GC (78). Integration with routine histopathology or blood tests would

enable risk stratification during diagnosis.

This study has several limitations. First, the reliance on retrospective

data from the TCGA database may introduce selection bias, and the

limited number of normal tissue samples (n = 36) could affect model

generalizability. Second, experimental validation of CICRlncRNAs was

incomplete (e.g., AL161785.1 remained unverified owing to primer

limitations), leaving gaps in confirming their biological roles. Third, we

emphasize that resolving AL161785.1’s function through advanced

methodologies (e.g., long-read sequencing, RNA-FISH) is a key

objective of our ongoing research program. Third, while bioinformatic

analyses revealed associations between CICRlncRNAs and

immunosuppressive TME features (e.g., Tregs/M2 macrophages), direct

mechanistic links remain unvalidated. Specifically, how AP000695.2

regulates cytokine secretion or ceRNA networks in CIC contexts needs

experimental interrogation. Additionally, although algorithms such as

CIBERSORT exhibit good consistency with single-cell sequencing data

(29, 79), their resolution remains limited by bulk RNA-seq data and

cannot capture spatial immune suppression networks at the single-cell

level (e.g.,molecular interactions at tumor-immune cell synapses). Future
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studies could combine single-cell RNA sequencing and spatial

transcriptomics to further elucidate the specific mechanisms of

CICRlncRNA in the recruitment and polarization of Tregs/M2

macrophages (79). Fourth, clinical translation requires further

validation through prospective, multicenter cohorts to assess real-world

applicability. Fifth, the drug sensitivity predictions (e.g., gefitinib/

dasatinib) derived from oncoPredict lack experimental validation in cell

lines or patient-derived models. While GDSC2-based computational

screening is widely used for hypothesis generation, its clinical

applicability requires functional confirmation through in vitro assays

(e.g., CCK-8/PI staining) and preclinical models. Additionally, genetic

heterogeneity and treatment history were not fully addressed (35).While

CIBERSORT provided valuable insights into immune infiltration

patterns, we acknowledge its technical limitations: Resolution

constraints: The algorithm cannot reliably quantify rare immune

subsets (e.g., gd T cells, pDCs) constituting <2% of the

microenvironment, as its deconvolution accuracy drops substantially

below this threshold (79). Matrix obsolescence: The LM22 signature

matrix omits newly discovered immune phenotypes (e.g., TRM, ICOS+

Tregs) identified post-2015 (80). Critically, our core findings—elevated

Tregs/M2 macrophages in high-risk patients and immunosuppressive

TME features—were consistently replicated across three orthogonal

methods (ESTIMATE, ssGSEA, and TIDE; Figure 7). This multi-

algorithm convergence mitigates CIBERSORT-specific biases and

reinforces conclusion validity (29). Sixth, although siRNA-mediated

knockdown of AP000695.2 achieved high efficiency (>80%,

Figure 11A) and consistently attenuated malignant phenotypes

(proliferation, migration, invasion), the absence of rescue experiments

(e.g., re-expression of AP000695.2) prevents definitive causal inference

regarding on-target effects. While high-efficiency siRNA knockdown

substantially reduces off-target artifacts (81) and phenotypic

concordance with bioinformatic predictions supports biological

relevance, future studies using CRISPR-based genetic rescue models are

warranted for causal validation. Finally, the prognostic model was

validated internally but not in external cohorts due to limited

availability of independent gastric cancer datasets with comprehensive

CIC-related annotations.

Future research should prioritize expanding sample diversity,

integrating multiomics data (e.g., proteomics, epigenetics), and

conducting mechanistic studies (e.g., CRISPR-based functional

assays) to uncover causal relationships. Prospective clinical trials

are needed to validate the prognostic model and explore its utility in

guiding immunotherapy strategies. Additionally, developing

standardized assays for CICRlncRNA detection could enhance

their clinical adoption as biomarkers. Addressing these gaps will

advance personalized prognosis prediction and therapeutic

targeting in patients with GC.
5 Conclusion

In summary, this study is the first to report the prognostic role

of CICRlncRNAs in GC. A risk model integrating three
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CICRlncRNAs (AP003392.1, AP000695.2, AL161785.1) was

constructed using TCGA-GC data, effectively stratifying patients

into distinct risk groups with divergent survival outcomes. These

findings provide novel insights into immune-related mechanisms

and highlight the potential of CICRlncRNAs as biomarkers for

prognosis and tailored therapeutic strategies in patients with GC.

Future research should prioritize expanding sample diversity,

integrating multiomics data (e.g., proteomics, epigenetics), and

conducting mechanistic studies (e.g., CRISPR-based functional

assays) to uncover causal relationships. Direct experimental

validation is needed to determine the specific roles of

CICRlncRNAs in CIC formation and immune evasion.
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