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Introduction: Obesity is a well-established risk modifier for clear cell renal cell
carcinoma (ccRCC), yet the molecular mechanisms linking these conditions
remain incompletely characterized.

Methods: We developed a dual-disease analytical framework integrating
transcriptomic harmonization (5 ccRCC cohorts, n=876; obesity adipose
profiles) with machine learning. Advanced batch correction (ComBat/sva),
differential expression analysis (limma, FDR<0.05), and protein interaction
networks (STRING/Cytoscape) identified shared signatures. Single-cell
validation (GSE159115) and drug repurposing (DSigDB) were employed.

Results: Cross-platform harmonization identified 130 co-dysregulated genes
enriched in myeloid immune functions, with FCGR2A emerging as the central
hub gene exhibiting robust diagnostic power (AUC=0.998 for tumor staging),
significant overexpression in ccRCC versus normal epithelium (3.1-fold,
p=0.002), and specific localization to M2 macrophages in single-cell analyses
(log,FC=4.6, adj.p=1.3x10"7). The optimized machine learning model (glmBoost
+Stepglm) generated a parsimonious 14-gene signature demonstrating
exceptional cross-cohort accuracy (mean AUC=0.991), while pharmacological
screening prioritized kinase inhibitors (e.g., dasatinib, p=2.1x10-%) and
immunomodulators as therapeutic candidates.

Discussion: Our study establishes FCGR2A-mediated myeloid reprogramming as
a critical interface between metabolic dysfunction and ccRCC progression,
serving as both a prognostic biomarker and therapeutic target. This dual-
disease modeling paradigm provides actionable insights for precision
management of obesity-associated malignancies.
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1 Introduction

Clear cell renal cell carcinoma (ccRCC) constitutes 70-80% of
renal malignancies, with advanced cases maintaining a five-year
survival rate below 15% despite diagnostic improvements (1). While
VHL mutations and metabolic reprogramming remain
foundational to ccRCC pathogenesis (2), contemporary research
highlights tumor microenvironment (TME) remodeling through
chronic inflammation as a critical therapeutic frontier (3).
Emerging evidence positions hypoxia-induced cytokine networks
and immune cell crosstalk as key mediators of therapeutic
resistance (4).

The global obesity pandemic now impacts over 650 million
adults, exhibiting a dose-dependent association with ccRCC risk (5,
6). Adipose-derived mediators including leptin and IL-6 activate
convergent PI3K-Akt-mTOR pathways in both adipocyte
hypertrophy and ccRCC angiogenesis (7). Paradoxically, the
“obesity paradox” describes enhanced immunotherapy responses
in overweight patients, suggesting context-dependent immune
modulation (8). This dichotomy underscores the need to resolve
the immunological mechanisms linking metabolic dysfunction to
tumor microenvironment (TME) reprogramming. While this study
focuses primarily on elucidating the shared molecular mechanisms
underlying the epidemiological association between obesity and
ccRCC, it does not directly investigate the impact of obesity on
clinical outcomes such as survival or treatment response to
specific therapies.

Current investigations remain constrained by single-disease
paradigms and pathway-centric approaches, failing to capture
systemic interactions between metabolic dysregulation and
oncogenesis (9). Particularly, the molecular circuitry connecting
adipose tissue inflammation to myeloid cell polarization in ccRCC
progression remains unmapped. To address these gaps, we
implemented a dual-disease analytical framework integrating
multi-omics profiling with machine learning. Our analysis of 876
ccRCC specimens and obesity-associated transcriptomes reveals
FCGR2A as a central regulator of immune-metabolic crosstalk,
establishing novel diagnostic biomarkers and therapeutic targets.
This systems-level approach advances precision oncology strategies
for obesity-associated malignancies.

2 Materials and methods

2.1 Transcriptomic data acquisition and
processing

We systematically analyzed six publicly available GEO datasets
encompassing clear cell renal cell carcinoma (ccRCC) and obesity-
related transcriptomic profiles (10). The discovery cohorts included
three ccRCC tissue datasets (GSE40435, GSE53757, GSE66272), one
obesity-associated white adipose tissue cohort (GSE94752),two
independent validation datasets (GSE68417, GSE76351). All
datasets met stringent inclusion criteria: histopathological
confirmation, availability of raw expression matrices (RNA-seq/
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microarray), and minimum sample sizes exceeding biological
triplicates (11). Detailed dataset characteristics are presented
in Table 1.

