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Objectives: Epidermal growth factor receptor (EGFR) mutation status is an
essential biomarker guiding targeted therapy selection in lung
adenocarcinoma. This study aimed to develop and validate a non-invasive
predictive model that integrates radiomics and deep learning using CT images
for accurate assessment of EGFR mutation status.

Methods: A total of 220 patients with lung adenocarcinoma were retrospectively
enrolled and randomly divided into training and testing cohorts at a 7:3 ratio.
Radiomics features were extracted from CT images using PyRadiomics, and deep
learning features were obtained from five pretrained architectures: ResNet34,
ResNet152, DenseNet121, ShuffleNet, and Vision Transformer (ViT). Feature
selection used the intraclass correlation coefficient, Spearman correlation, and
LASSO regression. The deep learning architectures were compared within the
training set using cross-validation, and the best-performing architecture, ViT,
was retained for downstream modeling. Based on the selected features, we
constructed a radiomics model (Rad model), a ViT-based deep learning model
(ViT model), and two fusion models (early fusion and late fusion) integrating
radiomics and ViT features. Model performance was evaluated using receiver
operating characteristic (ROC) curves, area under the curve (AUC), accuracy,
sensitivity, specificity, precision, F1-score, and decision curve analysis (DCA).
Results: The fusion models outperformed both radiomics and deep learning
models in predicting EGFR mutation status. In the testing set, the early fusion
model achieved the highest predictive performance (AUC = 0.910), exceeding
the late fusion model (AUC = 0.892), the ViT model (AUC = 0.870), and the Rad
model (AUC = 0.792). It also demonstrated superior accuracy (0.848), sensitivity
(0.872), and specificity (0.815). Decision curve analysis further confirmed its
clinical utility.
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Conclusion: Our study demonstrated that integrating radiomics and deep
learning contributed to EGFR mutation prediction, providing a non-invasive
approach to support personalized treatment decisions in lung adenocarcinoma.

EGFR, CT, deep learning, radiomics, fusion model, lung adenocarcinoma

Introduction

Lung cancer is the most prevalent malignancy globally and the
leading cause of cancer-related mortality in China, with non-small
cell lung cancer (NSCLC) accounting for 85% of all lung cancer
cases (1-3). In recent years, advances in the understanding of
genetic alterations have led to the identification of key mutations,
including rearrangements of anaplastic lymphoma kinase (ALK),
and mutations in Kirsten rat sarcoma virus (KRAS) and epidermal
growth factor receptor (EGFR), as critical prognostic factors in lung
adenocarcinoma (4). EGFR mutations, primarily exon 19 deletions
and the L858R mutation in exon 21, are the most common genetic
alterations in lung adenocarcinoma, occurring in approximately
50% of lung adenocarcinoma cases (5). Currently, EGFR detection
primarily relies on tumor biopsy sequencing. However, biopsy is an
invasive procedure that may increase the risk of cancer metastasis
and lead to complications such as bleeding and pneumothorax (6).
Additionally, challenges such as inadequate or difficult sample
collection, the need for repeated sampling, and the high costs
associated with sequencing underscore the limitations of this
approach (7, 8). In this context, there is an urgent need to
explore low-risk, non-invasive alternatives for predicting
EGFR mutations.

High-resolution chest CT is widely used for lung lesion
assessment due to its non-invasive nature and ease of operation.
Previous studies have commonly utilized CT imaging features,
machine learning, or radiomics to predict EGFR mutations (9-
12). For example, Giovanni et al. explored radiomics for EGFR
mutation prediction (11), while Pinheiro et al. examined its
association with imaging phenotypes (9). Traditional radiomics,
which relies on predefined features such as texture, shape, and
intensity, alongside machine learning for classification, is limited by
its dependence on manual feature selection, thereby restricting its
ability to fully leverage high-dimensional imaging data for EGFR
mutation prediction. In recent years, deep learning has gained
significant recognition in medical image analysis, particularly for
the non-invasive prediction of clinical outcomes (13-16). Deep
learning enables end-to-end image analysis by automatically
extracting high-dimensional features through neural networks,
fully utilizing raw imaging data to capture complex spatial
patterns and nonlinear relationships. For example, Zhao et al.
developed a deep learning model using a 3D convolutional neural
network (CNN) to predict EGFR mutations (15). Additionally,
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PET/CT imaging combined with ResNet-based models has been
successfully employed to predict EGFR mutations (16).

