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Evaluating treatment strategies
and machine learning based
treatment recommendation
system for elderly patients
with high grade gliomas
Feiling Xiang1,2, Mengyuan Fu1,2 and Xuelian Yang1,2*

1Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Nursing, The First Affiliated Hospital of Chongqing Medical
University, Chongqing, China
Background: When selecting treatment strategies, elderly high-grade glioma

(eHGG) patients face challenges due to aging, comorbidities, surgical

complications, and limited tolerance for intensive treatments. This study aims

to evaluate the benefit of treatment strategies and develop a treatment

recommendation system for eHGG patients.

Methods: By propensity score matching and survival analysis, we compared the

prognosis of treatment strategies, including surgery versus none, adjuvant

therapies versus none, and gross total resection (GTR) versus subtotal

resection (STR), among patients aged 65 and older with high-grade gliomas. A

machine learning model, random survival forest, was developed to provide

predictions on prognosis. The machine learning model was then used to

create a personalized treatment recommendation system. An independent

validation cohort was obtained from the First Affiliated Hospital of Chongqing

Medical University to validate the machine learning model and the treatment

recommendation system. The time-dependent AUC (tdAUC), C-index, and

integrated Brier score (IBS) in the testing sets were obtained.

Results: Compared to the surgery-alone group, patients who received surgery

plus adjuvant therapy had significantly better overall survival. Surgery plus

adjuvant therapy improved survival compared to adjuvant therapy alone.

Additionally, GTR combined with adjuvant therapy showed superior overall

survival compared to STR with adjuvant therapy. Subgroup analysis indicated

that patients with GBM, tumor size >3 cm, localized stage, white race, Grade IV

tumors, and those aged 65–72 had better survival outcomes with GTR and

adjuvant therapy. The C-index, tdAUC, and 1-IBS values for the external testing

cohort were 0.813, 0.876, and 0.893. We successfully developed a web-based

treatment recommendation system at https://gliomas.shinyapps.io/EHGG/. This
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system allows users to input patient-specific features and obtain individualized

treatment recommendations and detailed survival probabilities.

Conclusion: Aggressive treatment, including GTR and adjuvant therapy, can

enhance survival outcomes in elderly patients with high-grade gliomas. The

machine learning-based personalized treatment recommendation system

presents a promising reference tool for treatment decisions.
KEYWORDS

surgery, gross total resection, subtotal resection, adjuvant therapy, treatment
recommendation
1 Introduction

Gliomas are the most common malignant brain tumors in

adults, with an annual incidence of 5.5 per 100,000 individuals

(1). High-grade gliomas (grades III and IV, HGG) are the most

prevalent and aggressive form of primary brain tumors in adults.

HGG is associated with significantly higher mortality rates. For

example, the median overall survival of grade IV HGG is only about

15 months (2). The treatment choices for HGG include surgical

resection, radiotherapy, chemotherapy, targeted therapy, and

immunotherapy (3). Unlike younger patients, elderly HGG

(eHGG) patients face challenges to these available treatment

choices because of aging, multiple comorbidities, decreased

tolerance to chemotherapy, and an increased risk for radiation-

induced neurotoxicity (4). Additionally, the risks of surgical

complications are higher in those aged 75 and older (5). Thus,

whether eHGG patients could benefit from surgical resection,

especially GTR, along with adjuvant therapies, is controversial.

Developing precise survival prediction tools is essential to

provide personalized treatment strategies for eHGG patients.

However, many current studies on HGG (6–8) lack machine

learning-based models that are both highly accurate and directly

applicable in clinical practice. Besides, existing prognostic models

usually focus on survival prediction without offering user-friendly

systems for determining appropriate treatment strategies. Bridging

this gap is vital for enhancing treatment planning and improving

outcomes for eHGG patients.