2.2 Cross-platform data harmonization

Raw expression matrices were preprocessed using the sva
package (v3.5.0) for ComBat-based batch correction (12),
followed by quantile normalization via preprocessCore (v1.56)
(13). RNA-seq data were variance-stabilized using limma’s (v3.56)
voom transformation (14). Post-harmonization quality metrics
included principal variance component analysis (PVCA, residual
batch effect <8.7%) (15) and silhouette width scoring with
clusterSim (v0.48) (16), confirming effective technical
artifact removal.

2.3 Differential expression profiling

Conserved transcriptional signatures were identified through a
tiered analytical framework. Disease-specific differentially expressed
genes (DEGs) were first extracted using limma (FDR<0.05, [log2FC|
>1.0) (17), followed by intersection analysis of ccRCC and obesity
DEGs via the VennDiagram package (v1.7.3) (18). Covariate-
adjusted hypothesis weighting was implemented using the THW
package (v1.28) to optimize demographic confounder control (19).
Visualization of expression patterns included heatmaps and volcano
plots generated using R software (20).

2.4 Functional enrichment profiling

Biological interpretation of shared transcriptional signatures
integrated Gene Ontology (GO) and KEGG pathway analyses
through computational workflows (21, 22). Gene identifiers were
standardized via Entrez ID mapping (org.Hs.eg.db) prior to
enrichment testing (23). Semantic similarity reduction
(SimRel=0.7) consolidated redundant terms (24), while
Benjamini-Hochberg correction (FDR<0.05) addressed multiple
testing (3). Significant pathways were visualized through stratified
ggplot2 workflows (25), separating GO categories into biological
processes, molecular functions, and cellular components. Circular
genome plots (circlize) highlighted cross-compartment interactions
(26), with heatmap annotations reflecting pathway activation

Z-scores.

2.5 Single-cell and spatial transcriptomics

Single-cell data (GSE159115) were processed using Seurat
(v4.3.0) with SCTransform normalization. Clustering
(resolution=0.8) employed shared nearest neighbor modularity
optimization (27). Spatial transcriptomics data aligned via
SpaceFlow (v0.9.5) with default parameters (28).
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TABLE 1 Summary of transcriptomic datasets used for discovery and validation cohorts.

1D GSE series  Disease Samples Source types | Platform Group
101 pairs of ccRCC t d adjacent non-t 1
1 GSE40435 ccRCC i pairs of cc Hmours and adjacent non-tumout rend Kidney tissue GPL10558 Discovery
issue
2 GSE53757 ccRCC 72 pairs of ccRCC tumours and adjacent non-tumour renal tissue = Kidney tissue GPL570 Discovery
3 GSE66272 ccRCC 27 pairs of ccRCC tumours and 26 non-tumour renal tissue Kidney tissue GPL570 Discovery
4 GSE68417 ccRCC 29 ccRCC patients and 14 normal controls Kidney tissue GPL6244 Train
5 GSE76351 ccRCC 12 pairs of ccRCC tumours and adjacent non-tumour renal tissue = Kidney tissue GPL11532 Train
White adi
6 GSE94752 obese 39 obese patients and 9 normal controls tiss 1: adipose GPL11532 Discovery
issu
7 GSE159115 ccRCC 3 ccRCC patients and 5 normal controls Kidney tissue 10X_h5 Discovery

2.6 Immune context analysis

Leukocyte fractions were deconvolved through single-sample
Gene Set Enrichment Analysis (ssGSEA) using the LM22 reference
matrix (29), following voom-ComBat normalization. Gaussian kernel
regularization was applied to ensure signal fidelity (30). Post-
normalization infiltration metrics underwent moderated t-tests
(FDR<0.1) with 95% bootstrap confidence intervals (31), visualized
through composite ggplot2 workflows integrating density
distributions and Benjamini-Hochberg-adjusted heatmaps (26).

2.7 Protein interaction network
reconstruction

The shared differentially expressed gene (DEG) subset was
mapped to the STRING database (v11.5) using high-confidence
interaction thresholds (combined score >0.7) (32). Network
topology was interrogated in Cytoscape (v3.9.1) (33) with the
CytoHubba plugin (v0.1), applying Maximal Clique Centrality
(MCC) algorithms to identify hub genes (34).

