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Background: Early diagnosis can significantly improve survival rate of Pancreatic

ductal adenocarcinoma (PDAC), but due to the insidious and non-specific early

symptoms, most patients are not suitable for surgery when diagnosed.

Traditional imaging techniques and an increasing number of non-imaging

diagnostic methods have been used for the early diagnosis of pancreatic

cancer (PC) through deep learning (DL).

Objective: This review summarizes diagnosis methods for pancreatic cancer

with the technique of deep learning and looks forward to the future development

directions of deep learning for early diagnosis of pancreatic cancer.

Methods: This study follows the PRISMA-ScR (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses Extension for Scoping Reviews)

guidelines, retrieving studies on deep learning for early pancreatic cancer

diagnosis from PubMed, Embase, Web of Science, IEEE, and Cochrane Library

over the past 5 years. Inclusion criteria were studies involving PDAC patients,

using deep learning algorithms for diagnosis evaluation, using histopathological

results as the reference standard, and having sufficient data. Two reviewers

independently screened and extracted data. Quality was assessed using

QUADAS-2, with StataMP 17 for meta-analysis.

Results: In this study, 422 articles were retrieved, and 7 were finally included for

meta-analysis. The analysis showed that the accuracy of deep learning in the early

diagnosis of pancreatic cancer was 80%-98.9%, and the combined sensitivity,

specificity and AUC were 0.92 (95% CI: 0.85-0.96), 0.92 (95% CI: 0.85-0.96), and

0.97 (95%CI: 0.95-0.98). The positive and negative likelihood ratio were 11.52 (95%

CI, 6.15-21.55) and 0.09 (95% CI, 0.04-0.17). Endoscopic ultrasound (EUS) and

Contrast-Enhanced Computed Tomography (CE-CT) were the main diagnostic

methods. Non-imaging diagnostic methods such as deep learning urine markers,

disease trajectory also performed good diagnostic potential.
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Conclusions: Artificial intelligence (AI) technology holds promise for clinical

guidance in pancreatic cancer risk prediction and diagnosis. Future research

may focus on leveraging diverse data sources like genomics and biomarkers

through deep learning; utilizing multi - center or international samples; tackling

the challenge of early diagnosis for small pancreatic cancers; enhancing the

explainability of AI models and multi-modal approaches.
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Introduction

Background

Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive

and lethal malignant tumor of the pancreas. Currently, it is the fourth

leading cause of cancer death and is projected to become the second

by 2030 (1, 2). The high mortality rate of PDAC is mainly due to the

challenge of its diagnosis (3). Early diagnosis can significantly improve

the 5-year survival rate (4). But due to the similar attenuation of early

PDAC to healthy pancreas, approximately 40% of pancreatic tumors

less than 2cm are missed on abdominal computed tomography (CT)

(5–8). However, PDAC is asymptomatic until it progresses to an

advanced stage. At the time of diagnosis, only about 20% of cases are

suitable for surgical resection (9).

It is clear that if cancer can be detected early and appropriate

surgical and systemic treatments provided, the survival rate of PC

could be significantly improved (10). Imaging techniques play a

crucial role in the diagnosis of PDAC. Current clinical imaging

modalities include endoscopic ultrasound (EUS), CT, and positron

emission tomography-computed tomography (PET/CT), each with

its own advantages and disadvantages in clinical application (11–13).

In the traditional process of medical image analysis, experienced

radiologists are required. With artificial intelligence technology,

radiologists can be liberated from tedious and repetitive tasks to

handle those that require more creativity. The gradual development

of deep learning and radiomics provides a new perspective for the use

of the above as the diagnosis and screening of early PC (14).