The first aim of this study is to evaluate the impact of different

treatment strategies, including surgery and adjuvant therapy, and

compare the benefits of GTR versus STR. This analysis aims to

determine whether these treatment approaches significantly benefit

eHGG patients. The second aim of this study is to develop a

personalized treatment recommendation system using a machine

learning-based survival model. By focusing on these aims, our study

could contribute to providing personalized treatment strategies.
02
2 Materials and methods

2.1 Data resources and patient selection

This study utilized data extracted from the Surveillance,

Epidemiology, and End Results (SEER) database. Patient cases

diagnosed between January 1, 2000, and December 31, 2021, were

obtained from the SEER database using SEER*Stat software. The

external and independent testing data used for validation were

collected from the First Affiliated Hospital of Chongqing Medical

University. In this external hospital, only patients diagnosed with

glioma between July 1, 2022, and December 31, 2024, were selected

for further analysis. Patients were censored at the date of last known

follow-up or the end of the study period if alive, whichever came

first. This approach was applied consistently across both cohorts to

define overall survival time.

The inclusion criteria were defined as follows: (1) the primary

tumor site was the brain; (2) patients were aged 65 years or older;

(3) the tumor type was glioma, and the tumor grade was limited to

Grade III or IV; (4) the case was the first and primary malignancy;

(5) clinical data were available, including marital status, race,

histological type, stage, tumor size, surgical intervention,

chemotherapy, radiation therapy, overall survival (OS) status, and

OS duration; and (6) the diagnosis was confirmed through positive

histological findings. These inclusion criteria were consistently

applied to the SEER and external testing cohorts. In the

SEER and external cohorts, samples with missing data were

directly excluded.
2.2 Selection of variables

The study variables extracted from the SEER database included

demographic variables such as age (65–72 or ≥73), gender (male or

female), race (white or minority), and marital status (married or
frontiersin.org
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unmarried); clinicopathologic variables including histological type

(GBM or non-GBM), tumor size (≤3 cm or >3 cm), stage (localized

or advanced), and grade (III or IV); treatment variables such as

surgery type (none, STR, or GTR), chemotherapy (no or yes), and

radiation therapy (no or yes); and survival data including survival

status (alive or dead) and survival duration in months.

According to SEER coding definitions, “None” was defined as no

surgery of the primary site or autopsy only. “STR” (subtotal resection)

included local tumor destruction, excision of tumor/lesion/mass, or

partial resection of the tumor. “GTR” (gross total resection) refers to

the complete macroscopic removal of the tumor. These categorizations

were based on operative or pathology reports recorded in SEER and

may be subject to inter-institutional variability. In the external testing

data from The First Affiliated Hospital of Chongqing Medical

University, the same definitions for STR and GTR were applied to

ensure consistency. The extent of resection was recorded in the surgical

record and reported by the operating surgeons.
2.3 Propensity score matching analysis

Based on logistic regression, PSM was performed using the

nearest-neighbor matching method with a caliper of 0.2 on the

propensity scale. PSM was applied to balance various baseline

variables between patient groups (9). For example, when

matching patients from the surgery alone and surgery with

adjuvant therapy groups to investigate the survival effects of

adjuvant therapy, the variables for matching included age, gender,

marital status, race, histological type, stage, grade, and tumor size.

In the PSM analysis, the 1:1 matching ratio was utilized for these

groups. Then, Kaplan-Meier analysis was used to assess OS

differences between the groups with and without adjuvant

therapy. Univariate Cox regression analysis was also performed to

explore the effects of adjuvant therapy within different subgroups of

the matched data. This matching process was also extended to other

analyses, including comparisons between (1) adjuvant therapy

alone vs. surgery combined with adjuvant therapy and (2) GTR

with adjuvant therapy vs. STR with adjuvant therapy.
2.4 Personalized treatment selection
system

This study developed a machine learning-based personalized

treatment selection system for older patients with high-grade

gliomas. (1) Patients were randomly divided into training and

internal testing sets in an 8:2 ratio. A survival prediction model

was constructed using the survival random forest algorithm based

on clinical variables and treatment-related variables. The training

process employed 5-fold cross-validation in the training set. The

model was trained using different parameters of ntree values (100,

200, 500, 1000) and mtry values (1, 2, 4, 6). The parameter

combination yielding the highest time-dependent area under the

curve (tdAUC) during cross-validation was selected for
Frontiers in Oncology 03
constructing the final model. (2) The model’s performance was

validated on the internal and external testing sets using the C-index,

tdAUC, and integrated Brier score (IBS). The validation process was

repeated 20 times to enhance robustness, with 50% of the testing

sets randomly selected as validation subsets in each iteration. (3) To

assess the model’s treatment recommendation ability, the survival

outcomes of patients under all 12 treatment options in the internal

and external testing sets were predicted using the trained model.

