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Objectives: Epidermal growth factor receptor (EGFR) mutation status is an

essent ia l b iomarker guid ing targeted therapy select ion in lung

adenocarcinoma. This study aimed to develop and validate a non-invasive

predictive model that integrates radiomics and deep learning using CT images

for accurate assessment of EGFR mutation status.

Methods: A total of 220 patients with lung adenocarcinoma were retrospectively

enrolled and randomly divided into training and testing cohorts at a 7:3 ratio.

Radiomics features were extracted from CT images using PyRadiomics, and deep

learning features were obtained from five pretrained architectures: ResNet34,

ResNet152, DenseNet121, ShuffleNet, and Vision Transformer (ViT). Feature

selection used the intraclass correlation coefficient, Spearman correlation, and

LASSO regression. The deep learning architectures were compared within the

training set using cross-validation, and the best-performing architecture, ViT,

was retained for downstream modeling. Based on the selected features, we

constructed a radiomics model (Rad model), a ViT-based deep learning model

(ViT model), and two fusion models (early fusion and late fusion) integrating

radiomics and ViT features. Model performance was evaluated using receiver

operating characteristic (ROC) curves, area under the curve (AUC), accuracy,

sensitivity, specificity, precision, F1-score, and decision curve analysis (DCA).

Results: The fusion models outperformed both radiomics and deep learning

models in predicting EGFR mutation status. In the testing set, the early fusion

model achieved the highest predictive performance (AUC = 0.910), exceeding

the late fusion model (AUC = 0.892), the ViT model (AUC = 0.870), and the Rad

model (AUC = 0.792). It also demonstrated superior accuracy (0.848), sensitivity

(0.872), and specificity (0.815). Decision curve analysis further confirmed its

clinical utility.
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Conclusion: Our study demonstrated that integrating radiomics and deep

learning contributed to EGFR mutation prediction, providing a non-invasive

approach to support personalized treatment decisions in lung adenocarcinoma.
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Introduction

Lung cancer is the most prevalent malignancy globally and the

leading cause of cancer-related mortality in China, with non-small

cell lung cancer (NSCLC) accounting for 85% of all lung cancer

cases (1–3). In recent years, advances in the understanding of

genetic alterations have led to the identification of key mutations,

including rearrangements of anaplastic lymphoma kinase (ALK),

and mutations in Kirsten rat sarcoma virus (KRAS) and epidermal

growth factor receptor (EGFR), as critical prognostic factors in lung

adenocarcinoma (4). EGFR mutations, primarily exon 19 deletions

and the L858R mutation in exon 21, are the most common genetic

alterations in lung adenocarcinoma, occurring in approximately

50% of lung adenocarcinoma cases (5). Currently, EGFR detection

primarily relies on tumor biopsy sequencing. However, biopsy is an

invasive procedure that may increase the risk of cancer metastasis

and lead to complications such as bleeding and pneumothorax (6).

Additionally, challenges such as inadequate or difficult sample

collection, the need for repeated sampling, and the high costs

associated with sequencing underscore the limitations of this

approach (7, 8). In this context, there is an urgent need to

explore low-risk, non-invasive alternatives for predicting

EGFR mutations.

High-resolution chest CT is widely used for lung lesion

assessment due to its non-invasive nature and ease of operation.

Previous studies have commonly utilized CT imaging features,

machine learning, or radiomics to predict EGFR mutations (9–

12). For example, Giovanni et al. explored radiomics for EGFR

mutation prediction (11), while Pinheiro et al. examined its

association with imaging phenotypes (9). Traditional radiomics,

which relies on predefined features such as texture, shape, and

intensity, alongside machine learning for classification, is limited by

its dependence on manual feature selection, thereby restricting its

ability to fully leverage high-dimensional imaging data for EGFR

mutation prediction. In recent years, deep learning has gained

significant recognition in medical image analysis, particularly for

the non-invasive prediction of clinical outcomes (13–16). Deep

learning enables end-to-end image analysis by automatically

extracting high-dimensional features through neural networks,

fully utilizing raw imaging data to capture complex spatial

patterns and nonlinear relationships. For example, Zhao et al.

developed a deep learning model using a 3D convolutional neural

network (CNN) to predict EGFR mutations (15). Additionally,
02
PET/CT imaging combined with ResNet-based models has been

successfully employed to predict EGFR mutations (16).