Deep learning (DL) has recently made progress on many

problems, especially in medical imaging diagnosis, and in some

cases has even surpassed human performance (13). Deep learning

constitutes a specialized branch of machine learning that employs

multi-layered (deep) neural networks to automatically extract

hierarchical features from high-dimensional data, yielding

breakthrough performance in tasks such as image recognition,

speech processing, and natural language understanding. Machine

learning (ML), in turn, is a sub-discipline of AI; it leverages

statistical techniques to enable computer systems to learn patterns

from data and make predictions or decisions without explicitly

programming every rule (6, 7). AI is the broad discipline devoted to
02
enabling machines to exhibit intelligent behavior. Its canonical

formulation, first articulated by John McCarthy, defines AI as

“the science and engineering of making intelligent machines,

especially intelligent computer programs that perform tasks

which, if carried out by humans, would require human

intelligence” (15). Consequently, AI, ML, and DL exhibit a nested

relationship: AI ⊃ ML ⊃ DL. In recent years, a large number of

studies related to deep learning have been published, but some of

them seem to blur the definitions of deep learning and machine

learning. Deep learning is a subset of ML algorithms. The

conceptual difference between the two is easy to overlook (16).

With the increase in research, various new diagnostic markers for

PC diagnosis using deep learning have emerged one after another (17).

Based on the aforementioned, this study aims to assess the clinical

relevance and translational potential of deep learning algorithms in the

early detection of pancreatic cancer. We systematically review

applications across imaging modalities, urinary biomarkers, and

disease-trajectory models, with particular emphasis on diagnostic

methods, neural-network architectures, and downstream clinical

utility. In addition, we performed a comprehensive meta-analysis of

the diagnostic accuracy reported by the selected studies.
Methods

Overview

In this review, PRISMA-ScR (Preferred Reporting Items for

Systematic Reviews and Meta-Analyses Extension for Scoping

Reviews) guidelines were followed to ensure the transparency and

reliability of this study.
Search strategy

Search sources
We searched five databases (PubMed, Embase, Web of science

(WOS), IEEE, and Cochrane Library) for studies on DL for early

diagnosis of PDAC published between December 31, 2019 and

December 31, 2024 (Figure 1).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1597969
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bi et al. 10.3389/fonc.2025.1597969
Search terms
To develop the search strategy, 2 experts in the fields of artificial

intelligence and hepatobiliary surgery were consulted, and previous

relevant reviews were consulted to identify subject headings and free

words. Search terms were selected according to the target intervention

(i.e., deep learning), the target disease (i.e., PC), and the purpose of the

intervention (i.e., early diagnosis). Details of the exact search terms

used to search each database are provided in Supplementary File 1.
Study eligibility criteria

Following the PICOS principle, studies meeting the following

inclusion criteria were admitted: (1) included patients with a diagnosis

of PDAC; (2) develop or use clinical predictive models or deep learning

algorithms to evaluate PC diagnosis instead of segmentation; (3) used

histopathologic results as the reference standard (4) had sufficient

data to reconstruct the 2 × 2 contingency table to be included.

The following studies were excluded: (1) reviews, case reports,

letters, commentaries, errata, meta-analyses and studies published

only as conference abstracts; (2) Studies were also excluded if they

lacked internal or external validation; (3) The number of the same

diagnostic method was less than 3; (4) The sample size was less than

50; (5) The sample was not on a per-patient basis.
Study selection

The eligibility of articles was determined by two reviewers (Yuanbo

Bi andDongrui Li), who independently screened the titles and abstracts

of the search results. In case of disagreement, the third reviewer

(Ruochen Pang) will intervene and decide together. To measure

inter-reviewer agreement, we calculated Cohen kappa, which was

0.892 for title and abstract screening and 0.810 for full-text

screening, with almost perfect agreement (13, 18).
Frontiers in Oncology 03
Data extraction

To accurately extract data from the included studies from the

selected studies, a data extraction table was created using Microsoft

Excel, and the data extraction fields are described in Supplementary

File 3 and filled in using the included studies. Two reviewers

independently performed the process, and any disagreements

between the two reviewers were resolved through discussion by

the intervention of a third reviewer.
Data synthesis

To estimate the accuracy of deep learning algorithms, we

conducted a meta-analysis of studies that provided sufficient data

to construct contingency tables. StataMP 17 (64-bit) was used for

forest plot, funnel plot, SROC curve, heterogeneity test and

meta-analysis. Studies evaluating deep learning in robotic

programs were not included in the analysis. Microsoft Excel was

used to manage the comprehensive data. Endnote X9 was used

for literature management.
Quality assessment

The methodological quality of eligible articles was determined

by two authors (Yuanbo Bi and Dongrui Li) using the QUADAS-2.