The treatment associated with the highest predicted survival is the

model’s recommendation. Patients were categorized into consistent

(Cons) and inconsistent (Inco) groups based on whether their

actual treatment aligned with the model’s recommendation. The

survival curves of the Cons and Inco groups were compared, and

the corresponding survival curves were plotted.

Then, variable importance was calculated using the

permutation importance method with tdAUC as the evaluation

metric. The process involved first computing the original tdAUC

and then iteratively permuting each variable in the testing data to

disrupt its relationship with the outcome. The decrease in mean

tdAUC following permutation was used to quantify the importance

of the variable. The importance scores were normalized using Min-

Max scaling to provide relative importance values. To enable direct

comparison with published nomograms for survival prediction,

typically based on classical Cox models, we selected three

representative nomograms from the literature. These three

nomogram models were named as nomo1 (10), nomo2 (11), and

nomo3 (12). For each, we reproduced the model according to the

variables in the original publication and computed tdAUC values

using our testing dataset.
2.5 Development of the online system

We developed a user-friendly treatment recommendation

interface that allows users to input relevant features and obtain

model-generated treatment recommendations by simply clicking

the “Recommend” button. The interface displays individualized

survival probability curves and associated values for various

treatment options. Additionally, the system calculates the mean

survival probability differences between treatment options,

including the baseline option of no surgery, no chemotherapy, or

no radiation therapy. These mean survival probability differences,

interpreted as the survival benefit, are also presented within the

online system. The treatment option with the highest survival

benefit is the most recommended choice.
2.6 Statistical analysis

Statistical analyses were performed using R version 4.3.2.

Categorical variables were presented as numbers and percentages

(%). Cox proportional hazards (CPH) models were used to calculate

hazard ratios (HR), and the log-rank test was applied to compare

Kaplan–Meier (KM) survival curves.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1597925
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiang et al. 10.3389/fonc.2025.1597925
3 Results

3.1 Percentages of treatment strategies

The workflow of this study is illustrated in Figure 1. Based on our

inclusion criteria, 3,849 patients with eHGG from the SEER database

were identified. The frequencies and percentages of treatment

strategies among these 3,849 patients are summarized in Table 1.

Subtotal resection (STR) combined with chemotherapy and radiation

therapy emerged as the most common treatment strategy (39.0% of

cases). This was followed by non-surgical treatment with

chemotherapy and radiation (13.0% of cases) and STR without

chemotherapy or radiation therapy (11.4% of cases). Gross total

resection (GTR) with chemotherapy and radiation therapy was

employed in 9.4% of cases, while STR without chemotherapy but

with radiation therapy accounted for 7.7%. The median survival time

for patients in the SEER cohort was 0.5 years.

Based on the same inclusion criteria, 65 patients with eHGG

were identified from 319 patients in the external testing cohort from
Frontiers in Oncology 04
The First Affiliated Hospital of Chongqing Medical University. The

distribution of treatment strategies among these patients is

summarized in Table 2. The most commonly adopted treatment

approach was GTR combined with both chemotherapy and

radiation therapy, accounting for 35.4% of cases. This was

followed by GTR without chemotherapy or radiation therapy

(29.2%) and GTR with chemotherapy but without radiation

therapy (24.6%). The median survival time for patients in the

external testing cohort was 0.8 years.
3.2 Surgery alone vs. surgery with adjuvant
therapy

In this section, we investigated the impact of adjuvant therapy

on the survival outcomes. Adjuvant therapy was defined as the

combination of chemotherapy and radiation therapy administered

following surgery. 1,007 patients underwent SA (either STR or

GTR), while 1,864 patients received SAT. The demographic and
FIGURE 1

Study flowchart of this study.
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clinicopathological characteristics of the two groups before PSM are

summarized in Supplementary Table S1. Before PSM, Kaplan-

Meier analysis revealed a statistically significant difference (p-

value<0.0001) in OS between the two groups (Figure 2A). The 1-

year OS rates were 16.6% (95% CI: 14.5–19.1%) for patients who

underwent SA and 43.0% (95% CI: 40.8–45.3%) for those who

received SAT.

