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Introduction: Osteosarcoma (OS) is the most common bone tumor,

characterized by a high incidence, rapid progression, and frequent metastases.

The implementation of chemotherapy has made important progress, while the

necrosis rate is limited and the survival rates remain unsatisfactory, therefore

novel approaches are needed.

Methods: We used proteomic analysis to characterize the molecular landscape

of patients exhibiting different levels of chemotherapy-induced necrosis.

Results: Patients with low necrosis rate (≤70%) showed distinct expression

patterns, with significant upregulation of proteins involved in DNA replication,

metabolism, andmitochondrial pathway. The Runx1-related signaling pathwaywas

also identified as potentially involved in disease progression. Remarkably,

Mitochondrial Ribosomal Protein L4 (MRPL4) and Macrophage Erythroblast

Attacher, E3 Ubiquitin Ligase (MEMA) were identified as hub proteins in MEGENA

analysis and the public database. By integrating with immunohistochemistry, the

higher expression level was verified in samples of OS patients compared to those

of healthy people.

Discussion: Overall, our project improves the knowledge of the expression

pattern with different necrosis rates of OS samples, and the findings of MRPL4

andMAEA indicate the potential role in chemoresistance and provide new targets

for the therapeutic strategy for OS patients with a low necrosis rate.
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1 Introduction

Osteosarcoma (OS) is the most common bone tumor, with the

global annual incidence of approximately three to four per million

(1). It most commonly affects adolescents and young adults, with a

secondary incidence peak occurring in adults aged 65 years and

older (2). Typical symptoms include pain and swelling in the

affected bones, most frequently in the metaphyses of long bones

(3). Occasionally, patients present with severe pain strong enough

to awaken them from sleep or with signs associated with a

pathologic fracture (4). Meanwhile, approximately 15% to 20% of

patients present with clinically detectable metastases (5). The

aggressive nature of OS, characterized by its high metastatic

potential and rapid progression, poses significant clinical and

socioeconomic challenges.

A variety of chemotherapy regimens have been used to treat OS

since chemotherapy was introduced more than 40 years ago. A

combination of methotrexate, doxorubicin, cisplatin, ifosfamide,

and etoposide has demonstrated efficacy in patients (6). However,

the outcome for OS patients remains unsatisfactory, mainly

ascribed to the development of resistance to chemotherapy (7).

This dilemma highlights the need for a novel approach, in

combination with standard chemotherapy, to improve outcomes

and survival rates in patients.

Remarkably, in the initial trials assessing good- and poor-

responder groups, the > 90% 5-year event-free survival rate was

identified in the group with > 90% necrosis after neoadjuvant

chemotherapy (8). Comparatively, for patients with poor histologic

response, considered to be less than 90% necrosis, the 5-year survival

was only 50% to 60% (9). Therefore, chemotherapy-induced necrosis

positively correlates with survival in patients with high-grade

localized OS. This highlights the need to identify differences

between groups with varying necrosis rates, which could help

uncover potential mechanisms and inform combination treatments

for patients with poor chemotherapy response.

Recent advances in proteomic profiling have provided critical

insights into the molecular landscape of OS, leading to the

identification of candidate biomarkers associated with tumor

progression and response to chemotherapy. However, the number

of proteins consistently shown to be differentially expressed remains

limited, particularly when analyses are based on archived clinical

specimens (10). In efforts to identify biomarkers predictive of

chemotherapy response, two independent studies employed two-

dimensional difference gel electrophoresis (2D-DIGE) and liquid

chromatography-tandem mass spectrometry (LC-MS/MS) (11, 12).

While the specific protein profiles varied between studies, both

identified peroxiredoxin 2 (PRDX2) as being upregulated in

patients who exhibited poor responses to chemotherapy

compared to good responders, suggesting its potential role in

chemoresistance. Furthermore, the application of proteomics to

formalin-fixed, paraffin-embedded (FFPE) OS tissues remains

limited (13), significantly hindering the reproducibility and depth
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of protein identification. Consequently, there remains a substantial

unmet need for robust and clinically applicable biomarkers in

this setting.

H e r e , b y c omb i n i n g p r o t e om i c a n a l y s i s w i t h

immunohistochemistry, the main objective of our study was to

explore the difference in the molecular landscape between patients

with various necrosis outcomes, therefore providing a basis for

downstream treatment.
2 Materials and methods

2.1 Patient selection

The cohort included 29 OS patients who underwent chemotherapy

in the Senior Department of Orthopedics, FourthMedical Center of the

PLA General Hospital, from January 2020 to March 2024. Patients

were selected according to the following criteria: (i) historically

confirmed diagnosis of OS; (ii) receipt of at least three cycles of

chemotherapy before surgery; and (iii) availability of tumor tissue

fixed in formalin and complete medical records, including age, gender,

subtype, pathogenical site, and necrosis rate. The control group

comprised 10 patients with osteoarthritis, aged 50–70 years, who

underwent total knee replacement surgery and had histological

specimens, with no previous history of cancer. All experiments were

approved by the ethics committee of the Fourth Medical Center of the

PLA General Hospital, and written informed consent was obtained

from all patients.
2.2 Sample preparation

The FFPE (13) samples were soaked in xylene three times, in

anhydrous ethanol twice, and in 75% ethanol once, then dried at

room temperature (14). The tissue samples were scraped off with a

clean blade, lysed with 100 µl of lysis buffer (1% sodium

deoxycholate monohydrate [SDC], 100 mM Tris-HCL, 10 mM

tris [20 carboxyethyl] phosphine hydrochloride [TCEP], 40 mM

chloroacetamide [CAA], protease inhibitor), and subjected to

protein qunatification using a BCA protein assay kit.
2.3 Protein digestion

Ten millimolar DTT was added to the protein extract and

incubated at 56°C for 1 h. After cooling to room temperature, 55

mM IAA was added and incubated at room temperature in the dark

for 45 min. Based on the protein concentration measurement

results, an appropriate amount of protein was taken from each

sample for the filter-aided sample preparation (FASP) enzymatic

digestion method (15). For phosphorylation enrichment, 50 mg of

pept ides from each sample were enriched using the
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phosphorylation enrichment kit Fe-NTA (Thermo Fisher, 81