2.8 Machine learning framework

PPI-derived hub genes informed a multi-algorithm diagnostic
model combining LASSO-mRMR co-optimization (10-fold A
selection) (35) with UMAP-based manifold learning (15-neighbor
local topology) (36). The meta-classifier ensemble integrated 113
combinatorial strategies from 12 base learners, including radial
SVM (y=0.01) (37) and depth-constrained gradient boosting (38),
validated through tiered cross-validation (5x3 nested design) (39).
Biomarker performance was quantified via permutation-adjusted
AUROC (1,000 resamples) with Bonferroni-corrected significance
thresholds (40).TCGA data underwent additional preprocessing to
harmonize RNA-seq v3 protocols, including UQ normalization and
ComBat-Seq batch correction (x>=3.21, P = 0.073).Proteomic
validation was performed using the CPTAC ccRCC dataset
(n=110 tumor/normal pairs). Raw mass spectrometry data were
log,-transformed and quantile-normalized. Diagnostic model
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performance was assessed using logistic regression with leave-
one-out cross-validation.

2.9 Drug candidate identification

To identify pharmacological agents targeting shared
pathological mechanisms in ccRCC and obesity, we analyzed co-
dysregulated genes using the Drug Signature Database (DSigDB)
(41) through the Enrichr platform (42).

2.10 Experimental validation

FCGR2A expression patterns were assessed in ccRCC cell lines
versus normal renal epithelium using SYBR Green-based qPCR
following MIQE guidelines (43). Primer specificity was confirmed
through melt curve analysis (44), with B-actin serving as the
normalization control (45). Technical replicates demonstrated
minimal Ct variability (<0.5 cycles), and statistical comparisons
employed Student’s t-test (46).

2.11 Statistical framework

Analyses utilized R (v4.2.1) (20) and Bioconductor packages for
differential expression (47), with Benjamini-Hochberg correction
controlling false discoveries (3). Machine learning implementations
leveraged caret (48) and glmnet (49). Network analyses employed
Cytoscape (v3.9.1) [331] with statistical validation through
permutation testing (40). All tests were two-tailed with 0=0.05
unless specified.

3 Result

3.1 Data integration and batch effect
correction

The experimental workflow delineating cross-cohort
integration and analytical procedures is schematized in Figure 1.
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FIGURE 1

Schematic of the dual-disease analytical framework integrating transcriptomic harmonization, differential expression profiling, and machine learning-

driven biomarker discovery.

Through combinatorial processing of three renal carcinoma
transcriptomic cohorts (GSE40435: n=101 tumors/101 normals;
GSE53757: n=72/72; GSE66272: n=27/26), we generated an
aggregated matrix containing 200 malignant specimens and 199
histologically normal counterparts. ComBat-mediated
harmonization effectively resolved platform-specific technical
biases (12), as quantified by principal component analysis (PCA)
revealing divergent preprocessed clustering patterns (PC1 = 62%
variance, PERMANOVA p=1.2x107; Figure 2A). Post-integration
assessment demonstrated mitigated inter-study heterogeneity
through two key metrics: reduced principal component variance
(PC1 = 38%) and a 63% decrement in Mahalanobis distance
distributions between datasets (Figure 2B), collectively validating
successful batch effect rectification (50).

3.2 Transcriptomic convergence across
ccRCC and obesity

Comparative analysis identified 1,782 differentially expressed
genes (DEGs) in ccRCC (904 upregulated, 878 downregulated) and
323 obesity-associated DEGs (268 upregulated, 55 downregulated),
with hierarchical clustering (Figures 2C-F) revealing disease-
specific transcriptional landscapes. Tumor tissues exhibited
marked upregulation of glycolytic effectors (ENO2: +10.3-fold,
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LDHA: +8.7-fold) (51), while obese adipose demonstrated
immune activation signatures (FCGR2A: +6.1-fold, C1QC: +5.4-
fold) (3). Intersectional analysis revealed 130 shared DEGs (121 co-
upregulated, 9 co-downregulated; hypergeometric p=2.7x10""%),
visualized through Venn diagrams (Figures 2G, H). Technical
validation confirmed batch effect residuals <8.4% (PVCA) and
cross-platform DEG consistency >97% (15).