Although both radiomics and deep learning have shown great

success in imaging analysis, the use of a single model still has certain

limitations. On one hand, radiomics offers clinically interpretable

features, while deep learning models, due to their “black-box”

nature, make it difficult to interpret the underlying decision-

making processes (17). On the other hand, radiomics is

particularly advantageous in small-sample datasets, whereas deep

learning requires large-scale data for effective training (18). To

overcome these limitations, researchers have increasingly explored

the integration of radiomics and deep learning, aiming to leverage

the strengths of both approaches (13, 14). The integration of

radiomics and deep learning primarily involves two strategies:

early fusion (feature-level fusion) and late fusion (decision-level

fusion). Early fusion involves extracting features from both

radiomics and deep learning models, integrating them at the

feature level, and inputting them into a classifier for final

prediction. In contrast, late fusion trains radiomics and deep

learning models independently, then combines their outputs

using methods such as weighted averaging, voting, or other

ensemble techniques. Studies have shown that fusion models

generally outperform single-model approaches in predictive tasks.

Specifically, both Pease et al. and Wang et al. demonstrated that

fusion models achieved higher area under the curve (AUC) on

multi-center datasets compared to models relying solely on

radiomics or deep learning (13, 14).

In summary, our study aimed to compare the performance of

various deep learning models and radiomics approaches in

predicting EGFR mutation status. Furthermore, we explored two

fusion strategies to assess their effectiveness in identifying EGFR

mutations. We believe that our findings will contribute to more

accurate clinical detection of EGFR mutations, ultimately

improving the efficiency and accessibility of precision medicine.
Methods

Data collection

Data from patients diagnosed with lung adenocarcinoma were

retrospectively collected at the First People’s Hospital of Yancheng

between January and December 2021. The inclusion criteria were as
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follows (1): histologically confirmed primary lung adenocarcinoma;

(2) no prior radiotherapy, chemotherapy, or immunotherapy before

surgery; (3) the interval between preoperative CT examination and

surgery was within 2 weeks; (4) the patient underwent genetic

testing. The exclusion criteria were: (a) in situ adenocarcinoma,

microinvasive adenocarcinoma, and rare histological variants of

lung adenocarcinoma; (b) multiple primary tumors; (c) absence of

thin-slice CT images or poor image quality; (d) incomplete clinical,

pathological, or genetic data; (e) history of other cancers.

Ultimately, a total of 220 patients were included, who were

stratified and randomly assigned to the training group (n = 154)

and the testing group (n = 66). Of all patients, 122 were diagnosed

with EGFR mutations through genetic testing, while the remaining

98 had no detected mutations. The overall workflow of this study is

shown in Figure 1. This study was approved by the Ethics

Committee of the First People’s Hospital of Yancheng (Approval

No: 2024-K(YJ)-298) and adheres to the Declaration of Helsinki,

with informed consent from participants not being required.

All patients included in the study underwent supine chest CT

scanning within two weeks prior to surgery. The lung window

(width 1600 HU; level -600 HU) and mediastinal window (width

400 HU; level 40 HU) were fixed, and the chest CT images were

resampled to a voxel size of 1mm * 1mm * 1mm using trilinear

interpolation to reduce variations in feature values caused by

different voxel sizes. All target regions of interest (ROIs) were

independently delineated layer by layer by two experienced

radiologists (one with 10 years of interpretation experience and

the other with 15 years of experience) in a blinded manner using
Frontiers in Oncology 03
ITK-Snap (www.itksnap.org) software (19). In cases of

disagreement, consensus was reached through group discussion.