QUADAS-2 tool is recommended for use in systematic reviews of

diagnostic accuracy based on sources of bias and variation and

comprises four domains: patient selection, index test, reference

standard, and flow and timing. Each domain is assessed in terms

of risk of bias, and the first three domains are also assessed in terms

of concerns regarding applicability. Each component contains

several questions used to help judge the risk of bias (low, high or

unclear) (13).
FIGURE 1

“Systematic review and meta-analysis“ based on the axis labels on the left, and “All literature” based on the axis labels on the right (classified by year).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1597969
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bi et al. 10.3389/fonc.2025.1597969
Results

Search results

We initially identified 422 articles using five publicly available

online databases: PubMed (n=79), Embase (n=161), Web of science

(n=127), IEEE (n=51), Cochrane Library (n=4) +Additional records

identified through other sources (n=0) entered into PRISMA-ScR

flow chart. We excluded 144 replicates. Among the remaining

studies, 150 articles unrelated to the research topic were excluded

according to the abstract, and 17 articles were included in the

systematic review after the full-text evaluation of the remaining 128

articles. A total of 7 articles met our inclusion criteria and were

included in the meta-analysis (Figure 2).
Study selection and characteristics

The results of 17 studies (out of 278) that met the inclusion

criteria are summarized in Supplementary File 2. These studies were

published between 2019 and 2024. The techniques applied included

CE-CT (23.53%), EUS (29.41%), with one study using Contrast-

enhanced harmonic endoscopic ultrasound (CH-EUS), pathological

examination (11.76%), disease trajectories (11.76%), urine

biomarkers (11.76%), RNA (5.88%), and DNA (5.88%). Among

them, 7 studies met both the inclusion and exclusion criteria and

were included in the meta-analysis (Table 1).
Frontiers in Oncology 04
Systemic review

In this section, we systematically review the 17 included studies

according to their diagnostic modalities, critically appraise the

advantages and limitations of each method, and synthesize the

corresponding findings.

CE-CT
In recent years, research on the early diagnosis of PC using deep

learning-based CE-CT has gained significant attention. CE-CT

remains a primary imaging modality for detecting (PC). However,

the complex anatomical structure of the pancreas and the generally

low contrast of these images present substantial challenges for

accurate segmentation of pancreatic CT images. Precise pancreatic

segmentation is critical in clinical practice, particularly for diagnosing

and treating PC (19). Notably, CE-CT exhibits low sensitivity for

small tumors, with approximately 40% of tumors smaller than 2 cm

being undetected (5, 20).

The accuracy of deep learning-based CE-CT for the early diagnosis

of PC ranges from 80% to 98.90%, with sensitivity ranging from 0.79 to

0.973, specificity from 0.76 to 1, and AUC from 0.85 to 0.999. One

study had a sample size of less than 100, resulting in statistical results

that deviated significantly from those of the other three studies.

Nevertheless, due to its minimal impact on the overall findings

during subsequent subgroup analysis, this study was retained (21).

Chen et al. reported a sensitivity of 74.7% (95% CI: 64.5, 83.3) for

malignant tumors smaller than 2 cm (5). Liu et al. provided
FIGURE 2

Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA) flow diagram for study selection.
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sensitivities of 92.1%, 92.1%, and 63.1% for malignant tumors smaller

than 2 cm in two internal validations and one external validation,

respectively (20). The early diagnosis of PC smaller than 2 cm

remains unclear, necessitating further research to confirm these

findings, which may represent a promising new research direction.
EUS
Endoscopic ultrasound (EUS) is a non-invasive and highly

precise technique for detecting pancreatic diseases and has

become a widely used tool for diagnosing digestive system

disorders (22–24). EUS-guided fine-needle aspiration biopsy

(EUS-FNA/B) is considered the first-line method for the

pathological diagnosis of PC due to its high accuracy (25).

Reports indicate that the diagnostic sensitivity of EUS-FNA/B for

pancreatic ductal adenocarcinoma (PDAC) is 85%–92%, with

specificity ranging from 96% to 98%. Furthermore, it has been

proven to be a feasible and safe technique with a complication rate

of less than 1% (26).