Wyman Street, Waltham, MA).
2.4 LC-MS/MS analysis

Solvent A for LC was prepared with 0.1% formic acid in water,

while solvent B was prepared with 80% acetonitrile and 0.1% formic

acid in water. Lyophilized peptides were dissolved in 0.1% formic

acid in water and then centrifuged for 15 min at 17,000 × g. The

resulting supernatant was injected into a C18 analytical column

(150 mm × 25 cm) using an EASY-nLC 1200 HPLC (Thermo, USA)

at a flow rate of 2 mL/min. Peptides were eluted from the analytical

column at a flow rate of 600 nL/min with a gradient to 7% B at 0

min, 12% B at 10 min, 30% B at 57 min, 45% B at 79 min, and 95% B

at 81 min, which was maintained until 90 min. The eluted peptide

was sprayed at a voltage of 2.2 kV and analyzed using a Thermo

Scientific Orbitrap Fusion mass spectrometer coupled with a

Nanospray Flex ion source. The ion transfer tube was set at 320°

C (16). The MS scan resolution was set to 120,000, the scanning

range was set to 350–1,500 m/z, and the maximum injection time
Frontiers in Oncology 03
was set to 50 ms. The MS/MS scan resolution was set to 30,000, with

30 scanning windows. The scanning range for MS/MS was set to

200–1,600 m/z, the collision energy was set to 33%, and the

maximum injection time was set to 54 ms.
2.5 Database searching for protein
identification

Raw DIA data were searched against a preferred database using

Spectronaut version 17 (Biognosys, No.1, West Huanhu No.2 Rd,

Pudong, Shanghai, P.R.China). The digestion enzyme was set to

Trypsin/P, with a maximum of two missed cleavages allowed.

Carbamidomethylation of cysteine (C) was specified as a fixed

modification, while methionine oxidation and protein N-terminal

acetylation were set as a variable modification. For the

phosphoproteome, phosphorylation of STY residues was set as a

variable modification. The FDR was controlled at 1% at both the

protein and peptide levels, and a minimum of one peptide per protein

was required for identification. All other parameters were set to default

(17). The human reference database was downloaded from UniProt.
FIGURE 1

Proteomic profiling according to the necrosis rate in osteosarcoma samples. (A) PCA of proteomics data from 29 samples showing distinct
separation by necrosis rate but not by gender, subtype, or tumor site. (B, C) K-means and hierarchical clustering highlighting differences between
the low necrosis rate group (LNRg) and combined medium-high necrosis rate group (MHNRg). (D) Volcano plot of differentially expressed proteins
between LNRg and MHNRg. Significantly upregulated proteins are highlighted in blue, and downregulated in red. Cut-off values are indicated by
dashed lines. The x-axis represents log2 fold change. y-axis indicates −log10 (p-value). (E) Representative upregulated proteins in MHNRg (N = 10).
(F) Pathway enrichment analysis of 200 LNRg-upregulated proteins using Metascape, WebGestalt, Kobas, and Gprofiler (N = 19). x-axis indicates
−log10 (p-value). Statistical significance: **p-value < 0.01; ***p-value < 0.001.
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FIGURE 2

Metabolism-related differentially expressed proteins (DEPs) and their functional characterization in LNRg. (A, B) Enrichment analysis of upregulated
DEPs in LNRg showing significant involvement in mitochondrial, glycolipid catabolic, organophosphate biosynthetic, and folate biosynthetic pathway.
(C) Protein–protein interaction (PPI) network of metabolism-related DEPs constructed using STRING and visualized in Cytoscape. (D) Validation of
MRPL4 expression in public datasets, showing higher expression in high-grade osteosarcoma compared to mesenchymal stem cells (MSCs) (left) and
in metastatic versus nonmetastatic samples at both diagnosis and follow-up (right). Statistical significance: **p-value < 0.01; ***p-value < 0.001.
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2.6 Principal component analysis and
clustering analysis

PCA was used to retain proteins in the dataset that contributed

most to its variance (18). K-means clustering of all the identified

proteins was performed using the R packages “factoextra” and

“cluster”. Hierarchical clustering of all the identified proteins was

performed using the R package with the complete method.
2.7 Construction and validation of the ANN
model, identification of differentially
expressed proteins, and bioinformatics
analyses

According to the information on chemotherapy-induced

necrosis rate, the samples were divided into a low necrosis rate

group with ≤ 70% as the low group, a medium necrosis rate group

with 70% < necrosis rate ≤ 90% as the medium group, and a high

necrosis rate group with > 90% as the high group. DEPs between
Frontiers in Oncology 05
groups were identified using R software with Student’s t-test, and a

p-value < 0.05 was considered statistically significant.

Functional enrichment analysis, including Metascape (https://

metascape.org/gp/index.html#/main/step1) (19), WebGesalt

(https://www.webgestalt.org) (20), g:Profiler (https://biit.cs.ut.ee/

gprofiler/gost), and KOBAS (http://bioinfo.org/kobas/genelist/)

(21), was performed for investigating DEPs. The threshold was

set at p < 0.05.