Although both radiomics and deep learning have shown great
success in imaging analysis, the use of a single model still has certain
limitations. On one hand, radiomics offers clinically interpretable
features, while deep learning models, due to their “black-box”
nature, make it difficult to interpret the underlying decision-
making processes (17). On the other hand, radiomics is
particularly advantageous in small-sample datasets, whereas deep
learning requires large-scale data for effective training (18). To
overcome these limitations, researchers have increasingly explored
the integration of radiomics and deep learning, aiming to leverage
the strengths of both approaches (13, 14). The integration of
radiomics and deep learning primarily involves two strategies:
early fusion (feature-level fusion) and late fusion (decision-level
fusion). Early fusion involves extracting features from both
radiomics and deep learning models, integrating them at the
feature level, and inputting them into a classifier for final
prediction. In contrast, late fusion trains radiomics and deep
learning models independently, then combines their outputs
using methods such as weighted averaging, voting, or other
ensemble techniques. Studies have shown that fusion models
generally outperform single-model approaches in predictive tasks.
Specifically, both Pease et al. and Wang et al. demonstrated that
fusion models achieved higher area under the curve (AUC) on
multi-center datasets compared to models relying solely on
radiomics or deep learning (13, 14).

In summary, our study aimed to compare the performance of
various deep learning models and radiomics approaches in
predicting EGFR mutation status. Furthermore, we explored two
fusion strategies to assess their effectiveness in identifying EGFR
mutations. We believe that our findings will contribute to more
accurate clinical detection of EGFR mutations, ultimately
improving the efficiency and accessibility of precision medicine.

Methods
Data collection

Data from patients diagnosed with lung adenocarcinoma were
retrospectively collected at the First People’s Hospital of Yancheng
between January and December 2021. The inclusion criteria were as
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follows (1): histologically confirmed primary lung adenocarcinoma;
(2) no prior radiotherapy, chemotherapy, or immunotherapy before
surgery; (3) the interval between preoperative CT examination and
surgery was within 2 weeks; (4) the patient underwent genetic
testing. The exclusion criteria were: (a) in situ adenocarcinoma,
microinvasive adenocarcinoma, and rare histological variants of
lung adenocarcinoma; (b) multiple primary tumors; (c) absence of
thin-slice CT images or poor image quality; (d) incomplete clinical,
pathological, or genetic data; (e) history of other cancers.
Ultimately, a total of 220 patients were included, who were
stratified and randomly assigned to the training group (n = 154)
and the testing group (n = 66). Of all patients, 122 were diagnosed
with EGFR mutations through genetic testing, while the remaining
98 had no detected mutations. The overall workflow of this study is
shown in Figure 1. This study was approved by the Ethics
Committee of the First People’s Hospital of Yancheng (Approval
No: 2024-K(Y])-298) and adheres to the Declaration of Helsinki,
with informed consent from participants not being required.

All patients included in the study underwent supine chest CT
scanning within two weeks prior to surgery. The lung window
(width 1600 HU; level -600 HU) and mediastinal window (width
400 HU; level 40 HU) were fixed, and the chest CT images were
resampled to a voxel size of Imm * Imm * Imm using trilinear
interpolation to reduce variations in feature values caused by
different voxel sizes. All target regions of interest (ROIs) were
independently delineated layer by layer by two experienced
radiologists (one with 10 years of interpretation experience and
the other with 15 years of experience) in a blinded manner using
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ITK-Snap (www.itksnap.org) software (19). In cases of
disagreement, consensus was reached through group discussion.
To assess the reliability and consistency of the ROI delineation, all
ROIs were re-annotated two months later, and intra-class
correlation (ICC) analysis was performed on the data.