In this study, the number of studies utilizing deep learning-

based EUS for the early diagnosis of PC was the largest (n = 5), with

accuracy ranging from 86.18% to 94.17%, sensitivity from 0.831 to

0.94, specificity from 0.822 to 1, and AUC from 0.9221 to 0.96 (3, 4,

6, 25, 27).

Among these, a prospective study on the early diagnosis of PC

using deep learning CH-EUS demonstrated that the accuracy of

CH-EUS NASTER-guided EUS-FNA was 93.8%, compared to

91.3% in the control group. Although the diagnostic rate of the

CH-EUS MASTER group appeared higher, no statistically

significant difference was observed between the two groups (p >

0.05). The AUC values for the CH-EUS MASTER group and the

control group were 0.955 and 0.933, respectively (25). CH-EUS

MASTER may serve as a promising real-time objective system for

differentiating benign and malignant pancreatic masses. However,

due to the small sample size (n = 39) and partial data loss, it was

excluded from the subsequent meta-analysis.

Based on interval estimation, deep learning-based EUS image

data appears slightly superior to CE-CT in terms of accuracy,
Frontiers in Oncology 05
sensitivity, specificity, and AUC, demonstrating greater stability.

Nevertheless, additional studies are required to confirm

these findings.

PET/CT
Although PET/CT holds significant value for the early diagnosis

and differentiation of tumors, as well as for determining metastasis,

its high cost and prolonged exposure time limit its application in the

early diagnosis and screening of PC at present. Most current studies

on deep learning-based PET/CT focus on tumor segmentation (28–

30), rather than diagnosis. Consequently, no PET/CT studies were

included in the meta-analysis.

Pathological examination
Deep learning of PC pathological tissues may have far-reaching

significance for improving the accuracy of pancreatic cancer

pathological diagnosis and targeted therapy (31). In routine

pathological smears, stromal components account for 90% of the

specimen and interact dynamically with the tumor, which poses a

clinical challenge (32, 33). By leveraging deep learning and image

analysis, information clues from stromal interactions can be

extracted for the identification of new cancer biomarkers. This

approach holds potential for enhancing diagnostic accuracy and

providing deeper insights into the biology of pancreatic cancer (34).

Pancreatic cancer cells typically accumulate a large number of

lipid droplets (LDs), which regulate lipid storage (35). To facilitate

rapid diagnosis, Hong et al. proposes a deep convolutional neural

network based automatic identification system for pancreatic cancer

cells, which uses optical diffraction tomography to quantitatively

image LDs of unstained cytology samples (35). The accuracy rate is

97.06% (± 1.021), and the AUC is 99.8%. This reflects the application

prospects of deep learning in quantifying cell lipid droplet content in

pancreatic cancer pathological examinations.

Fu et al. developed a deep learning model for the classification of

pancreatic cancer pathological tissues. The automatic patch-level

approach achieved a classification accuracy of 95.3%, and the whole-

slide images-level (WSIs-level) approach achieved 100% (36). Fassler
TABLE 1 Publications reporting on deep learning use in early diagnosis of pancreatic cancer.

No.
Paper Year Applications Model Sample

Total PDAC Non-PDAC

1 Chen et al. (5) 2023 CE-CT CNN 256 109 147

2 Gu et al. (3) 2024 EUS deep‐learning radiomics(DLR) 123 71 52

3 Kuwahara, T.et al. (6) 2023 EUS
Deep convolutional generative
adversarial network (DCGAN)

161 117 44

4a Liu et al. (20) 2020 CE-CT CNN 189 101 88

4b Liu et al. (20) 2020 CE-CT CNN 363 281 82

5 Mandal et al. (14) 2024 CE-CT nnU-Net + MIL +C NN 1577 179 1398

6 Naito et al. (27) 2021 EUS CNN 120 81 39

7 Xiang et al. (21) 2024 CE-CT ResNet50 network 84 33 51
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et al. quantitatively assessed T cells in the tumor microenvironment

(TME) from multiplex immunohistochemistry (mIHC) WSIs of

pancreatic ductal adenocarcinoma using the ColorAE: U-Net deep

learning tool suite. They analyzed the spatial distribution of (CD3,

CD4, CD8), B cells (CD20), macrophages (CD16), and tumor cells

(K17) (33). This might promote the wider adoption of mIHC to

support precision medicine, especially in the field of immunotherapy

for pancreatic cancer.