To assess the reliability and consistency of the ROI delineation, all

ROIs were re-annotated two months later, and intra-class

correlation (ICC) analysis was performed on the data.
Radiomics model feature extraction

In this study, a total of 1,834 radiomic features, including shape,

statistical, and texture features, were extracted using Pyradiomics

(configuration in Supplementary Materials, Section 1) (20). These

features were standardized using Z-scores, and ICC analysis was

performed to select features with good consistency (ICC > 0.75).

Redundant features were then filtered out based on spearman

correlation (Spearman correlation coefficient ≥ 0.9). Subsequently,

the Least Absolute Shrinkage and Selection Operator (LASSO)

regression with 10-fold cross-validation was applied to select the

most predictive subset of features.
3D deep learning model feature extraction

Similar to previous studies, we evaluated the performance of

several deep learning models using transfer learning, including

ResNet34, ResNet152, DenseNet121, ShuffleNet, and Vision

Transformer (ViT). The input size for all models was

standardized to 64×64×64 voxel cubes of the ROI. Each model
FIGURE 1

Flowchart of the predictive models. Rad model, Radiomics model; DL model, Deep learning model; AUC, area under the receiver operating
characteristics curve; RF, Random Forest; KNN, k-Nearest Neighbors; SVM, Support Vector Machine; ID3, Iterative Dichotomiser 3; XGBoost,
eXtremeGradient Boosting; LightGBM, Light Gradient Boosting Machine.
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was initialized with ImageNet (21) pre-trained weights and trained

under a unified data preprocessing pipeline. To ensure fairness and

consistency, all models were trained using the same preprocessing

steps, with no additional spatial or intensity-based data

augmentation applied beyond resampling each manually

delineated 3D ROI to 64 × 64 × 64 voxels, and hyperparameters

were strictly controlled. Despite differences in network

architectures, training parameters were kept consistent across

models, including training only the classification head while

keeping the backbone weights frozen, the Adam optimizer (initial

learning rate = 0.001, weight decay = 1e−4, batch size = 8), and 300

training epochs. The ViT-based deep learning model (ViT model)

had specific configurations such as image patch size, frame size,

depth, and dimension appropriately adjusted to suit its Transformer

architecture, while other training parameters remained consistent

with those of the other deep learning models. Specifically, the ViT

model was configured with an image patch size of 16 and a frame

patch size of 2, resulting in a total of 512 patches per volume. The

architecture consisted of 6 Transformer layers (depth = 6), 8

attention heads, and an embedding dimension of 1024, followed

by an MLP head with a hidden dimension of 2048. Both dropout

and embedding dropout were set to 0.1 (detailed parameters are

provided in Supplementary Materials, Section 2: ViT model

settings). To reduce the risk of overfitting and standardize the

feature dimensionality across different architectures, features

extracted from the penultimate layer were compressed into 128

dimensions using principal component analysis (PCA).
Model training and evaluation

To ensure robustness and comparability across different feature

types, we applied a unified machine learning framework to both

radiomics and deep learning features. Specifically, six commonly

used classifiers were evaluated: Random Forest (RF), k-Nearest

Neighbors (KNN), Support Vector Machine (SVM), Iterative

Dichotomiser 3 (ID3), eXtreme Gradient Boosting (XGBoost),

and Light Gradient Boosting Machine (LightGBM). Each classifier

was trained using 10-fold stratified cross-validation within the

training set. For every classifier, the AUC and its standard

deviation across folds were computed. The classifier with the

highest mean AUC was selected as the final model for each

feature type. These optimal classifiers were then retrained on the

training cohort and subsequently evaluated on the testing set. As a

result, the SVM classifier combined with radiomics features (Rad

model with SVM) and with ViT-derived deep learning features

(ViT model with SVM) achieved the best performance and were

used in subsequent analyses.
Construction of the fusion model

Furthermore, we developed early and late fusion models using

radiomics and deep learning features. In early fusion, we first

applied Z-score normalization to standardize the features. Then,
Frontiers in Oncology 04
we performed ICC analysis, spearman correlation analysis, and

lasso regression for feature selection. The selected features were

subsequently used to develop the early fusion model with an SVM

classifier. In contrast, late fusion was performed by integrating the

prediction outputs from radiomics and deep learning models using

various stacked ensemble learning strategies, including RF, SVM,

and KNN. SVM was ultimately chosen to develop the final late

fusion model. To account for the slight imbalance in EGFR

mutation status, the class_weight=balanced parameter was

applied to all SVM classifiers. This allowed automatic adjustment

of class weights according to class frequencies during training.
Statistical analysis