The relationships among the DEPs were investigated and

visualized with protein–protein interaction (PPI) networks via the

STRING web server (https://string-db.org/) (22) and Cytoscape

software (version 3.6.1).
2.8 MEGENA analysis

MEGENA analysis was performed using the R package

“MEGENA” (23). By constructing planar filtered networks

(PFNs), MEGENA can effectively identify coexpression networks.

Subsequently, multiscale hub analysis (MHA) was used to identify
FIGURE 3

Identification of Runx1-associated molecular features in the LNRg. (A) Boxplots showing comparative expression levels of Runx1-associated proteins
between the LNRg and the MHNRg. (B) Spearman correlation analysis illustrating relationships among proteins involved in active metabolism,
ossification, Runx1 signaling, and cell cycle pathways. (C) PPI network depicting upregulated proteins associated with Runx1. (D) mRNA expression levels
of HDAC1, SMARCB1, UBQLN2, BAZ1B, and ENY2 were lower in mesenchymal stem cells (MSCs) and prechemotherapy biopsies from high-grade
osteosarcoma patients. (E) mRNA expression levels of UBQLN2 and BAZ1B in osteosarcoma samples categorized by metastatic status: without
metastasis, with metastasis at diagnosis, and with metastasis after diagnosis. Statistical significance: *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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highly connected hubs within each network. A sunburst plot was

generated using the R package “sunburstR” to illustrate the

relationships between networks. Gene modules in MEGENA were

then intersected with DEPs of the low group and the high–medium

group to filter potential signaling pathways and corresponding

hub proteins.
2.9 Immunohistochemistry

Samples were fixed in 10% formalin and sectioned. Paraffin

sections were routinely dewaxed, rehydrated, and subjected to

antigen retrieval. The sections were then incubated in 3% hydrogen

peroxide solution at room temperature, protected from light, for 25

min, followed by washing on a decolorizing shaker three times for 5

min each. The tissue was then uniformly covered with 3% BSA for

blocking at room temperature for 30 min. The blocking solution was

gently removed, PBS was added to the sections, and they were

incubated with one of the following primary antibodies: anti-CBX5
Frontiers in Oncology 06
antibody (1:500; GB11609 - 100, Servicebio, No. 388, East Lake New

Technology Development Zone, Wuhan, Hubei, China), anti-MAEA

antibody (1:500; GB111748 - 100, Servicebio), anti-MRPL58 antibody

(1:500; GB114424 - 100, Servicebio), or anti-MRPL4 antibody (1:200;

bs-17778R, Bioss, Greater Boston Area, Massachusetts). The sections

were placed flat in a humidified chamber at 4 °C for overnight

incubation. After washing and gently drying, the tissue was covered

with the appropriate species-specific HRP-labeled secondary antibody

and incubated at room temperature for 50 min. Freshly prepared DAB

substrate solution was then applied to the marked area, and the nuclei

were conterstained before further microscopy analysis.
2.10 Statistical analysis

GraphPad Prism version 10.0 was used for statistical analyses.

Statistical differences between two groups were assessed using

Student’s t-tests, while differences among multiple groups were

analyzed by one-way analysis of variance (ANOVA) followed by
FIGURE 4

MEGENA network enrichment analysis of protein coexpression modules. A total of 224 protein coexpression modules were identified, with the top
modules (C1 - 2, C1 - 3, C1 - 4, C1 - 5, C1 - 26, and C1 - 27) highlighted in the sunburst plot. Module C1 - 2 (46.8%) includes 18 submodules and is
enriched in stress response, ribonucleoprotein biogenesis, and neutrophil degranulation pathways. Module C1 - 3 (5.6%) is associated with
extracellular matrix and ossification-related pathways. Module C1 - 4 (47.6%) contains branches C1 – 26 and C1 - 27, both enriched in RNA
metabolism, stress response, and cell cycle, with no overlapping proteins between them, indicating distinct molecular features. Each node is a
cluster identified by multiscale clustering, where the node size is proportional to the cluster size and the node color corresponding to the enriched
pathways of the involved proteins.
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Tukey’s significant difference test for post hoc analysis. Statistical

significance was defined as p < 0.05. Pearson correlation analysis

was performed to evaluate associations between two variables.
3 Results

3.1 Low necrosis rate group showing
specific proteomic landscape

Proteomics data from 29 samples were included. Interestingly,

principal component analysis (PCA) revealed that samples with

different necrosis rates had distinct proteomic landscapes, in

contrast to groupings by gender, subtype, or tumor site

(Figure 1A, Supplementary Figures S1A–C). K-means and

hierarchical clustering both demonstrated the difference in

necrosis rates between the low the high/medium group

(Figures 1B, C, Supplementary Figures S1D, E). Therefore, we
Frontiers in Oncology 07
integrated the medium (= 90%) and high (> 90%) groups as the

medium-high necrosis rate group (MHNRg).

The volcano plot showed that the highly expressed and lowly

expressed proteins could be clearly distinguished between low

necrosis rate group (LNRg) and MHNRg (Figure 1D). The up-

regulated proteins in MHNRg mainly included immune-related

proteins (IL17RE, PF4, C4BPB, CRP, GPD1, IGLV8 - 61, FCN3,

GPLD1), oxidant detoxification proteins (HBQ1, APOM, HBM),

adipocyte lipid metabolism (FABP4, PLIN1) and collagen

formation proteins (COL28A1, COL1A1) (Figure 1E). FAM180A,

as one of the candidate proteins for personalized prognosis and

tumor microenvironment phenotypes prediction in tumors (24),

was highlighted as well.