PSM was performed to address potential confounding factors. A

total of 754 matched pairs of patients who underwent SA or SAT

were identified in a 1:1 ratio. After matching, the standard mean

difference of all parameters indicated that significant differences in

baseline characteristics were reduced (Figure 2B). The demographic

and clinicopathological characteristics of the two groups after PSM

are presented in Supplementary Table S2. No significant difference

was found among variables except gender. Following PSM, Kaplan-

Meier analysis still demonstrated a statistically significant difference

in OS between patients who received SAT and those who

underwent SA (p-value<0.0001) (Figure 2C). The 1-year OS rates
Frontiers in Oncology 05
were 17.5% (95% CI: 15.0–20.4%) for the SA group and 42.9% (95%

CI: 39.5–46.6%) for the group receiving SAT.

Next, a subgroup analysis was conducted to examine the effect of

adjuvant therapy on survival outcomes within each subgroup.

Univariate Cox regression analysis revealed that adjuvant therapy

was associated with improved survival in most subgroups, except for

patients identified as belonging to Grade III subgroups (Figure 2D).
3.3 Adjuvant therapy alone vs. surgery plus
adjuvant therapy

499 patients underwent adjuvant therapy alone, while 1,864

patients received adjuvant therapy combined with surgery, either

STR or GTR. The demographic and clinicopathological data of the

two groups before PSM are summarized in Supplementary Table S3.

Before PSM, Kaplan-Meier analysis revealed a statistically

significant difference (p < 0.0001) in OS between the two groups

(Figure 3A). The 1-year OS rates were 21.8% (95% CI: 18.5–25.7%)

for patients receiving adjuvant therapy alone and 43.0% (95% CI:

40.8–45.3%) for those undergoing surgery with adjuvant therapy.

After PSM, 369 pairs of patients from the AA and SAT groups

were matched in a 1:1 ratio. After matching, the standard mean

difference of parameters indicated that most differences in baseline

characteristics were reduced between the two cohorts (Figure 3B).

The demographic and clinicopathological data of the two groups

after PSM are presented in Supplementary Table S4. No significant

difference was found among variables except age, gender, and

marital status. Kaplan-Meier analysis post-PSM demonstrated a

statistically significant difference in OS between the two groups (p <

0.0001) (Figure 3C). The 1-year OS rates were 22.2% (95% CI: 18.3–

26.8%) for the AA group and 40.6% (95% CI: 35.9–45.9%) for the

SAT group.

Subgroup analysis was then conducted to evaluate the effect of

surgery on survival outcomes in various subgroups. Univariate Cox

regression analysis revealed that adjuvant therapy was associated

with improved survival in most subgroups, except for patients

identified as belonging to Grade III subgroups (Figure 3D).
3.4 STR and adjuvant therapy vs. GTR and
adjuvant therapy

1,501 patients received STR with adjuvant therapy (STA), and

363 underwent GTR with adjuvant therapy (GTA). The

demographic and clinicopathological characteristics of the STA

and GTA groups before PSM are summarized in Supplementary

Table S5. Before PSM, Kaplan–Meier analysis revealed no

statistically significant (p-value=0.16) difference in OS between

the two groups (Figure 4A). The 1-year OS rates were 42.3%

(95% CI: 39.9–44.9%) for patients receiving STA and 46.0% (95%

CI: 41.1–51.4%) for those undergoing GTA.

After PSM, 363 pairs of patients from the STA and GTA groups

were matched in a 1:1 ratio. After matching, the standard mean

difference of all parameters indicated that the variables’ differences
TABLE 2 Frequencies and percentages of treatment strategies among
elderly patients with high-grade glioma from the external testing set.

Surg Chem Rad Comb Freq Perc

GTR Yes Yes G|Y|Y 23 35.4

GTR No No G|N|N 19 29.2

GTR Yes No G|Y|N 16 24.6

STR No No S|N|N 3 4.6

GTR No Yes G|N|Y 2 3.1

STR Yes Yes S|Y|Y 2 3.1
TABLE 1 Frequencies and percentages of treatment strategies among
elderly patients with high-grade glioma from SEER database.