The t-test or the Mann-Whitney U test was used to analyze

continuous variables, while the chi-square (c²) test was used to assess

categorical variables. The diagnostic efficacy of the models was

evaluated using receiver operating characteristic (ROC) curves, AUC,

accuracy, and specificity, and other relevant metrics. The DeLong test

was applied to compare AUC values. Model calibration was assessed

using calibration curves, and decision curve analysis (DCA) was

conducted to evaluate the clinical utility of our predictive models.

All data analyses were performed using Python (version 3.11)

and R (version 4.4). Radiomics feature extraction was conducted

with PyRadiomics (version 3.1.0). Machine learning models,

including SVM, were implemented using Scikit-learn, while deep

learning models were developed using the PyTorch framework.
Results

This retrospective study included 220 patients, with their

baseline characteristics summarized in Table 1. The mean age was

63.5 ± 9.3 years in the training set and 64.35 ± 9.6 years in the

testing set, with no significant difference. The proportion of male

patients was similarly comparable at 47.4% and 48.5%, respectively.

The right upper and left upper lobes were the most frequently

affected lesion sites in both cohorts. Tumor staging showed no

significant difference (p = 0.249), with stage I being the most

common in both sets. The prevalence of EGFR mutations was

54.5% and 57.6% in the training and testing sets, respectively. In

addition, a detailed comparison between the EGFR mutant and

wild-type groups is provided in Supplementary Table S1.

After performing feature selection, we identified 19 key

radiomics features from the initial set of 1834 features.

Additionally, feature selection identified 7, 7, 9, 8, and 5 features

for ResNet34, ResNet152, DenseNet121, ShuffleNet, and ViT,

respectively. Furthermore, we presented five plots for each model

in the Supplementary Materials, including Lasso-selected feature

plots, feature weight plots, Spearman correlation analysis plots, and

hierarchical clustering heatmaps (see Supplementary Figure S1-

Figure S6). These visualizations offered a deeper understanding of

the relationships between the selected features, their weights, and

their correlations with each other.
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Figure 2 illustrates the comparative discriminative performance

of radiomics and deep learning models for EGFR mutation status

prediction. Radiomics features were extracted using PyRadiomics

and used to train RF, KNN, SVM, ID3, XGBoost, and LightGBM

classifiers. Among these classifiers, SVM achieved the highest

performance on the testing set, with an ROC-AUC of 0.792 (95%

CI: 0.682–0.895). For deep learning models, features were extracted

from ResNet34, ResNet152, DenseNet121, ShuffleNet, and ViT, and

were further classified using the same classifiers. The predictive

performance varied considerably among models, with ResNet34

achieving the lowest AUC (< 0.600), whereas ViT combined with an

SVM classifier attained the highest AUC of 0.870 (95% CI: 0.761–

0.945). Among all deep learning models, ViT demonstrated the best

performance, surpassing the optimal radiomics-based model. This

finding suggests that deep features extracted by ViT offer superior

discriminative ability in predicting EGFR mutation status.

This study employed early and late fusion strategies to integrate

radiomics and deep learning features. In late fusion, we applied

ensemble learning methods, including RF, SVM, and KNN, with

SVM demonstrating the highest performance (AUC = 0.892, 95%

CI: 0 .813–0.960) (see Supplementary Figure S7). To

comprehensively assess the predictive performance of different

models, the evaluation results of the Rad model, ViT model, early

fusion model, and late fusion model in both the training and testing

sets are provided in Supplementary Tables S2 and Supplementary
Frontiers in Oncology 05
Tables S3, with the corresponding visualizations shown in Figure 3