Urine biomarkers
A study proposed the utilization of four urinary proteome

biomarkers (creatinine, LYVE1, REG1B, and TFF1) to

successfully develop a novel and highly efficient 1D CNN-LSTM

model for the early diagnosis of PDAC. The proposed model is

composed of one-dimensional convolutional neural networks (1D-

CNNs) and long short-term memory (LSTM). Successful

experiments and evaluations were conducted on 590 urine

samples from the public dataset (183 healthy pancreatic samples,

208 samples with benign hepatobiliary diseases, and 199 PDAC

samples). The study demonstrated that the 1-D CNN + LSTM

model achieved an accuracy of 97% and an area under the curve

(AUC) of 98% (37). This research shows a high accuracy and AUC,

highlighting the great potential of urine markers for the early

diagnosis of pancreatic cancer.

Linh, et al. introduce a label-free surface-enhanced Raman

scattering sensor based on a three-dimensional plasmonic coral

nanoarchitecture (3D-PCN), and successfully distinguished prostate

cancer from pancreatic cancer by identifying urine with the aid of deep

learning (38). However, there are few studies on the early diagnosis of

pancreatic cancer using urine markers with deep learning, and more

related research could be conducted to supplement this area. Acer et al.

utilized non-invasive urine biomarkers and CA19-9, combined with

seven machine learning models, to conduct early detection of PDAC in

data from 590 participants, and found that the ensemble learning

model performed best, with the GBC model achieving an accuracy

of 92.99% (AUC = 0.9761) (39).

Disease trajectories
Deep learning models based on disease trajectories are used to

integrate longitudinal clinical data from electronic medical records

to infer the risk of PC, which may also be a breakthrough for the

early diagnosis of pancreatic cancer (40).

Placido et al. predicted PC through deep learning of large sample

disease trajectories, using (Electronic Health Records)EHR disease

codes, and the best (Danish National Patient Registry) DNPR

model’s performance was an area under the receiver operating

characteristic (AUROC) curve of 0.88 (41). Park et al. used deep

learning based on time series laboratory test results from EHR for the

early detection of pancreatic cancer. The deep learning model

demonstrated better performance on early detection (AUROC 0.671,

CI 95% 0.667 – 0.675, p < 0.001) at 12 months prior to diagnosis

compared to a logistic regression, xgboost, and a feedforward neural

network baseline (42).

The predictive performance at the level demonstrated by deep-

learning Disease trajectories may be useful for the initial design of
Frontiers in Oncology 06
real-world clinical predictive surveillance programs. This approach

potentially provides a scalable workflow for community-level early

cancer detection, shifting the focus from late-stage treatment to

early-stage intervention.

RNA
Hong et al. proposed a novel deep learning framework, named

HATZFS, for identifying driver biomarkers of pancreatic cancer using

RNA differential expression data. This model integrates HDQN, GAT,

and ZFS to construct a pancreatic cancer RNA transcriptional

regulatory network involving lncRNA, miRNA, and mRNA

relationships. To validate the effectiveness of this model,

comprehensive experiments were conducted on a benchmark dataset

containing 14 databases and compared with eight other algorithms

(43). Overall, HATZFS not only provides the importance of all RNA

molecules in the pancreatic cancer RNA regulatory network but also

determines the set of driver nodes in this network as driver biomarkers.

DNA
Tumor type guides clinical treatment decisions for cancer.

Histological diagnosis remains challenging, and genomic

alterations have high diagnostic value for tumor types (36, 44).