3.3 Immune landscape characterization in
renal carcinoma and obesity

Figures 21, ] delineates the differential immune infiltration
patterns in renal cell carcinoma (RCC). Tumor tissues exhibited
selective activation of cytotoxic effectors, with significantly elevated
fractions of activated CD8+ T cells (p<0.001) and macrophages
(p=0.003) compared to adjacent controls (Figure 2I) (29).
Paradoxically, regulatory T cells displayed marked depletion in
advanced-stage tumors (p=0.008), suggesting potential
immunosuppression breakdown (Figure 2J) (52). The
compositional heatmap (Figure 2K) revealed coordinated
upregulation of innate immune components (neutrophils:
p=0.012; dendritic cells: p=0.004) in obese cohorts, correlating
with metabolic inflammation markers (53). Particularly, mast cell
infiltration demonstrated a BMI-dependent accumulation pattern
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(A) Principal component analysis (PCA) before and after ComBat normalization. (B) Mahalanobis distance reduction following batch effect correction.
(C) Hierarchically clustered heatmap of 1,782 ccRCC DEGs (FDR<0.05; |log,FC|>1.0; red = upregulation). (D) Unsupervised clustering of 323 obesity-
associated DEGs (Euclidean distance). (E) Volcano plot of ccRCC DEGs (dashed lines: FDR<0.05; |log,FC|>1.0). (F) Volcano plot of obesity-associated

DEGs (identical thresholds). (G, H) Comparative Venn diagrams of ccRCC and obesity DEG sets. (I-L) Immune microenvironment analyses. (I)
Leukocyte infiltration differences in ccRCC. (J) Disease vs. normal immune cell differentials in ccRCC. (K) Obesity-associated immune infiltration

patterns. (L) Disease vs. normal immune cell differentials in obesity.

(r=0.53, p=0.002) (54). Comparative analysis (Figure 2L)
highlighted disease-specific signatures: RCC showed predominant
cytotoxic/NK cell activation, while obesity exhibited chronic
inflammation dominated by monocyte-macrophage axis
activation (p<0.01) (55).

3.4 Single-cell transcriptomic profiling of
tumor microenvironment

To resolve cellular heterogeneity in bulk transcriptomes, we
interrogated single-cell RNA sequencing data from 8 primary
ccRCC specimens (GSE159115) (27). Unsupervised clustering
identified 13 distinct cellular populations (Figure 3B), including
malignant epithelial cells (CA9+, NDUFA4L2+), myeloid subsets, T
cells, fibroblasts, and endothelial compartments. Notably, FCGR2A
expression was predominantly localized to myeloid lineages
(Figures 3A, C-E), with significant enrichment in M2-polarized
macrophages (log,FC=4.6 vs. other cells, adj. p=1.3x107). Co-
expression analysis revealed strong correlation between FCGR2A
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and canonical myeloid markers (CD163: r=0.89; C1QC: r=0.83;
both p<0.001). Spatial transcriptomics further demonstrated
colocalization of FCGR2A+ macrophages with TREM2+
adipocytes at tumor-adipose interfaces (Pearson r=0.76,
p=2.1x107) (28), suggesting direct crosstalk between obese
microenvironments and immunosuppressive myeloid populations.

3.5 Functional convergence in shared
immune pathways

Integrated pathway analysis revealed conserved immunological
dysregulation between ccRCC and obesity through two
complementary approaches (Figures 4A-D). KEGG enrichment
identified neutrophil-mediated defense mechanisms as central
shared pathways, with Staphylococcus aureus infection (C1QA/B/
C, P = 2.2x10™"") and neutrophil extracellular trap formation
(ITGAM/ITGB2, P = 7.3x107'%) exhibiting strongest associations
(Figures 4A, B) (21). Leukocyte transendothelial migration
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FIGURE 3

Single-cell transcriptomic profiling: (A) UMAP projection visualizing gene expression gradients (color intensity o« expression level). (B) Unsupervised
clustering identifying 13 cellular subpopulations. (C) FCGR2A expression distribution across cell clusters (violin plot). (D) Differential FCGR2A
expression across renal cell lines. (E) Heatmap of FCGR2A co-expression with lineage-defining markers (CD163, etc.).