and Supplementary Figure S8. The reported metrics include AUC

with 95% CI, accuracy, sensitivity, specificity, precision, F1 score,

and P-values obtained from DeLong’s test. In the training set, the

early fusion model demonstrated the highest predictive

performance, achieving an AUC of 0.965 (95% CI: 0.934–0.989),

and was used as the reference. The late fusion model also exhibited

strong discriminative ability, with an AUC of 0.945 (95% CI: 0.908–

0.976). The ViT model achieved an AUC of 0.895 (95% CI: 0.845–

0.941), outperforming the Rad model (AUC = 0.877, 95% CI: 0.824–

0.926). Both models showed statistically significant differences

when compared with the early fusion model (P < 0.05, DeLong’s

test). In addition to AUC, the early fusion model achieved the

highest accuracy (0.909), sensitivity (0.916), and specificity (0.901).

Moreover, the optimal threshold for the early fusion model in the

training set was 0.464, determined using the maximum Youden

index, which yielded a sensitivity of 95.2% and a specificity of

88.7%. In the testing set, the early fusion model maintained the best

discriminative performance, with an AUC of 0.910 (95% CI: 0.822–

0.970), serving as the reference. The late fusion model followed with

an AUC of 0.892 (95% CI: 0.813–0.960), while the ViT model (AUC

= 0.870, 95% CI: 0.761–0.945) outperformed the Rad model (AUC

= 0.792, 95% CI: 0.682–0.895). Comparisons with the early fusion

model revealed statistically significant differences for both models

(P < 0.05, DeLong’s test). In addition, the optimal threshold for the

early fusion model in the testing set was 0.519, corresponding to a

sensitivity of 87.2% and specificity of 81.5%. The model also

achieved the highest accuracy (0.848) among all models in the

testing set, further highlighting its predictive superiority.

Figure 4 presents four key visualizations for assessing the

performance of the early fusion model. The ROC curve illustrates

the model’s discriminative ability, with the AUC reflecting its

overall classification performance. The confusion matrix visually

represents classification outcomes, detailing the distribution of true

positives, true negatives, false positives, and false negatives. To

assess the model’s calibration, a calibration curve is included,

demonstrating the agreement between predicted probabilities and

actual outcomes. Additionally, DCA is performed to evaluate the

model’s clinical utility by quantifying the net benefit across a range

of threshold probabilities. The clinical net benefit of the predictive

models emerged only when the threshold probability exceeded

approximately 0.2. Below this threshold, the net benefit was

comparable to the treat-all strategy, indicating limited additional

value for decision-making. Within the 0.2 to 0.8 range, the early

fusion model consistently demonstrated the highest net benefit,

outperforming both reference strategies and other models.

Collectively, these analyses offer a thorough assessment of the

early fusion model’s predictive performance, reliability, and

potential clinical applicability.
Discussion

EGFR mutation status is a critical determinant of personalized

treatment strategies in lung adenocarcinoma, directly affecting the
TABLE 1 Baseline characteristics of study sets.

Characteristics
Train set
(n = 154)

Test set
(n = 66)

P value

Age (years) 63.5 ± 9.3 64.35 ± 9.6 0.564

Sex

Male 73 32
0.999

Female 81 34

Lesion site

Right upper 51 19

0.720

Right middle 12 4

Right lower 31 12

Left upper 31 19

Left lower 29 12

Tumor stage

I 87 35

0.249
II 13 10

III 25 6

IV 29 15

EGFR

Yes 84 38
0.789

No 70 28
EGFR, epidermal growth factor receptor.
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selection of targeted therapies and prognostic evaluation (5, 22). In

our study, radiomics and deep learning approaches were integrated

to construct and compare multiple predictive models for EGFR

mutation status. Among the individual models, the ViT model

exhibited the highest predictive performance. Notably, the fusion

models, particularly the early fusion approach, achieved further

improvements in predictive accuracy. In the testing set, the early

fusion model achieved an AUC of 0.910, outperforming both the

radiomics-based and standalone deep learning models,

underscoring the advantages of multimodal feature integration for

EGFR mutation prediction. Furthermore, DCA validated the

model’s potential clinical utility, reinforcing its significance in

non-invasive biomarker assessment.