Radiomics model feature extraction

In this study, a total of 1,834 radiomic features, including shape,
statistical, and texture features, were extracted using Pyradiomics
(configuration in Supplementary Materials, Section 1) (20). These
features were standardized using Z-scores, and ICC analysis was
performed to select features with good consistency (ICC > 0.75).
Redundant features were then filtered out based on spearman
correlation (Spearman correlation coefficient > 0.9). Subsequently,
the Least Absolute Shrinkage and Selection Operator (LASSO)
regression with 10-fold cross-validation was applied to select the
most predictive subset of features.

3D deep learning model feature extraction

Similar to previous studies, we evaluated the performance of
several deep learning models using transfer learning, including
ResNet34, ResNetl152, DenseNet121, ShuffleNet, and Vision
Transformer (ViT). The input size for all models was
standardized to 64x64x64 voxel cubes of the ROI. Each model
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was initialized with ImageNet (21) pre-trained weights and trained
under a unified data preprocessing pipeline. To ensure fairness and
consistency, all models were trained using the same preprocessing
steps, with no additional spatial or intensity-based data
augmentation applied beyond resampling each manually
delineated 3D ROI to 64 x 64 x 64 voxels, and hyperparameters
were strictly controlled. Despite differences in network
architectures, training parameters were kept consistent across
models, including training only the classification head while
keeping the backbone weights frozen, the Adam optimizer (initial
learning rate = 0.001, weight decay = le—4, batch size = 8), and 300
training epochs. The ViT-based deep learning model (ViT model)
had specific configurations such as image patch size, frame size,
depth, and dimension appropriately adjusted to suit its Transformer
architecture, while other training parameters remained consistent
with those of the other deep learning models. Specifically, the ViT
model was configured with an image patch size of 16 and a frame
patch size of 2, resulting in a total of 512 patches per volume. The
architecture consisted of 6 Transformer layers (depth = 6), 8
attention heads, and an embedding dimension of 1024, followed
by an MLP head with a hidden dimension of 2048. Both dropout
and embedding dropout were set to 0.1 (detailed parameters are
provided in Supplementary Materials, Section 2: ViT model
settings). To reduce the risk of overfitting and standardize the
feature dimensionality across different architectures, features
extracted from the penultimate layer were compressed into 128
dimensions using principal component analysis (PCA).

Model training and evaluation

To ensure robustness and comparability across different feature
types, we applied a unified machine learning framework to both
radiomics and deep learning features. Specifically, six commonly
used classifiers were evaluated: Random Forest (RF), k-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Iterative
Dichotomiser 3 (ID3), eXtreme Gradient Boosting (XGBoost),
and Light Gradient Boosting Machine (LightGBM). Each classifier
was trained using 10-fold stratified cross-validation within the
training set. For every classifier, the AUC and its standard
deviation across folds were computed. The classifier with the
highest mean AUC was selected as the final model for each
feature type. These optimal classifiers were then retrained on the
training cohort and subsequently evaluated on the testing set. As a
result, the SVM classifier combined with radiomics features (Rad
model with SVM) and with ViT-derived deep learning features
(ViT model with SVM) achieved the best performance and were
used in subsequent analyses.

Construction of the fusion model
Furthermore, we developed early and late fusion models using

radiomics and deep learning features. In early fusion, we first
applied Z-score normalization to standardize the features. Then,
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we performed ICC analysis, spearman correlation analysis, and
lasso regression for feature selection. The selected features were
subsequently used to develop the early fusion model with an SVM
classifier. In contrast, late fusion was performed by integrating the
prediction outputs from radiomics and deep learning models using
various stacked ensemble learning strategies, including RF, SVM,
and KNN. SVM was ultimately chosen to develop the final late
fusion model. To account for the slight imbalance in EGFR
mutation status, the class_weight=balanced parameter was
applied to all SVM classifiers. This allowed automatic adjustment
of class weights according to class frequencies during training.