Darmofal et al. developed Genome-Derived-Diagnosis

Ensemble (GDD-ENS), a hyperparameter ensemble using deep

neural networks to classify tumor types, based on genomic

features from a dataset of 39,787 solid tumors sequenced with a

clinical targeted cancer gene panel. GDD-ENS achieved an accuracy

of 93% in high-confidence predictions for 38 cancer types (45).
Methodological quality

The methodological quality of the studies according to

QUADAS-2 assessment is illustrated in Figure 3. Three studies

showed low risk of bias and applicability issues in all domains, while

others showed unclear risks in some domains. No study had high

risk of bias or applicability issues.
Meta−analysis results

Seven studies provided enough data to construct 8 contingency

tables, with a pooled sensitivity of 0.92 (95% CI: 0.85-0.96),

specificity of 0.92 (95% CI: 0.85-0.96), and AUC of 0.97 (95% CI,

0.95.-0.98) (Table 2). The combined positive likelihood ratio and

negative likelihood ratio were 11.52 (95% CI, 6.15-21.55) and 0.09

(95% CI, 0.04-0.17), respectively (Figures 4–6). The likelihood ratio

scatter plot distribution is relatively scattered, and there may be

large inter-study heterogeneity, which needs further analysis of the

source of heterogeneity (Figure 7).

Inter-study heterogeneity was quantified using the Mantel–

Haenszel Q test and the I² statistic. Mantel-Haenszel Q test: The

Q value is 43.72, the degrees of freedom are 7, and the p-value is

0.000 < 0.01, indicating significant heterogeneity among the studies.

I² value: I² = 84.0% (95% CI 67.8 - 90.2%). Since the I² value is
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greater than 50%, it indicates that a significant proportion of the

variation is caused by the heterogeneity among the studies.

Given that fewer than ten studies were available, we performed

stratified analyses to identify potential sources of this heterogeneity.

Studies were stratified by sample size (≤ 1–000 vs > 1 000), imaging

modality (CE-CT vs EUS), deep-learning architecture (CNN vs

non-CNN), and validation strategy (internal vs external).

In the CE-CT subgroup, heterogeneity remained pronounced

(Q = 41.61, df = 4, p < 0.001; I² = 90.4%, 95% CI 79.9–94.2%). By

contrast, the EUS subgroup exhibited negligible heterogeneity (Q =

1.53, df = 2, p = 0.464; I² = 0.0%, 95% CI 0.0–72.9%). The markedly

lower heterogeneity in the EUS subset may reflect greater

consistency in image acquisition, reader expertise, lesion size, or

histopathological reference standards; however, the wide confidence

interval (0.0–72.9%) indicates that imprecision due to the small

number of studies cannot be excluded. None of the remaining

stratifications materially reduced the observed heterogeneity

(Supplementary File 4).

The Fagan chart analysis, which assessed a 50% predicted

probability to simulate a clinical situation, resulted in a 92%
Frontiers in Oncology 07
posterior probability of a positive test result, compared with a

negative likelihood ratio of 0.09 and a negative posterior

probability of 8% (Figure 8).

A Deeks funnel plot asymmetry test with a p value of 0.90

implies that the probability of obtaining the current or more

extreme data, given the null hypothesis (i.e., no publication bias),

is 90%. The funnel plot has good symmetry, and the distribution of

the study results is in line with the expectation of random error,

with no obvious signs of bias (Figure 9). The Egger regression

yielded an intercept of 1.318 (p = 0.447; F-test p = 0.4465),

indicating that the intercept did not significantly deviate from

zero (Supplementary File 5). Consequently, there was no

statistical evidence of small-study effects or publication bias.
Discussion

We conducted a systematic review and meta-analysis on the

research on deep learning for early diagnosis of pancreatic cancer

over the past five years. Through the analysis of indicators such as
FIGURE 3

QUADAS-2 assessment of the studies.
TABLE 2 Summary table of the results of the meta-analysis.