EGFR mutation is a crucial biomarker for guiding personalized

treatment in lung adenocarcinoma, and its accurate prediction plays

a vital role in treatment decision-making and prognosis assessment.

With the increasing application of radiomics in medicine, growing

evidence suggests that non-invasive CT-based radiomics models

outperform traditional imaging features in predictive accuracy and

clinical utility (23–25). Dong et al. reported that a radiomics-based

nomogram achieved an AUC of 0.798 (95% CI: 0.664–0.931) in the

validation cohort for EGFR mutation prediction (26). Similarly,

Dang et al. demonstrated that radiomics (AUC = 0.703)

outperformed clinical features (AUC = 0.284) in predicting EGFR
Frontiers in Oncology 06
mutation status (23). Furthermore, a meta-analysis of 28 radiomics-

based studies reported a pooled AUC of 0.800 (95% CI: 0.757–

0.845), indicating a moderate-to-high predictive accuracy and a

significant improvement over clinical features (24). Despite the

promising performance of radiomics models in EGFR mutation

prediction, the rapid advancement of deep learning has introduced

new breakthroughs, particularly by automating feature extraction

and capturing complex patterns, further enhancing predictive

accuracy. Yin et al. constructed a deep learning model using

ResNet, achieving an AUC of 0.84 (95% CI: 0.75–0.90) in EGFR

mutation prediction (27). Similarly, another study reported that a

CNN-based model (AUC = 0.7802) outperformed radiomics (AUC

= 0.7038) in predictive accuracy (6). Moreover, a joint study

conducted by researchers from the United Kingdom and India

demonstrated that a 3D U-Net-based deep learning model (AUC =

0.82, 95% CI: 0.81–0.83) exhibited superior performance compared

to radiomics (AUC = 0.72, 95% CI: 0.69–0.75) (28). Similar to most

previous studies, our study found that deep learning models

generally outperformed radiomics models in predicting EGFR

mutation status. Notably, among all deep learning architectures,

ViT combined with an SVM classifier achieved the highest AUC

(0.870, 95% CI: 0.761–0.945), demonstrating superior performance.

This model not only outperformed all other deep learning models

but also surpassed the best-performing radiomics model.
FIGURE 2

Predictive performance of EGFR. Receiver operating characteristic (ROC) curves of the radiomics model and deep learning models in the testing set.
SVM, Support Vector Machine; KNN, k-Nearest Neighbors; ID3, Iterative Dichotomiser 3; RF, Random Forest; XGBoost, eXtreme Gradient Boosting;
LightGBM, Light Gradient Boosting Machine.
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The superior performance of ViT combined with an SVM

classifier can be attributed to its ability to model global

dependencies through self-attention mechanisms, enabling it to

capture subtle and spatially distributed imaging patterns associated

with EGFR mutation (29). Compared to conventional CNNs, ViT’s

long-range feature extraction enhances its capability to identify

mutation-related characteristics beyond localized regions (29, 30).

Additionally, the integration of SVM as a classifier may have

contributed to improved generalization, reducing the risk of

overfitting. These factors collectively explain why ViT model with

SVM outperformed both other deep learning models and

radiomics-based approaches in our study.

Interestingly, we observed that ResNet34 performed worse than

the radiomics-based model, a finding that contrasts with the general

trend of deep learning models outperforming traditional feature-

based approaches. This result suggests that not all deep learning

architectures are equally effective for EGFR mutation prediction,

and several factors may explain ResNet34’s inferior performance.

One possible reason is its relatively shallow architecture, which may

limit its ability to extract high-level imaging features essential for

distinguishing EGFR mutation status (31). Furthermore, deep CNN

models typically require large-scale training data to fully optimize

their parameters, whereas our dataset may have been insufficient for
Frontiers in Oncology 07
ResNet34 to generalize effectively (32). In contrast, radiomics

models rely on predefined feature extraction methods that remain

relatively stable even with limited sample sizes, potentially

contributing to their superior performance in this setting.