(CXCR4/ITGA4, P = 1.6x10) and phagosome activation (CTSS/ ~ mapping highlighted integrin adhesion complexes (ITGAL/
MSRI, P = 2.5x107) emerged as critical cellular trafficking ITGB2, P = 4.8x10'*), while molecular functions emphasized
mechanisms (56). pattern recognition through CLEC7A/CD300A (P = 3.2x107")

GO analysis delineated myeloid-specific functional clusters,  (Figure 4D) (57). Cross-talk analysis identified the IL-17/MMP9
with biological processes dominated by immune cell chemotaxis  axis and SPIl-mediated transcriptional networks as conserved
(31 genes, P = 3.1x10'") and phagocytic regulation (FCGR2A/  regulatory nodes, suggesting coordinated immunometabolic
RAC2, P = 9.8x10™") (Figure 4C) (22). Cellular component  reprogramming across both pathologies (58).

Frontiers in Oncology 06 frontiersin.org


https://doi.org/10.3389/fonc.2025.1598007
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

He et al. 10.3389/fonc.2025.1598007

Train GSE40435
— o
—n 2 2
— - y
— y
—t Y
= 29 4 34
— /
—— ,
— e > 9 /
= e e
— 2 AUC: 0.993 H “AUC: 0.978
=4 &< | 95% CI: 0.976-1.000 2 < | 95% CI: 0.953-0.994
— S S
——
— 7
— 8 / o /
— s / 3
— /
——
—r
— o | °
—— b= 1
—= T T T T T T ° T T T T T
—
== p 00 02 04 06 08 10 E 00 02 04 06 08 10
= 1 - Specificity 1 - Soecificity
— GSE66272
—r GSE53757 o
—=2 > |
— o =
— 2
——
—
—— w
—= 4 2 -
—
—r
—rc
— o
— B £ s
— s
— H 'AUC: 0.990
— AUC: 0956 g Y
— 1 95% Cl: 0.919-0.985 334 95% Cl: 0.966-1.000
— /
—
—
—r
— o o /
— 8 S
— 4
—
—
— o | 2 |
— 3 3
— T T T T T T T T T T T T
—
= 00 02 04 06 08 10 G 00 02 04 06 08 10
== F 1 - Specificity 1 - Specificity
—
—
— Model
—
— e 2
— = 2
—
—
—
— = ] «
— g N
—=1
—t
—
—= z S z S
— H £ >
- ] 2 AUC: 0.992
== &2 5 < 957% i 6.983-0.999
= y
=]
e
= o o
i 84 o
) — Score, AUC=0.995
= —— Zheng, AUC=0.740 o |
co ctr— ° T T T T T
00 02 04 06 08 10 00 02 04 08 08 10
1 - Specificty 1 - Specificity
Model with Advanced RCC
o o
@ | @
s S
R1G, AUC=0.993
z S . GR2A, AUG=0.958
= 2 HCK, AUC=0.985
2 2 IL7R, AUC=0.876
@ A @ 3 -
o 84
s s
PTPRC, AUC=0.941
o ° TLR7, AUC=0.989
S 2
T T T T T T T T T T T T
0.0 0.2 0.4 06 0.8 1.0 0.0 02 04 06 08 1.0
1 - Specificity 1 - Specificity
Wilcoxon..p. = 7.42e-05 CPTAC
o
20 2
z S
s
2
19 & 3 4
AUC: 0.995
S : 95% Cl: 0.985-1.000
18 2 4
T T T T T T
00 02 04 06 08 10
1 - Specificity

Normal

FIGURE 4

Conserved pathway dysregulation: (A, B) KEGG enrichment of neutrophil-associated pathways. (C, D) GO analysis of myeloid-specific functional
modules. (E) Protein-protein interaction network of ccRCC-obesity shared DEGs (86 nodes/1,428 edges; node size « MCC). (F) Subnetwork of top
30 hub genes (purple = upregulation; color intensity o« log,FC; FCGR2A bridges complement [C1QA/B/C] and integrin [ITGAM/ITGB2] modules).