Statistical analysis

The t-test or the Mann-Whitney U test was used to analyze
continuous variables, while the chi-square ()?) test was used to assess
categorical variables. The diagnostic efficacy of the models was
evaluated using receiver operating characteristic (ROC) curves, AUC,
accuracy, and specificity, and other relevant metrics. The DeLong test
was applied to compare AUC values. Model calibration was assessed
using calibration curves, and decision curve analysis (DCA) was
conducted to evaluate the clinical utility of our predictive models.

All data analyses were performed using Python (version 3.11)
and R (version 4.4). Radiomics feature extraction was conducted
with PyRadiomics (version 3.1.0). Machine learning models,
including SVM, were implemented using Scikit-learn, while deep
learning models were developed using the PyTorch framework.

Results

This retrospective study included 220 patients, with their
baseline characteristics summarized in Table 1. The mean age was
63.5 = 9.3 years in the training set and 64.35 £ 9.6 years in the
testing set, with no significant difference. The proportion of male
patients was similarly comparable at 47.4% and 48.5%, respectively.
The right upper and left upper lobes were the most frequently
affected lesion sites in both cohorts. Tumor staging showed no
significant difference (p = 0.249), with stage I being the most
common in both sets. The prevalence of EGFR mutations was
54.5% and 57.6% in the training and testing sets, respectively. In
addition, a detailed comparison between the EGFR mutant and
wild-type groups is provided in Supplementary Table SI.

After performing feature selection, we identified 19 key
radiomics features from the initial set of 1834 features.
Additionally, feature selection identified 7, 7, 9, 8, and 5 features
for ResNet34, ResNetl152, DenseNetl121, ShuffleNet, and ViT,
respectively. Furthermore, we presented five plots for each model
in the Supplementary Materials, including Lasso-selected feature
plots, feature weight plots, Spearman correlation analysis plots, and
hierarchical clustering heatmaps (see Supplementary Figure S1-
Figure S6). These visualizations offered a deeper understanding of
the relationships between the selected features, their weights, and
their correlations with each other.
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TABLE 1 Baseline characteristics of study sets.

o Train set Test set
Characteristics P value
(n = 154) (n = 66)
Age (years) 635+93 64.35 £ 9.6 0.564
Sex
Male 73 32
0.999
Female 81 34
Lesion site
Right upper 51 19
Right middle 12 4
Right lower 31 12 0.720
Left upper 31 19
Left lower 29 12
Tumor stage
I 87 35
1I 13 10
0.249
111 25 6
v 29 15
EGFR
Yes 84 38
0.789
No 70 28

EGFR, epidermal growth factor receptor.

Figure 2 illustrates the comparative discriminative performance
of radiomics and deep learning models for EGFR mutation status
prediction. Radiomics features were extracted using PyRadiomics
and used to train RF, KNN, SVM, ID3, XGBoost, and LightGBM
classifiers. Among these classifiers, SVM achieved the highest
performance on the testing set, with an ROC-AUC of 0.792 (95%
CI: 0.682-0.895). For deep learning models, features were extracted
from ResNet34, ResNet152, DenseNet121, ShuffleNet, and ViT, and
were further classified using the same classifiers. The predictive
performance varied considerably among models, with ResNet34
achieving the lowest AUC (< 0.600), whereas ViT combined with an
SVM classifier attained the highest AUC of 0.870 (95% CI: 0.761-
0.945). Among all deep learning models, ViT demonstrated the best
performance, surpassing the optimal radiomics-based model. This
finding suggests that deep features extracted by ViT offer superior
discriminative ability in predicting EGFR mutation status.