Surg Chem Rad Comb Freq Perc

STR Yes Yes S|Y|Y 1,501 39.0

None Yes Yes N|Y|Y 499 13.0

STR No No S|N|N 438 11.4

GTR Yes Yes G|Y|Y 363 9.4

STR No Yes S|N|Y 295 7.7

None No No N|N|N 285 7.4

None No Yes N|N|Y 165 4.3

GTR No No G|N|N 101 2.6

GTR No Yes G|N|Y 78 2.0

STR Yes No S|Y|N 77 2.0

None Yes No N|Y|N 29 0.8

GTR Yes No G|Y|N 18 0.5
The treatment strategies are categorized based on surgery type (subtotal resection [STR], gross
total resection [GTR], or none), chemotherapy (Chem), and radiation therapy (Rad). The
combination of treatment modalities is detailed in the “Comb” column, with the
corresponding frequency (Freq) and percentage (Perc) of each strategy provided.
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were reduced (Figure 4B). The demographic and clinicopathological

characteristics of the two groups after PSM are presented in

Supplementary Table S6. No significant differences in baseline

characteristics between the two cohorts were found. Kaplan–

Meier analysis after PSM demonstrated a statistically significant

difference in OS between the two groups (p-value=0.042)

(Figure 4C). The 1-year OS rates were 40.4% (95% CI: 35.7–

45.8%) for the STA group and 46.0% (95% CI: 41.1–51.4%) for

the GTA group.

Subgroup analysis was conducted to evaluate the impact of

more advanced surgery (GTR) on survival outcomes across various

subgroups. Univariate Cox regression analysis demonstrated that

GTA improved survival in most subgroups, including GBM, tumor
Frontiers in Oncology 06
size >3 cm, localized stage, white race, Grade IV tumors, and

patients aged 65–72 (Figure 4D).
3.5 Development and validation of the
prognostic models

Using the survival random forest algorithm, a model was

developed to predict OS in eHGG patients. 3,849 eHGG patients

were randomly divided into training (n=3,079) and internal testing

sets (n=770) at the 8:2 ratio. Following hyperparameter tuning via

five-fold cross-validation, the optimal parameters were determined to

be ntree = 1000 and mtry = 1, which were used for final model
FIGURE 2

Survival analysis of surgery alone (SA) vs. surgery plus adjuvant therapy (SAT). (A) Kaplan–Meier survival curve comparing SA with SAT before PSM. (B)
The balance of covariates before and after PSM indicates improved stability in the distribution of key variables after matching. (C) Kaplan–Meier
survival curve comparing SA with SAT after PSM. (D) The forest plot from univariate Cox regression analysis shows SAT’s survival benefit compared to
SA across subgroups. For instance, among samples from the non-GBM subgroup, the forest plot highlights that SAT significantly improves survival
outcomes compared to SA.
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training (Figure 5A). The relative importance of clinical variables in

the final model is illustrated in Figure 5B. Histological type and

chemotherapy are the most critical variables for the model. The

performance of the final model was evaluated using the internal and

external testing sets. The C-index, tdAUC, and 1-IBS values for the

internal testing cohort were 0.683 (95% CI: 0.677–0.688), 0.748 (95%

CI: 0.740–0.756), 0.926 (95% CI: 0.916–0.935) (Figure 5C). The C-

index, tdAUC, and 1-IBS values for the external testing cohort were

0.813 (95% CI: 0.786–0.840), 0.876 (95% CI: 0.849–0.902), 0.893

(95% CI: 0.868–0.917) (Figure 5D). To highlight the advantages of

our machine learning model, we also calculated the tdAUC values for

three published nomograms as a comparison. In the external

validation cohort, the tdAUC values for these nomograms were

0.776, 0.766, and 0.772, respectively (Supplementary Figure S1).

The univariate Cox analysis revealed that patients aged 65–72,

with localized tumors, non-GBM types, had significantly better
Frontiers in Oncology 07
survival outcomes, while unmarried patients and those with

tumorSize >3 cm had worse outcomes (Table 3). Chemotherapy,

radiation, and surgery (STR or GTR) were all significantly

associated with improved survival, whereas gender, race, and

tumor grade showed no significant effects. Besides, in the

univariate Cox regression analysis, compared with STR, GTR was

associated with a decreased risk of events (HR = 0.907, 95% CI:

0.826–0.996, p = 0.04).
3.6 Clinical application of the personalized
treatment selection system

We calculated the survival probabilities of each patient in the

internal and external testing sets across all treatment choices.