No. Paper Applications TP FP FN TN Sensitivity Specificity AUC

1 Chen et al. (5) CE-CT 98 6 11 141 0.90[0.83-0.95] 0.96[0.91-0.98] 0.96[0.94-0.99]

2 Gu et al. (3) EUS 59 5 12 47 0.83[0.72-0.91] 0.90[0.79-0.97] 0.94[0.89-0.98]

3 Kuwahara, T.et al. (6) EUS 41 21 3 96 0.93[0.81-0.99] 0.82[0.74-0.89] 0.90[0.84-0.97]

4a Liu et al. (20) CE-CT 100 1 1 87 0.99[0.95-1.00] 0.99[0.94-1.00] 1.00[1.00-1.00]

4b Liu et al. (20) CE-CT 222 2 59 80 0.79[0.74-0.84] 0.98[0.91-1.00] 0.92[0.89-0.95]

5 Mandal et al. (14) CE-CT 162 128 17 1270 0.91[0.85-0.94] 0.91[0.89-0.92] 0.90[0.90-0.90]

6 Naito et al. (27) EUS 80 6 1 33 0.99[0.93-1.00] 0.85[0.69-0.94] 0.98[0.96-1.00]

7 Xiang et al. (21) CE-CT 28 12 5 39 0.85[0.68-0.95] 0.76[0.63-0.87] 0.86[0.77-0.94]

8 COMBINED 0.92[0.85-0.96] 0.92[0.85-0.96] 0.97[0.95-0.98]
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accuracy, sensitivity, specificity, and AUC, we aimed to demonstrate

the efficacy and clinical applicability of deep learning models in the

early diagnosis of pancreatic cancer by learning from CE-CT, EUS

images, as well as urine biomarkers, disease trajectories, etc.

According to our meta-analysis, the accuracy rate of deep
Frontiers in Oncology 08
learning models for early diagnosis of pancreatic cancer has been

at a relatively high level in the past five years, and the publication

bias is relatively small. However, the heterogeneity among the

studies is relatively strong. In this regard, we provided further

explanations in the Limitations section.

Among the included studies, convolutional neural networks

(CNN) were the most commonly used algorithm because it can

easily handle multi-dimensional data by using a large number of

parameters. At present, imaging indicators such as CE-CT and EUS

seem to be more popular data for deep learning, but genomic data,

RNA, urine biomarkers, and disease trajectories have also become

new objects for deep learning, and perhaps they can become one of

the main directions of future research for diagnosing and predicting

pancreatic cancer using artificial intelligence algorithms.

In recent years, multi-modal approaches has also become a

research hotspot, but its application in the early diagnosis of

pancreatic cancer remains to be explored. Multi-modal

approaches refer to the simultaneous generation of multiple

omics data from the same sample, thereby providing a

comprehensive view of biological system processes. Therefore,

multi-omics data offer valuable and holistic insights into the

complex interactions between biological mechanisms and

biomarkers (46, 47). Multi-modal approaches have the potential

to integrate different data sources (such as imaging data, genomics,

and clinical records), thereby enriching the feature space and

improving diagnostic accuracy (48). However, this integration is

challenged by data heterogeneity, which arises from differences in

data acquisition protocols, patient populations, and measurement

scales. Optimization can be achieved from two perspectives. First,

from the perspective of data sources, establishing standardized
FIGURE 4

Forest plot of sensitivity and specificity of deep learning (DL) in identifying pancreatic tumors.
FIGURE 5

Summary receiver operating characteristic (SROC) curves for the
diagnosis of pancreatic tumors using DL. Each circle indicates an
individual study, red diamond represents summary sensitivity and
specificity.
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public databases can reduce heterogeneity caused by single data

sources. Providing open-source code can help researchers better

reproduce study results and reduce heterogeneity caused by

different parameter settings. Second, from the perspective of

model stability and generalizability, it is encouraged to conduct

multicenter studies to train models with large amounts of data,

thereby improving the stability and generalizability of models under

different devices and operating habits (49, 50).

Deep learning algorithms typically contain a large number of

parameters, which need to be learned through data to establish a

complex mapping relationship between input features and output
Frontiers in Oncology 09
results. The more parameters, the stronger the model’s expressive

power, but it is also prone to overfitting (i.e., performing well on the

training set but having poor generalization ability on external

validation sets) (51, 52). Large sample sizes can provide more

diverse data distributions, helping deep learning models obtain

high-robust features and improve generalization ability (53).

Therefore, large sample size data is needed for model training.

However, in our meta-analysis, only one study used more than 1000

samples, and other studies were limited by the size of the data.