This study employed early and late fusion strategies to integrate
radiomics and deep learning features. In late fusion, we applied
ensemble learning methods, including RF, SVM, and KNN, with
SVM demonstrating the highest performance (AUC = 0.892, 95%
CI: 0.813-0.960) (see Supplementary Figure S7). To
comprehensively assess the predictive performance of different
models, the evaluation results of the Rad model, ViT model, early
fusion model, and late fusion model in both the training and testing
sets are provided in Supplementary Tables S2 and Supplementary
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Tables S3, with the corresponding visualizations shown in Figure 3
and Supplementary Figure S8. The reported metrics include AUC
with 95% CI, accuracy, sensitivity, specificity, precision, F1 score,
and P-values obtained from DeLong’s test. In the training set, the
early fusion model demonstrated the highest predictive
performance, achieving an AUC of 0.965 (95% CI: 0.934-0.989),
and was used as the reference. The late fusion model also exhibited
strong discriminative ability, with an AUC of 0.945 (95% CI: 0.908-
0.976). The ViT model achieved an AUC of 0.895 (95% CI: 0.845-
0.941), outperforming the Rad model (AUC = 0.877, 95% CI: 0.824-
0.926). Both models showed statistically significant differences
when compared with the early fusion model (P < 0.05, DeLong’s
test). In addition to AUC, the early fusion model achieved the
highest accuracy (0.909), sensitivity (0.916), and specificity (0.901).
Moreover, the optimal threshold for the early fusion model in the
training set was 0.464, determined using the maximum Youden
index, which yielded a sensitivity of 95.2% and a specificity of
88.7%. In the testing set, the early fusion model maintained the best
discriminative performance, with an AUC of 0.910 (95% CI: 0.822-
0.970), serving as the reference. The late fusion model followed with
an AUC of 0.892 (95% CI: 0.813-0.960), while the ViT model (AUC
= 0.870, 95% CI: 0.761-0.945) outperformed the Rad model (AUC
=0.792, 95% CI: 0.682-0.895). Comparisons with the early fusion
model revealed statistically significant differences for both models
(P < 0.05, DeLong’s test). In addition, the optimal threshold for the
early fusion model in the testing set was 0.519, corresponding to a
sensitivity of 87.2% and specificity of 81.5%. The model also
achieved the highest accuracy (0.848) among all models in the
testing set, further highlighting its predictive superiority.

Figure 4 presents four key visualizations for assessing the
performance of the early fusion model. The ROC curve illustrates
the model’s discriminative ability, with the AUC reflecting its
overall classification performance. The confusion matrix visually
represents classification outcomes, detailing the distribution of true
positives, true negatives, false positives, and false negatives. To
assess the model’s calibration, a calibration curve is included,
demonstrating the agreement between predicted probabilities and
actual outcomes. Additionally, DCA is performed to evaluate the
model’s clinical utility by quantifying the net benefit across a range
of threshold probabilities. The clinical net benefit of the predictive
models emerged only when the threshold probability exceeded
approximately 0.2. Below this threshold, the net benefit was
comparable to the treat-all strategy, indicating limited additional
value for decision-making. Within the 0.2 to 0.8 range, the early
fusion model consistently demonstrated the highest net benefit,
outperforming both reference strategies and other models.
Collectively, these analyses offer a thorough assessment of the
early fusion model’s predictive performance, reliability, and
potential clinical applicability.

Discussion

EGFR mutation status is a critical determinant of personalized
treatment strategies in lung adenocarcinoma, directly affecting the
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Predictive performance of EGFR. Receiver operating characteristic (ROC) curves of the radiomics model and deep learning models in the testing set.
SVM, Support Vector Machine; KNN, k-Nearest Neighbors; ID3, Iterative Dichotomiser 3; RF, Random Forest; XGBoost, eXtreme Gradient Boosting;

LightGBM, Light Gradient Boosting Machine.

selection of targeted therapies and prognostic evaluation (5, 22). In
our study, radiomics and deep learning approaches were integrated
to construct and compare multiple predictive models for EGFR
mutation status. Among the individual models, the ViT model
exhibited the highest predictive performance. Notably, the fusion
models, particularly the early fusion approach, achieved further
improvements in predictive accuracy. In the testing set, the early
fusion model achieved an AUC of 0.910, outperforming both the
radiomics-based and standalone deep learning models,
underscoring the advantages of multimodal feature integration for
EGFR mutation prediction. Furthermore, DCA validated the
model’s potential clinical utility, reinforcing its significance in
non-invasive biomarker assessment.