Treatment associated with the highest predicted survival was
FIGURE 3

Survival analysis of adjuvant therapy alone (AA) vs. surgery plus adjuvant therapy (SAT). (A) Kaplan–Meier survival curve comparing AA with SAT
before PSM. (B) The balance of covariates before and after PSM. (C) Kaplan–Meier survival curve comparing AA with SAT after PSM. (D) The forest
plot from univariate Cox regression analysis shows SAT’s survival benefit compared to AA across subgroups.
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selected as the model’s recommendation. Patients were categorized

into two groups based on whether their actual treatment aligned

with the model’s recommendation: consistent (Cons) and

inconsistent (Inco). In the internal testing set, the Cons group

showed significantly better survival than the Inco group for all

patients (Figure 6A). The 1.5-year OS rates were 34.9% (95% CI:

26.9–45.2%) for the Cons group and 15.8% (95% CI: 13.3–18.9%)

for the Inco group. Similarly, the Cons group showed significantly

better survival in the external testing set than the Inco group for all

patients (Figure 6B). Within the 1.5 year of post-treatment, the

survival of the Cons group is specifically better than that of the Inco

group since the OS rates were 47.9% (95% CI: 19.6–100%) for the

Cons group and 37.9% (95% CI: 23.8–60.3%) for the Inco group.
Frontiers in Oncology 08
3.7 Web-based personalized treatment
selection system

We successfully developed a user-friendly, web-based treatment

recommendation system, accessible at https://gliomas.shinyapps.io/

EHGG/. This system integrates predictive modeling into an

interactive interface that allows users to input patient-specific

features, including age, gender, marital status, race, histological

type, stage, grade, and tumor size. The system outputs three key

results by clicking the “Recommend” button. First, it generates

survival curves of individualized survival probabilities for various

treatment options (Figure 7A). Second, it provides detailed

numerical values corresponding to these survival probability
FIGURE 4

Survival analysis of GTR plus adjuvant therapy (GTA) vs. STR plus adjuvant therapy (STA). (A) Kaplan–Meier survival curve comparing STA and GTA
before propensity score matching (PSM). (B) The balance of covariates before and after PSM indicates improved stability in the distribution of critical
variables after matching. (C) Kaplan–Meier survival curve comparing STA and GTA after PSM. (D) The forest plot from univariate Cox regression
analysis demonstrates GTA’s survival benefit compared to STA across subgroups.
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curves (Figure 7B). Third, the system calculates survival benefits by

comparing the mean survival probabilities of each treatment option

to the baseline option (no surgery, no chemotherapy, no radiation

therapy). The treatment option associated with the highest survival

benefit is automatically highlighted as the most recommended

choice (Figure 7C).
4 Discussion

Our study aimed to evaluate the impact of various treatment

strategies on eHGG patients and to develop a personalized

treatment recommendation system using a machine learning-
Frontiers in Oncology 09
based survival model. The results of this study provide several key

insights that can be a potential reference for older patients with

high-grade gliomas in clinical decision-making.

At present, there is ongoing controversy about adopting

subtotal resection (STR) or gross total resection (GTR) for eHGG

patients (13). One of the primary findings of our study is that

treatment strategies involving surgical resection, particularly GTR

combined with adjuvant therapy, provide significant survival

benefits to eHGG patients compared to other treatment

modalities. Specifically, GTR combined with adjuvant therapy was

associated with significantly improved OS compared to STR

combined with adjuvant therapy. This result is particularly crucial

given that only 9.4% of patients in our study received GTR with
FIGURE 5

Evaluation and analysis of model performance and variable importance. (A) Heatmap illustrating the tuning of hyperparameters for the random
survival forest (RSF) model. Rows represent the number of trees (ntree), and columns represent the number of randomly selected variables at each
split (mtry). The values in the cells represent the performance metric of the time-dependent Area Under the Curve (tdAUC). (B) Variable importance
plot derived from the RSF model. The relative importance of each variable is measured. (C) Model performance in the internal testing cohort using
three evaluation metrics: 1-IBS (Integrated Brier Score), tdAUC, and C-Index (Concordance Index). Higher values indicate better predictive
performance. (D) Model performance in the external testing cohort.
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adjuvant therapies, while 39.0% received STR with adjuvant

therapies. Our findings also support previous meta-analyses and

review studies, which have demonstrated that GTR is associated

with a significant improvement in OS compared to STR (13–16).