Furthermore, consistent with previous studies (6, 14, 33), our

study found that fusion models outperformed single-feature models

in predicting EGFR mutation status, highlighting the

complementary nature of radiomics and deep learning-derived

features. The superior performance of fusion models can be

attributed to the complementary nature of radiomics and deep

learning-derived features, which capture distinct yet synergistic

aspects of tumor characteristics (33). This synergistic advantage

has also been demonstrated in recent studies that integrated deep

learning architectures with radiomics for improved prediction and

clinical applicability across different disease contexts (34, 35).

Radiomics extracts predefined morphological and textural

attributes, while deep learning autonomously learns high-level

representations, enabling a more comprehensive analysis. This

synergy enhances predictive performance, as evidenced by the

superior AUC achieved by the fusion models. In addition to

AUC, precision and F1-score provide further insights into model

performance. The high precision of the early fusion model suggests

a low false-positive rate, which is clinically meaningful in reducing
FIGURE 3

Radar chart of five diagnostic metrics (Accuracy, Sensitivity, Specificity, Precision, and F1 Score) for four models in the testing set.
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unnecessary EGFR testing. The superior F1-score also indicates a

favorable balance between sensitivity and precision, reflecting the

robustness of this model in classifying EGFR mutation status. These

results support the effectiveness of early fusion strategies, which

leverage the strengths of both handcrafted and deep-learned

features to improve classification accuracy.

Although our study has provided valuable insights, several

limitations should be acknowledged. First, as a retrospective study

with a limited sample size from a single center, our model lacks

external validation, which may restrict its generalizability for

clinical applications. Future prospective studies with larger, multi-

center cohorts are necessary to ensure the robustness of our findings

and enhance the model’s applicability across diverse clinical

settings. Second, due to the lack of significant differences in

baseline clinical variables between the EGFR mutant and wild-
Frontiers in Oncology 08
type groups in our cohort, we focused on imaging data to evaluate

the independent predictive value of radiomics and deep learning.

Nevertheless, incorporating additional clinical variables, such as

smoking history, may further enhance model performance and

should be considered in future studies. Third, this study was

conducted exclusively in an Asian population, whereas EGFR

mutation prevalence varies across different ethnic groups (36).

This limitation may affect the generalizability of our findings.

Further research with multi-ethnic cohorts is needed to evaluate

the applicability of radiomics-based models across diverse

populations. Finally, although our fusion models demonstrated

favorable predictive performance, the lack of inherent

interpretability in the SVM classifier limits their clinical

transparency. Future research should incorporate explainable AI

techniques or feature attribution methods to enhance model
FIGURE 4

Evaluation of the early fusion model. The top-left panel depicts the Receiver Operating Characteristic (ROC) curve of the early fusion model, while
the top-right panel presents the corresponding confusion matrix for the test cohort. The bottom-left panel illustrates the calibration curve of the
early fusion model, indicating good model calibration. Furthermore, the bottom-right panel displays the Decision Curve Analysis (DCA), revealing
that the early fusion model achieves the highest clinical net benefit.
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interpretability, which is critical for clinical decision-making. In

summary, despite these limitations, our study highlights the

potential of integrating radiomics and deep learning for EGFR

mutation prediction. Future research should aim to validate our

findings in multi-center cohorts, incorporate multimodal clinical

data, and extend applicability to diverse populations to enhance the

clinical utility of radiomics-based models.
Conclusion

In this study, we developed a predictive model for EGFR

mutation status in lung adenocarcinoma using CT-based

radiomics and deep learning. Compared to traditional radiomics

models and individual deep learning architectures, our fusion

model demonstrated significantly improved predictive

performance, highlighting the complementary strengths of

handcrafted and deep-learned features. This non-invasive

approach provides a valuable alternative to biopsy-based genetic

testing, mitigating the risks and limitations associated with invasive

procedures while facilitating the identification of EGFR mutation

status in certain lung adenocarcinoma patients. It offers a potential

tool for improving early diagnosis and treatment stratification.
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