EGFR mutation is a crucial biomarker for guiding personalized
treatment in lung adenocarcinoma, and its accurate prediction plays
a vital role in treatment decision-making and prognosis assessment.
With the increasing application of radiomics in medicine, growing
evidence suggests that non-invasive CT-based radiomics models
outperform traditional imaging features in predictive accuracy and
clinical utility (23-25). Dong et al. reported that a radiomics-based
nomogram achieved an AUC of 0.798 (95% CI: 0.664-0.931) in the
validation cohort for EGFR mutation prediction (26). Similarly,
Dang et al. demonstrated that radiomics (AUC = 0.703)
outperformed clinical features (AUC = 0.284) in predicting EGFR
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mutation status (23). Furthermore, a meta-analysis of 28 radiomics-
based studies reported a pooled AUC of 0.800 (95% CI: 0.757-
0.845), indicating a moderate-to-high predictive accuracy and a
significant improvement over clinical features (24). Despite the
promising performance of radiomics models in EGFR mutation
prediction, the rapid advancement of deep learning has introduced
new breakthroughs, particularly by automating feature extraction
and capturing complex patterns, further enhancing predictive
accuracy. Yin et al. constructed a deep learning model using
ResNet, achieving an AUC of 0.84 (95% CI: 0.75-0.90) in EGFR
mutation prediction (27). Similarly, another study reported that a
CNN-based model (AUC = 0.7802) outperformed radiomics (AUC
= 0.7038) in predictive accuracy (6). Moreover, a joint study
conducted by researchers from the United Kingdom and India
demonstrated that a 3D U-Net-based deep learning model (AUC =
0.82, 95% CI: 0.81-0.83) exhibited superior performance compared
to radiomics (AUC = 0.72, 95% CI: 0.69-0.75) (28). Similar to most
previous studies, our study found that deep learning models
generally outperformed radiomics models in predicting EGFR
mutation status. Notably, among all deep learning architectures,
ViT combined with an SVM classifier achieved the highest AUC
(0.870, 95% CI: 0.761-0.945), demonstrating superior performance.
This model not only outperformed all other deep learning models
but also surpassed the best-performing radiomics model.
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FIGURE 3

Radar chart of five diagnostic metrics (Accuracy, Sensitivity, Specificity, Precision, and F1 Score) for four models in the testing set.

The superior performance of ViT combined with an SVM
classifier can be attributed to its ability to model global
dependencies through self-attention mechanisms, enabling it to
capture subtle and spatially distributed imaging patterns associated
with EGFR mutation (29). Compared to conventional CNNs, ViT’s
long-range feature extraction enhances its capability to identify
mutation-related characteristics beyond localized regions (29, 30).
Additionally, the integration of SVM as a classifier may have
contributed to improved generalization, reducing the risk of
overfitting. These factors collectively explain why ViT model with
SVM outperformed both other deep learning models and
radiomics-based approaches in our study.

Interestingly, we observed that ResNet34 performed worse than
the radiomics-based model, a finding that contrasts with the general
trend of deep learning models outperforming traditional feature-
based approaches. This result suggests that not all deep learning
architectures are equally effective for EGFR mutation prediction,
and several factors may explain ResNet34’s inferior performance.
One possible reason is its relatively shallow architecture, which may
limit its ability to extract high-level imaging features essential for
distinguishing EGFR mutation status (31). Furthermore, deep CNN
models typically require large-scale training data to fully optimize
their parameters, whereas our dataset may have been insufficient for