Additionally, GTR has been shown to benefit glioma patients by

improving seizure control and reducing the incidence of malignant

transformation (13). These results underscore the importance of

using GTR in elderly patients as much as possible when the surgical

risk is acceptable. Importantly, our subgroup analysis further

revealed that patients with GBM, tumor size greater than 3 cm,

localized stage, white race, Grade IV tumors, and those aged 65–72

had better survival outcomes with GTR, indicating that they are

more suitable candidates for GTR.

The use of adjuvant therapy in high-grade gliomas remains

controversial, particularly given the disappointing results from

some clinical trials involving adjuvant chemotherapy regimens

(17). The blood-brain barrier, which plays a crucial role in

maintaining the stability of brain tissue under normal

physiological conditions, also poses a significant obstacle to

achieving effective chemotherapy concentrations at the tumor site
Frontiers in Oncology 10
(18). However, other studies have demonstrated that postsurgical

adjuvant treatment can improve survival outcomes compared to

surgery alone (19). The question of whether chemotherapy should

be used in elderly high-grade glioma patients is still debated. Our

study demonstrates that for patients aged 65 and older, the use of

adjuvant therapies in combination with surgery significantly

improves survival compared to surgery alone. This finding

suggests that adjuvant therapies, including chemotherapy and

radiation, can offer substantial survival benefits for elderly

patients with high-grade gliomas. However, our results also

indicate that patients with grade III tumors did not experience a

statistically significant survival benefit from adjuvant therapy. This

lack of significance may be attributed to the limited sample size and

statistical power in the grade III cohort. It may also reflect biological

heterogeneity, as well as the limitations of available clinical and

molecular data.

In recent years, many studies have constructed models for

predicting survival in gliomas. For example, a study on adult

glioma patients developed nomograms with a C-index of 0.738 in

the validation set (10). Another study on GBM reported a C-index
TABLE 3 The univariate Cox analysis of variables in the training set.

Variable Level Hazard ratio Lower 95% CI Upper 95% CI P-value

Age
=>73 (Reference)

65-72 0.658 0.617 0.702 <0.001

Gender
Female (Reference)

Male 1.032 0.968 1.100 0.335

Marital
Married (Reference)

UnMarried 1.253 1.171 1.340 <0.001

Race
Minority (Reference)

White 1.098 0.979 1.212 0.111

Type
GBM (Reference)

Non-GBM 0.747 0.693 0.806 <0.001

Stage
Advanced (Reference)

Localized 0.673 0.620 0.731 <0.001

Grade
III (Reference)

IV 0.927 0.816 1.052 0.241

Tumor Size
<=3cm (Reference)

>3cm 1.090 1.014 1.171 0.019

Surgery

None (Reference)

STR 0.559 0.518 0.603 <0.001

GTR 0.507 0.456 0.563 <0.001

Chemotherapy
No (Reference)

Yes 0.463 0.433 0.496 <0.001

Radiation
No (Reference)

Yes 0.427 0.396 0.461 <0.001
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of 0.724 (95% CI: 0.713–0.735) in the validation cohort for

prognosis prediction (11). Additionally, a study provided a

nomogram with a C-index of 0.734 (95% CI: 0.718–0.750) (12).

These studies commonly employ nomograms for survival

prediction because they are simple and easy-to-understand tools.