In addition, there are more significantly expressed proteins in

LNRg, indicating the occurrence of unique proteomic profiles in

patients with an unsatisfactory response to chemotherapy. To further

identify the specific characteristics, a total of 200 up-regulated

proteins in LNRg were recruited for downstream pathway
FIGURE 5

Identification of the potential functional cluster by MEGENA analysis. (A) Module C1 - 2, the largest module, contains 2,026 proteins and 110 hubs;
top hubs include PRKDC, SF3B1, SFPQ, and the unique hub YWHAE. The nodes with labels are the selected hubs of the cluster (left). The histogram
shows the intensity of selected hubs in LNRg vs. MHNRg (right). (B) Module C1 – 211 has all proteins significantly differentially expressed, with INTS12
and ERCC4 as key regulators. The nodes with labels are the selected hubs of the cluster (top). The histogram shows the intensity of selected hubs
(bottom). (C) Modules C1 – 209 and C1 – 335 share the hub gene MAEA. The nodes with labels are the hubs of the cluster (top). The histogram
shows the intensity of selected hubs (bottom and left). Pathway analysis by Metascape demonstrates significantly involved pathways. The x-axis
indicates −log10 (p-value). (D) Modules 199 and 200, enriched in MHNRg, feature hubs KNG1 and COL9A1 with higher expression. The nodes with
labels are the hubs of the cluster (top). The histogram shows the intensity of selected hubs. Statistical significance: *p-value < 0.05; **p-value < 0.01;
***p-value < 0.001.
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enrichment analysis. The analysis was performed using Metascape,

Webgestalt, Kobas, and Gprofiler, revealing that DNA replication,

metabolic, and mitochondrial-related pathways were enriched

(Figure 1F). In addition, differentially expressed proteins (DEPs) in

LNRg participate in classical signaling pathways such as Notch and

MAPK, which have been reported to play an integral role in OS onset,

progression, metastasis, and treatment response (25–27).
3.2 LNRg showing active metabolism

Through enrichment analysis (Figure 1F), a substantial portion

of up-regulated DEPs of LNRg was found to be related to

metabolism. As illustrated in Figure 2A, GM2A, NAGA, SGSH,
Frontiers in Oncology 08
NUDT3, DMXL2, GBA, and GSK3A participate in the glycolipid

catabolic process. The organophosphate biosynthetic process

contains INPP4A, NPP5K, PNPO, MVK, PPIP5K2, and PTDSS1,

while folate biosynthesis includes DHFR, GPHN, RFC1, and MTR.

Meanwhile, 15 DEPs were associated with mitochondrial functions

(Figure 2B), including mitochondrial translational elongation factor

(TSFM), mitochondrial ribosomal proteins (MRPL49, MRPL14,

MRPL53, MRPL58, MRPL4, MRPL48, and MRPS35), tRNA

processing proteins (EARS2, PUS1, and ELAC2), and respiratory

chain complex components (NDUFB5, NDUFB8, UQCC2,

and ATP5F1E).

To further elucidate the functional interactions of metabolism-

related DEPs, a comprehensive protein–protein interaction network

was constructed using the STRING database, followed by
FIGURE 6

Immunohistochemical verification of protein expression associated with osteosarcoma development. (A) Representative staining images of MRPL4
and MAEA in tissue samples from LNRg and MHNRg (× 200 magnification). (B) Quantification showing significantly higher expression of MRPL4 and
MAEA in LNRg compared to MHNRg. Data are shown as mean ± SD, N = 8. *p-value < 0.05; **p-value < 0.01.
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visualization and hub module identification with Cytoscape

(Figure 2C). Within this network, TSFM, MRPL4, and MRPL58

emerged as key hub proteins based on their central connectivity.

To further validate the potential hub genes, the public database

(GSE21257 and GSE33383) was incorporated. It was shown that

MRPL4 showed higher expression in samples of high-grade

osteosarcoma than in mesenchymal stem cells (MSCs) as a

normal control. Meanwhile, the expression of MRPL4 is higher in

samples with metastasis, no matter at diagnosis and later, than those

with no metastasis (Figure 2D). These results indicate the critical

involvement of active metabolism, particularly the role of MRPL4,

in osteosarcoma progression and metastasis, suggesting its potential

as a biomarker or therapeutic target.
Frontiers in Oncology 09
3.3 Runx1-related pathway activated in
LNRg

RUNX Family Transcription Factor 1 (Runx1)-related signaling

was enriched in samples from the LNRg group, which comprises Ring

Finger Protein 1 (RING1), SWI/SNF Related BAF Chromatin

Remodeling Complex Subunit B1 (SMARCB1), AT-Rich

Interaction Domain 1A (ARID1A), PBRM1, CBX8, ARID1B,

Histone Deacetylase 1 (HDAC1), SIN3A, NCOR2, KDM5B, ENY2

Transcription And Export Complex 2 Subunit (ENY2), SAP130,

H2BC1, EXOSC10, NOC2L, Bromodomain Adjacent To Zinc Finger

Domain 1B (BAZ1B), PPP1R10, TRAPPC12, ZFAND1,

MAP1LC3A, PPP4C, DHPS, EFNB1, PDPK1, BLOC1S3, PDS5A,
FIGURE 7

The regulatory mechanism diagram.
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MID1, Ubiquilin 2 (UBQLN2), and VRK1, all showing significantly

higher expression levels than in the MHNRg group (Figure 3A). As

an underexplored molecular pathway in OS, Runx1-related signaling

pathway was identified to exhibit the expression pattern positively

associated with active metabolic pathway and cell cycle-related

pathway, while correlated with ossification pathway negatively

(Figure 3B), indicating the potential role in disease progression.