Frontiers in Oncology

ResNet34 to generalize effectively (32). In contrast, radiomics
models rely on predefined feature extraction methods that remain
relatively stable even with limited sample sizes, potentially
contributing to their superior performance in this setting.
Furthermore, consistent with previous studies (6, 14, 33), our
study found that fusion models outperformed single-feature models
in predicting EGFR mutation status, highlighting the
complementary nature of radiomics and deep learning-derived
features. The superior performance of fusion models can be
attributed to the complementary nature of radiomics and deep
learning-derived features, which capture distinct yet synergistic
aspects of tumor characteristics (33). This synergistic advantage
has also been demonstrated in recent studies that integrated deep
learning architectures with radiomics for improved prediction and
clinical applicability across different disease contexts (34, 35).
Radiomics extracts predefined morphological and textural
attributes, while deep learning autonomously learns high-level
representations, enabling a more comprehensive analysis. This
synergy enhances predictive performance, as evidenced by the
superior AUC achieved by the fusion models. In addition to
AUG, precision and Fl-score provide further insights into model
performance. The high precision of the early fusion model suggests
a low false-positive rate, which is clinically meaningful in reducing
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Evaluation of the early fusion model. The top-left panel depicts the Receiver Operating Characteristic (ROC) curve of the early fusion model, while
the top-right panel presents the corresponding confusion matrix for the test cohort. The bottom-left panel illustrates the calibration curve of the
early fusion model, indicating good model calibration. Furthermore, the bottom-right panel displays the Decision Curve Analysis (DCA), revealing

that the early fusion model achieves the highest clinical net benefit.

unnecessary EGFR testing. The superior F1-score also indicates a
favorable balance between sensitivity and precision, reflecting the
robustness of this model in classifying EGFR mutation status. These
results support the effectiveness of early fusion strategies, which
leverage the strengths of both handcrafted and deep-learned
features to improve classification accuracy.

Although our study has provided valuable insights, several
limitations should be acknowledged. First, as a retrospective study
with a limited sample size from a single center, our model lacks
external validation, which may restrict its generalizability for
clinical applications. Future prospective studies with larger, multi-
center cohorts are necessary to ensure the robustness of our findings
and enhance the model’s applicability across diverse clinical
settings. Second, due to the lack of significant differences in
baseline clinical variables between the EGFR mutant and wild-

Frontiers in Oncology

08

type groups in our cohort, we focused on imaging data to evaluate
the independent predictive value of radiomics and deep learning.
Nevertheless, incorporating additional clinical variables, such as
smoking history, may further enhance model performance and
should be considered in future studies. Third, this study was
conducted exclusively in an Asian population, whereas EGFR
mutation prevalence varies across different ethnic groups (36).
This limitation may affect the generalizability of our findings.
Further research with multi-ethnic cohorts is needed to evaluate
the applicability of radiomics-based models across diverse
populations. Finally, although our fusion models demonstrated
favorable predictive performance, the lack of inherent
interpretability in the SVM classifier limits their clinical
transparency. Future research should incorporate explainable Al
techniques or feature attribution methods to enhance model
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interpretability, which is critical for clinical decision-making. In
summary, despite these limitations, our study highlights the
potential of integrating radiomics and deep learning for EGFR
mutation prediction. Future research should aim to validate our
findings in multi-center cohorts, incorporate multimodal clinical
data, and extend applicability to diverse populations to enhance the
clinical utility of radiomics-based models.

Conclusion

In this study, we developed a predictive model for EGFR
mutation status in lung adenocarcinoma using CT-based
radiomics and deep learning. Compared to traditional radiomics
models and individual deep learning architectures, our fusion
model demonstrated significantly improved predictive
performance, highlighting the complementary strengths of
handcrafted and deep-learned features. This non-invasive
approach provides a valuable alternative to biopsy-based genetic
testing, mitigating the risks and limitations associated with invasive
procedures while facilitating the identification of EGFR mutation
status in certain lung adenocarcinoma patients. It offers a potential
tool for improving early diagnosis and treatment stratification.
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