Unlike these traditional models, we utilized a machine learning

approach for survival prediction. The C-index, tdAUC, and 1-IBS

values for our machine learning model in the external testing cohort

were 0.813, 0.876, and 0.893 (Figure 5D). To highlight the

advantages of our machine learning model, we also calculated the

tdAUC values for three published nomograms as a comparison. In

the external validation cohort, the tdAUC values for these

nomograms were 0.776, 0.766, and 0.772, respectively

(Supplementary Figure S1). Although using a machine learning

model increases model complexity, we believe that the

improvement in tdAUC from 0.766–0.772 to 0.875 is substantial

and justifies this increased complexity. Another key strength of our

study is developing a personalized treatment recommendation tool

based on the survival prediction model. Pure survival prediction

alone has limited clinical utility if it does not lead to actionable

insights for patient management. Our model goes beyond survival

prediction by providing optimal treatment recommendations to

each patient. Our results showed that patients whose actual

treatments aligned with the model ’s recommendations

experienced significantly better survival outcomes than those

whose treatments differed from the model’s suggestions. This

finding indicates that our approach is valuable tool for refining

treatment strategies and improving personalized care for elderly

glioma patients.

Our findings have important clinical implications for managing

eHGG patients. First, the findings underscore the importance of

maximizing surgical intervention when feasible, since GTR could
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improve survival outcomes. Second, the findings emphasize the

benefit of adjuvant therapies in enhancing survival, which should be

considered even in elderly patients who may face challenges

tolerating aggressive treatments. Lastly, developing the machine

learning-based personalized treatment recommendation system

provides a precise and convenient tool for selecting treatments.

However, several limitations should be acknowledged. First, the

SEER database lacks important prognostic variables such as

performance status (e.g., Karnofsky Performance Status),

comorbidity indices (e.g., Charlson Comorbidity Index), tumor

location, underlying diseases (e.g., coronary heart disease),

smoking and alcohol consumption status, and tumor molecular

markers (e.g., IDHmutation status, MGMT promoter methylation).

The absence of these factors may introduce residual confounding

and indication bias, as patients with better performance status and

fewer comorbidities are more likely to receive aggressive treatment.

The absence of these factors can also potentially lead to an

overestimation of the survival benefit associated with more

aggressive treatment strategies like surgery with adjuvant therapy.

Moreover, the lack of detailed treatment protocols for

chemotherapy and radiotherapy represents another limitation.

There is also potential for inter-operator and inter-institutional

variability in reporting resection rates. Practical barriers and input

feasibility issues also exist, as some clinical variables are frequently

missing for many patients. Furthermore, perioperative risks, such as

morbidity in elderly patients, were not included in the model,

despite being important considerations in real-world clinical

practice. Finally, the relatively small sample size of the external

validation cohort may affect the generalizability of our findings. To

address this, we plan to collect a larger, multi-institutional dataset in

future studies to further strengthen the robustness and reliability of

our analysis.
FIGURE 6

Survival outcomes based on consistency with model recommendations. (A) Kaplan-Meier survival curves for all patients in the internal testing set
were categorized into consistent (Cons) and inconsistent (Inco) groups based on whether their actual treatment aligned with the model’s
recommendation. (B) Kaplan-Meier survival curves for all patients in the external testing set were categorized into Cons and Inco groups based on
whether their actual treatment aligned with the model’s recommendation.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1597925
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiang et al. 10.3389/fonc.2025.1597925
FIGURE 7

Outputs of the web-based personalized treatment selection system for elderly patients with high-grade glioma. (A) The web-based treatment
recommendation interface allows users to input patient-specific features like age, gender, marital status, race, histological type, grade, stage, and
tumor size. After clicking the “Recommend” button, the system generates individualized survival probability curves for various treatment options.
These treatment strategies are represented by three letters, where the first letter indicates the type of surgery (G: gross total resection, S: subtotal
resection, N: none), the second letter indicates chemotherapy (N: none, Y: received), and the third letter indicates radiotherapy (N: none, Y:
received). (B) Detailed numerical values corresponding to the individualized survival probability curves are displayed in a tabular format. These values
allow for precise comparisons of survival probabilities across different treatment strategies. (C) Calculated survival benefits are presented as mean
survival probability differences for each treatment option compared to the baseline (no surgery, no chemotherapy, or no radiation therapy). The
treatment option associated with the highest survival benefit is highlighted as the most recommended choice.
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5 Conclusion

In conclusion, our study highlights the significant survival

benefits of aggressive treatment strategies (GTR and adjuvant

therapies) for elderly patients with high-grade gliomas. The

personalized treatment recommendation system by the machine

learning model offers a promising approach to identify patients who

are most likely to benefit from aggressive treatment strategies.
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