To further identify the potential hub proteins in the Runx1-

related pathway, we performed STRING analysis to build the

protein–protein interactions. Seventeen DEPs were connected

based on active interaction sources (Figure 3C). The larger the

protein node, the more interactions it has. Notably, HDAC1

emerged as a hub protein, which was verified in the public

database GSE33383 by comparing the expression level of MSCs

with that of high-grade osteosarcoma prechemotherapy biopsy

(Figure 3D). Meanwhile, higher expression levels of SMARCB1,

UBQLN2, ENY2, and BAZ1B was observed in high-grade

osteosarcoma prechemotherapy biopsy samples than that of

MSCs. Furthermore, the comparative data between metastatic and

nonmetastatic samples confirmed the role of UBQLN2 and BAZ1B

in OS disease metastasis (Figure 3E).
3.4 Network enrichment analysis by
MEGENA

To obtain a comprehensive understanding of the regulatory

network architecture, the Multiscale Embedded Gene Co-expression

Network Analysis (MEGENA) method was employed to

systematically uncover key regulators (Figure 4). A total of 224

tightly interconnected protein coexpression network modules were

identified. Among these, the topmodules—C1-2, C1 - 3, C1 - 4, C1 - 5,

C1 - 26, and C1 - 27—each accounted for more than 10% of the

network and were labeled and color-coded in the sunburst plot for

visual clarity.

C1-2, accounting for 46.8%, is composed of 18 modules, with

C1 – 5 identified as its dominant submodule. Pathway enrichment

analysis revealed that proteins within C1 – 2 were primarily

involved in cellular responses to stress, ribonucleoprotein

complex biogenesis, and neutrophil degranulation.

C1-3, the smallest of the major clusters (5.6%), was made up of

two modules. Consistent with cellular component analysis

(Supplementary Figure S2A), the majority of proteins within C1 – 3

were associated with the extracellular matrix. Furthermore, pathways

related to ossification and skeletal system development were

enriched in C1 - 3.

C1-4, accounting for 47.6% of the network, represented the largest

overall component and included two notable branches, C1 – 26 and

C1 - 27. These branches were similarly enriched for pathways related

to the metabolism of RNA, cell response to stress, and the cell cycle.

Interestingly, no overlapping proteins were found between C1 – 26

and C1 - 27 (Supplementary Figure S2B), indicating distinct molecular

specificities despite their functional similarities.
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3.5 Potential hub proteins involved in
regulating pathogenesis

Module C1 - 2, the largest identified module, comprised 2,026

proteins (Supplementary Figure S3A). Within this module, 110 hub

proteins were identified. Notably, 68.2% of the tested proteins give

rise to observable altered phenotypes when perturbed by using the

mutant phenotype data from the Mouse Genome Informatics

database (MGI) (28) (Supplementary Table S1). Among them, the

top three proteins ranked by the number of regulated targets were

Protein Kinase, DNA-Activated, Catalytic Subunit (PRKDC) (38),

Splicing Factor 3b Subunit 1 (SF3B1) (36), and Splicing Factor

Proline And Glutamine Rich (SFPQ) (34) (Figure 5A). In addition,

hub gene Tryptophan 5-Monooxygenase Activation Protein

Epsilon (YWHAE) was uniquely present in module 2 (Figure 5A).

To further clarify the biomolecular alterations associated with

osteosarcoma malignancy, we focused on the gene coexpression

network module enriched in DEPs. Modules selected for

downstream analysis were required to meet the following criteria: (1)

a total gene count exceeding 20, (2) at least 85% of the proteins in the

module classified as DEPs (defined by fold change > 1.2 or < 0.83), and

(3) hub proteins exhibiting fold changes > 1.5, between LNRg and

MHNRg, a threshold indicative of strong regulatory potential. In total,

21 modules met these criteria (Supplementary Figures S3B, C).

Among these, module C1 – 211 is the only module in which all

constituent proteins were significantly differentially expressed between

the two groups. Integrator Complex Subunit 12 (INTS12) and ERCC

Excision Repair 4, Endonuclease Catalytic Subunit (ERCC4) were

analyzed as the potential regulatory proteins in this module

(Figure 5B). Meanwhile, modules C1 – 209 and C1 - 335, both

derived from C1 - 4 (Supplementary Figure S3D), shared the same

hub gene, MAEA, which clearly distinguished LNRg from MHNRg

(Figure 5C). The enriched pathway of these modules comprised

different categories, including mitochondrial translation elongation,

positive regulation of innate immune response, and organophosphate

biosynthetic process, suggesting a broad regulatory role for MAEA.

In addition, modules C1 – 199 and C1 – 200 were the only

modules characterized by the accumulation of DEPs exclusively in

MHNRg. The hub genes in these modules, KNG1 and COL9A1,

exhibited significantly higher expression in MHNRg (Figure 5D),

indicating their potential utility as diagnostic biomarkers predictive

of a favorable response to chemotherapy.
3.6 Immunohistochemistry verification of
protein changes typical for OS
development

To elucidate the potential significance of the selected proteins,

immunohistochemical staining was performed for CBX5, MAEA,

MRPL4, and MRPL58 on tissue samples from seven high/medium-

OS patients, seven low-OS patients, and a control group of seven

healthy individuals. Representative staining patterns of MRPL4 and
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MAEA are shown in Figure 6A. Notably, the expression levels of

MRPL4 and MAEA were significantly higher in the LNRg than in

the MHNRg (Figure 6B). Additionally, CBX5 and MRPL58

exhibited higher, though not statistically significant, expression in

the LNRg group compared to the MHNRg group (Supplementary

Figure S4A). These findings suggest that these proteins may serve as

potential biomarkers for stratifying necrosis levels and

distinguishing disease states in osteosarcoma.
3.7 Regulatory network

The coordinated action of multiple proteins and pathways

affects the transformation of healthy cells into tumor cells. Runx1

is an important transcription factor that regulates the fate of

osteosarcoma stem cells, maintaining the undifferentiated state of

osteosarcoma stem cells by collaborating with the Notch pathway.