Therefore, in future research, multicenter large sample sizes or even

multiple countries may become the main trend.
FIGURE 6

Forest plot for likelihood ratio after combination (LR+, LR-).
FIGURE 7

Likelihood ratio scatter plot is relatively scattered, and there may be large inter-study heterogeneity. PLR is the positive likelihood ratio and NLR is
the negative likelihood ratio.
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An interesting finding of the review is that the number of

published studies on deep learning models for early diagnosis of

pancreatic cancer has been on the rise since 2020. In our meta-

analysis, the number of included studies has been on the rise in all

years except for 2022 (Figure 1). The reason for the relatively small

number of relevant studies in 2022 may be affected by the COVID-

19 pandemic. Currently, deep learning for early diagnosis of

pancreatic cancer is in a research boom, and this field requires

more high-quality research.

Many studies describe deep learning models as “black boxes”

models, and we cannot accurately explain their specific working

principles (2, 6, 7, 45). Currently, there are studies in the medical

field that have explained machine learning models, such as

Castagno et al. using the KernelSHAP tool to evaluate the

importance of features for model prediction and selecting the top

5 features as core variables to build a new model (54). Du et al. used

the SHAP algorithm to explain the model for differentiating

hepatocellular carcinoma using gray-scale ultrasound (55).

Furthermore, enhancing model interpretability is crucial for

clinical acceptance, as it allows clinicians to understand and trust

the decision-making processes of deep-learning algorithms (56).

Techniques such as feature visualization, saliency maps, and model-

agnostic interpretability methods can provide insights into how

models derive their predictions, thereby bridging the gap between

complex algorithms and clinical practice (57). As the complexity of

models increases, such as deep learning models, the difficulty of

model interpretability has significantly risen. However, to enhance

the reliability of deep learning models and promote their clinical

application in early diagnosis of pancreatic cancer, the

interpretability of deep learning models may become the focus of

research in the coming years (54, 55, 58).
FIGURE 8

Fagan nomogram of the accuracy of DL in the diagnosis of
pancreatic tumors.
FIGURE 9

Deek funnel plot showing publication bias.
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Limitations

Lv et al. observed that 10 included studies exhibited high

heterogeneity; however, even after conducting subgroup analyses

and sensitivity analyses, no source of heterogeneity was identified

(18). In our Meta-analysis, we encountered the same predicament.

Heterogeneity could not be reduced by subgroup analysis.

We analyzed this. Firstly, the number of included studies was

limited. Although grouping could be done based on the above

criteria, this might be one of the reasons for the high heterogeneity.

Secondly, since the deep learning models currently applied in the

studies are mostly modified versions of large models such as CNN,

we cannot achieve complete uniformity in training the models,

which might also be the main reason for the heterogeneity.

Additionally, various parameter settings, image quality, and

inspection equipment could be sources of heterogeneity, but

further exploration is needed.
Conclusion

We believe that this review will be helpful for the scientific

community to better understand the application of deep learning

technology in risk prediction and diagnosis of pancreatic cancer.

Recent published studies have shown high accuracy rates. However,

due to limitations in dataset size and diversity, insufficient model

interpretability, difficulties in clinical validation and implementation,

ethical and legal concerns, as well as the acceptance and trust of

clinicians and patients, no deep learning models have been widely

applied in clinical practice.

To promote the future clinical application of deep learning

models, it is imperative to address several key issues: exploring

multi-modal approaches, resolving data heterogeneity problems,

enhancing the interpretability of DL models, designing large-

sample prospective studies, and conducting external validations.

We also believe that there are still cutting-edge issues that need

to be addressed in the risk prediction and diagnosis of pancreatic

cancer using artificial intelligence technology, which are specifically

reflected in the following four aspects: (1) Genomics, RNA, Urine

biomarkers, Disease trajectories and other data seem to have also

become new objects for deep learning, and perhaps can become one

of the main directions for future research; (2) Multi-center large-

sample or even multi-national samples may become the main

theme; (3) Early diagnosis of pancreatic cancer smaller than 2 cm

remains a challenge; (4) The interpretability of deep learning

models and the integration of multi-modal approaches may

become the focus of research in the coming years.
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