Notch-related signals activate HES1 through DLL1-Notch1/2-

mediated ligand-receptor binding between tumor cells, further

regulating the expression of differentiation-inhibitory genes. The

interplay between these pathways enhances the tumor’s

invasiveness and treatment resistance.

In the context of metabolic reprogramming, the PI3K/AKT/

mTOR pathway promotes fatty acid metabolism and energy

reprogramming by activating FABP4 (fatty acid binding protein)

and PLIN1 (lipid droplet protein). The upstream MAPK pathway

activates downstream ERK through KRAS and BRAF, and

collaborates with the PI3K/AKT pathway to enhance the

proliferation of tumor cells. Together, these pathways enhance the

adaptability of osteosarcoma cells to high metabolic demands.

Wnt/b-catenin signaling activates CTNNB1 (b-catenin)
through WNT1, promoting the expression of collagen (such as

COL1A1 and COL28A1), thereby increasing the adhesion and

matrix invasion ability of tumor cells. The TGF-b/SMAD

pathway, initiated by TGFB1, activates SMAD3, promoting ECM

generation and remodeling, which facilitates tumor metastasis.

These two pathways synergistically remodel the extracellular

matrix, enabling osteosarcoma cells to breach physical barriers

and invade surrounding tissues.

NF-kB and immune microenvironment-related pathways are

crucial in immune escape and inflammation regulation. The NF-kB
signaling pathway activates proinflammatory signals (such as TNF)

through IL17RE and CRP, thereby promoting tumor growth in an

inflammatory environment.

C4BPB and FCN3 regulate the complement system, inhibit

complement-mediated cytotoxicity, and contribute to immune

escape. This mechanism makes osteosarcoma more invasive in an

inflammatory-rich and immunosuppressive microenvironment.

The mitochondrial metabolic pathway regulates mitochondrial

ribosomal protein synthesis through MRPL4, MRPL58, and TSFM,

enhances mitochondrial oxidative phosphorylation capacity, and

provides continuous energy for tumor cells. APOM and SOD2 are

involved in antioxidant defense, helping tumor cells survive in highly

oxidative conditions. ATP5F1E facilitates ATP production and supports

tumor proliferation under energy-deficient conditions (Figure 7).
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4 Discussion

OS is a highly malignant primary bone tumor characterized by

rapid progression and a high risk ofmetastasis, posing a serious threat to

patients’ survival rates and quality of life (29). Although current

multimodal treatment options, including surgery and neoadjuvant

chemotherapy, provide certain survival advantages for OS patients,

the treatment outcomes remain unsatisfactory due to chemotherapy

resistance (30). Studies have found that the tumor necrosis rate caused

by chemotherapy is closely related to the patient’s survival rate,

suggesting that the molecular mechanisms of tumor response to

chemotherapy may play a key role in the progression and treatment

of OS (31). Therefore, identifying the potential molecular characteristics

of different chemotherapy response groups and exploring their

feasibility as therapeutic targets is of great significance for improving

the prognosis of OS patients and formulating personalized treatment

strategies. The proteomic profiles analyzed in this study were obtained

from resected tumor tissue collected after patients had undergone three

to four cycles of neoadjuvant chemotherapy, which included

methotrexate, ifosfamide, and doxorubicin. Therefore, these profiles

represent the tumor state at an intermediate point during chemotherapy

and reflect the necrosis response induced by the treatment. While the

ideal scenario for assessing inherent pretreatment differences between

LNRg and MHNRg patients would involve diagnostic biopsy samples

prior to any chemotherapy, the practical constraints of this retrospective

study—including the scarcity, limited quantity, and variable

preservation quality of such pretreatment biopsies suitable for

proteomics—precluded their use. Our primary objective, however,

was explicitly focused on identifying proteomic characteristics

associated with the achieved level of chemotherapy-induced tumor

necrosis, a critical prognostic factor. Analyzing the proteome within the

postchemotherapy surgical specimens, in which the necrosis rate was

histologically quantified, was therefore essential and directly aligned

with this specific research aim. The proteomic differences we report

herein are thus interpreted within the context of the tumor’s response to

chemotherapy at the time of resection.

This study demonstrated proteomic differences between LNRg

and MHNRg using PCA and clustering methods (K-means and

hierarchical clustering). These findings support the critical role of

the chemotherapy-induced tumor necrosis rate in patient prognosis

and suggest that the necrosis rate, as an important efficacy indicator,

may provide a basis for improving treatment strategies. The

proteins upregulated in MHNRg are concentrated in functional

areas such as immune response, oxidative detoxification, lipid

metabolism, and collagen formation, suggesting that this group

may mobilize immune and metabolic mechanisms more strongly

during chemotherapy (32). However, significantly more proteins

and higher levels were expressed in LNRg, reflecting possible unique

metabolic stress and protein regulation patterns in patients with a

poor response to chemotherapy. Functional analysis of upregulated

proteins in LNRg revealed enrichment of DNA replication,

metabolism, and mitochondria-related pathways. In particular,

metabolic reprogramming plays a key role in tumor cell survival

and chemotherapy resistance (33). In addition, the involvement of

the classic Notch and MAPK signaling pathways further supports
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the central role of these proteins in the pathogenesis and treatment

response of OS (25). FAM180A is identified as a potential marker

for tumor microenvironment phenotype prediction and is closely

linked to personalized prognosis (34). Combined with the discovery

of immune-related proteins (such as IL17RE and PF4) and

metabolism-related proteins, these molecules may provide new

directions for improving the precise diagnosis and treatment of

OS (35). In MHNRg, upregulated immune-related proteins may

indicate a more active immune component in the tumor

microenvironment of these patients. The enhancement of

immune response may have a double-edged sword effect on

chemotherapy resistance, which may promote tumor cell

clearance or enhance tumor survival through immune evasion (36).

The metabolic processes of LNRg exhibit characteristic findings.

Enrichment analysis showed that metabolism-related DEPs in

LNRg are involved in a variety of important biological processes.

Glycolipid catabolism involving proteins such as GM2A, NAGA,

and SGSH is more active in patients with a low necrosis rate, which

may be closely related to the energy metabolism needs of tumor

cells (37). The biosynthesis of organophosphates mediated by

proteins such as INPP4A and PNPO suggests that the active

phospholipid metabolism and membrane dynamics regulation in

LNRg samples are enriched through folate metabolism mediated by

proteins such as DHFR, indicating a possible increase in the

demand for nucleic acid synthesis, consistent with the

characteristics of rapidly proliferating tumor cells (38). These

metabolic activities indicate that there is specific metabolic

adaptability in LNRg samples, thereby supporting tumor survival

and chemotherapy resistance. The 15 mitochondria-related DEPs

highlight their central role in tumor metabolism, regulating

molecular mechanisms such as mitochondrial translation

elongation factor (TSFM) and mitochondrial ribosomal proteins

(MRPL series), enhancing the energy production capacity of

mitochondria and supporting the proliferation needs of tumor

cells in a low necrosis rate environment. Enhanced mitochondrial

function is often associated with tumor cells’ tolerance to oxidative

stress, increased metabolic flexibility, and chemotherapy resistance

(39). TSFM and MRPL series proteins, as the core of mitochondrial

protein synthesis and metabolic regulation, directly affect the

functional integrity of mitochondria and tumor metabolic needs.

The hub status of MRPL4 and MRPL58 indicates that they may

have the ability to regulate the expression and function of other

metabolism-related proteins in the network (40). Data integration

analysis further verified the potential importance of MRPL4. The

high expression of MRPL4 in OS samples, especially in metastatic

samples, suggests that it may promote tumor invasiveness by

enhancing mitochondrial metabolic activity and energy supply (41).

The Runx1 signaling pathway plays a role in the development of

OS by supporting active metabolism, regulating the cell cycle, and

inhibiting ossification differentiation (42). It is positively correlated

with metabolic pathways and may help tumors adapt to

microenvironmental stress by regulating metabolic needs. By

regulating cell cycle-related proteins and promoting rapid cell

proliferation, it provides a material basis for the aggressive

characteristics of OS (43). The negative correlation with the
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ossification pathway indicates that Runx1 signaling may hinder

the differentiation of tumor cells, allowing them to maintain a

malignant state of high proliferation and low differentiation (44).

This model reveals the important role of Runx1 in tumor

proliferation and metabolic adaptation and suggests that it may

inhibit ossification differentiation, thus maintaining the

proliferative and undifferentiated state of tumor cells. It highlights

the versatility of Runx1 as a potential tumor regulator, engaging in

processes that directly influence OS aggressiveness and therapeutic

response. The expression of multiple key proteins involved in the

Runx1-related pathway (RING1, SMARCB1, ARID1A, etc.) was

significantly higher in LNRg samples than in MHNRg. As the

central node of the PPI network, HDAC1 has a synergistic effect

with SMARCB1, UBQLN2, ENY2, and BAZ1B. As part of the

Runx1 pathway, these proteins not only play roles in signaling and

chromatin remodeling but may also regulate metabolism and

antiapoptotic mechanisms, enhancing the survival ability of OS

cells (45). HDAC1, UBQLN2, and BAZ1B, among others, are highly

expressed in OS samples and are significantly associated with

metastasis, suggesting that they may serve as potential biomarkers

for diagnosis and prognosis. The pivotal role of HDAC1 makes it an

attractive therapeutic target, and HDAC inhibitors may inhibit

tumor growth and metastasis by interfering with chromatin

remodeling and gene expression regulation (46).

MEGENA analysis provides a comprehensive picture of the OS

regulatory network, revealing multiple key modules and their

potential connections to disease mechanisms. The distribution of

top modules and their enriched pathways provides important clues

for understanding the pathological mechanisms of OS. The C1 – 2

module is distinguished by its regulation of cellular stress responses

and ribonucleoprotein complex biosynthesis, which are closely

related to the ability of tumor cells to adapt and maintain survival

in harsh microenvironments. The enrichment of neutrophil

degranulation implicates the role of inflammation in tumor

development and may influence immune regulation of the tumor

microenvironment, which further highlights the potential critical

role of the C1 – 2 module in OS progression (47). In contrast,

although the C1 – 3 module is the smallest, its functional

characteristics are highly targeted. The proteins of this module

are mainly concentrated in the extracellular matrix and participate

in pathways related to ossification and skeletal system development,

which are directly related to the tissue origin and aggressive

characteristics of OS. These results suggest that the C1 – 3

module may play a more defined pathological role in OS,

specifically related to the interaction between tumor cells and

their stroma. The C1 – 4 module accounts for the largest

proportion in the network, indicating its central position in the

OS regulatory network. Its enriched pathways focus on RNA

metabolism, cellular stress response, and cell cycle, which are

basic functions required for the rapid proliferation of tumor cells

(48). However, the lack of common proteins between the two

branches, C1 – 26 and C1 - 27, shows functional specificity

within the module, which reflects differences in molecular

mechanisms at different stages or states in tumor progression.

This functional specificity not only demonstrates the complexity
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of the module but also provides potential specific targets for

subsequent studies aiming at therapeutic intervention targeting

different subtypes or stages of development.

Regulatory hub proteins in module 2 revealed the broad roles of

key molecules in OS pathogenesis, with PRKDC, SF3B1, and SFPQ

ranking at the top in terms of the number of regulatory targets,

indicating their central position in the regulatory network. PRKDC is

closely related to DNA damage repair, and its high regulation may

reflect the adaptive strategy of OS cells in response to genome

instability, while the functions of SF3B1 and SFPQ are related to

RNA splicing and gene expression regulation, further indicating that

these genes play a key role in the rapid proliferation and metastasis of

OS (49). INTS12 and ERCC4 in module 211 are cosignificantly

expressed proteins in both LNRg and MHNRg, highlighting their

prevalence and key role in different necrosis rate groups, especially

their association with DNA damage response, which may have

significant implications for malignant OS (50, 51).

The role of MAEA in chemotherapy resistance is evidently

context-dependent and multifaceted. As a core component of

the GID/CTLH E3 ubiquitin ligase complex, MAEA promotes cell

proliferation by targeting critical transcription factors such as HBP1

for ubiquitination and subsequent proteasomal degradation,

underscoring its key regulatory functions in tumorigenesis (52).

Our bioinformatic analyses, coupled with immunohistochemical

validation, further establish the clinical relevance of MAEA, causing

poor response to chemotherapy, as demonstrated by its significantly

elevated expression in LNRg tissue samples. Consistent with these

findings, MAEA-mediated ubiquitination and degradation of

PHD3 has been shown to facilitate glioblastoma progression and

confer resistance to temozolomide treatment, highlighting its role in

chemoresistance mechanisms in this context (53). Intriguingly, in

gastrointestinal cancers, MAEA overexpression paradoxically

enhances chemosensitivity via promoting PARP1 ubiquitination

and degradation, suggesting that MAEA ’s influence on

chemotherapy response is tumor type- and context-specific (54).

Mechanistically, our study identifies MAEA as a hub gene

within modules 209 and 335, implicating its involvement in

regulating mitochondrial translation elongation and innate

immune responses. These processes collectively support metabolic

reprogramming and create an immunosuppressive tumor

microenvironment that favors survival during cytotoxic stress (55,

56). Moreover, MAEA has been implicated in promoting

autophagy, a process known to contribute to tumor cell survival

and drug tolerance (57). These findings suggest that MAEA

facilitates a multifactorial adaptation of tumor cells to

chemotherapy through metabolic flexibility and immune evasion.

Furthermore, the potential crosstalk between MAEA and

RUNX family transcription factors is highlighted. RUNX2 is

recognized for its role in bone sarcomas, where it regulates bone

turnover and influences response to targeted therapies (58). Given

RUNX2’s involvement in transcriptional networks associated with

metabolism and tumor progression, it may serve as an upstream

regulator of MAEA or its related pathways, thereby modulating

chemotherapy resistance in tumors such as osteosarcoma. This
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potential regulatory axis warrants further investigation to clarify the

molecular mechanisms through which RUNX-related pathways

influence MAEA-mediated metabolic and immune responses in

the context of poor response to chemotherapy.

Considering the low incidence of osteosarcoma, we

acknowledge that the limited sample size remains a key limitation

of this study. The current dataset reflects a 5-year accumulation of

cases in our center, and increasing the cohort size would improve

the robustness and statistical power of the analysis, which we intend

to pursue in future research. Although the expression differences of

CBX5 and MRPL58 were not statistically significant, their

importance in the network and consistent protein expression

trends highlight the need to further investigate their functions.

These findings confirm the value of regulatory networks in guiding

disease stratification and mechanistic research, while also providing

new perspectives for the future development of therapeutic

strategies targeting specific molecular mechanisms.

This study systematically analyzed the proteomic characteristics

associated with differences in necrosis rates among OS patients and

revealed key molecular mechanisms underlying OS progression and

metastasis. Differences in metabolic characteristics among necrosis

rate groups were found to involve not only mitochondrial

function and metabolic activity but also specific modules related

to cell cycle regulation and immune response. In addition, a series of

potential hub proteins and regulatory modules were identified

through MEGENA network and protein–protein interaction

analysis, and the important roles of key proteins such as MRPL4

and MAEA in distinguishing necrosis rates were confirmed by

immunohistochemistry. These findings provide new insights into

the relationship between the metabolic characteristics of OS and its

pathological processes, offering an important basis for developing

personalized diagnostic markers and treatment strategies.

Furthermore, they reveal the complex network of OS metabolism

and molecular regulation, laying a foundation for precision

medicine research.
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SUPPLEMENTARY FIGURE 1

Proteomic analysis of the OS clinical specimens. (A-C) PCA analysis display

proteomic heterogeneity between sex, subtype and pathogenic site; (D) Data
normalization and estimation for clustering; (E) Visualization of cluster profile plot.

SUPPLEMENTARY FIGURE 2

Analysis for top module by MEGENA analysis. (A) Cellular component analysis by

Metascape forC1_3; (B)Venndiagramanalysis of the proteins inC1_26 andC1_27.

SUPPLEMENTARY FIGURE 3

Selection criteria of the module for biomarker. (A) Ranking list of quantities of
proteins in top 11 modules; (B) The selection criteria of module for biomarker

development; (C) Dot plot showing 21 modules in (B); (D) Sunburst plot
showing the relationship.

SUPPLEMENTARY FIGURE 4

IHC staining of MRPL58 and CBX5 in tissue of human samples. (A) IHC scores for

MRPL58 and CBX5 in MHNRg and LNRg. Data are shown as mean ± SD, n = 8.
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