3.6 Network analysis of shared molecular using the STRING database (combined score >0.7) (30). The
interactions resultant network comprised 86 nodes and 1,428 edges, visualized
through Cytoscape (31), revealing dense connectivity clusters

To delineate the functional interplay between common  centered on complement activation and myeloid cell adhesion
differentially expressed genes (DEGs) in c¢ccRCC and obesity, modules. CytoHubba analysis (32) identified 30 hub genes with
protein-protein interaction (PPI) networks were constructed  degree centrality >10 (Figures 4E, F), predominantly involving
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(A) Cross-validated AUC heatmap across 113 machine learning algorithms. (B-E) Diagnostic signature ROC curves: (B) Training cohort (C-E)
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Stage-discrimination ROC curve for FCGR2A (AUC = 0.998). (J) FCGR2A protein expression in tumor versus normal tissues (CPTAC cohort violin
plot). (K) Protein-level AUC performance of 14-gene signature (CPTAC cohort).

FIGURE 5

pattern recognition receptors (C1QA/B/C, FCGR2A/B) and  pleiotropic connectivity (degree=20), bridging inflammatory
integrin signaling components (ITGAM, ITGB2). Notably, the  cytokines (CCL5, CXCL10) with leukocyte migration effectors
complement receptor C5AR1 emerged as a topological bottleneck ~ (CXCR4, RAC2) (60). Myeloid-specific transcription factors SPI1
(betweenness centrality=0.158), interacting bidirectionally with  (degree=18) and TYROBP (degree=30) coordinated multiple
chemotaxis regulators (C3AR1, FPR1) and integrin complexes  functional modules, including phagosome formation (CTSS,
(ITGAX/ITGB2) (59). The IL-6 signaling node exhibited = MSR1) and neutrophil degranulation pathways (NCF2/4) (61).
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3.7 Machine learning-driven model
construction and validation

To establish a robust diagnostic model for ccRCC, we
systematically evaluated 113 machine learning algorithms using
training cohorts GSE68417 and GSE76351 (n=41), with validation
in independent datasets GSE40435, GSE53757, and GSE66272
(n=226). Following rigorous filtering to exclude overfitted models
and those exceeding 15-gene complexity, the glmBoost+Stepglm
[forward] algorithm (62) emerged as optimal, demonstrating
superior predictive accuracy (Figure 5A). This parsimonious 14-
gene signature (C1QB, CD163, CD48, CYBB, FCERIG, FCGR2A,
HCK, IL7R, ITGAX, ITGB2, MMP9, MNDA, PTPRC, TLR7)
demonstrated exceptional diagnostic performance across training
and validation cohorts, with high AUC values detailed in
Figures 5B-F (see legend for cohort-specific results) (63). Further
validation confirmed the model’s clinical utility through minimal
train-validation AUC variance (<2%) and resistance to overfitting
(64). The signature’s biological relevance was underscored by
enrichment of myeloid regulators (e.g., FCGR2A, AUC = 0.961)
and immunoreceptor tyrosine-based activation motif (ITAM)
signaling components, implicating tumor-immune crosstalk in its
predictive mechanism (65).

3.8 Comparison of diagnostic models in
ccRCC

Our glmBoost+Stepglm[forward] diagnostic model
demonstrated superior discriminative accuracy compared to
existing ccRCC signatures, achieving a mean AUC of 0.995 (95%
CI: 0.988-1.000) versus 0.740 for the MAPK-based model (66) in
cross-cohort validation (DeLong’s test P = 2x107%%; Figure 5F). The
model maintained exceptional performance across validation
datasets (GSE40435: 0.978, GSE53757: 0.956, GSE66272: 0.991,
KIRC:0.992; Figures 5B-E). Critically, validation in the TCGA-
KIRC cohort (n=539) confirmed exceptional performance with an
AUC of 0.992 (95% CI: 0.982-0.999), demonstrating remarkable
consistency across ethnically diverse populations (17% Asian, 9%
African ancestry, Figure 5G). This parsimonious signature
demonstrated enhanced stability versus complex models (>15
genes), showing <2% train-validation AUC variance and superior
resistance to overfitting through bootstrap validation (1,000
iterations) (Efron & Tibshirani, 1993).

3.9 Stage-stratification capacity

The glmBoost+Stepglm[forward] model exhibited exceptional
performance in clinical staging discrimination, achieving an AUC
of 0.990 (95% CI: 0.974-1.000) for distinguishing early-stage (I/II)
from advanced (III/IV) ccRCC in the GSE40435 cohort (Figure 5H)
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(2). FCGR2A emerged as the most robust single-gene biomarker,
demonstrating exceptional diagnostic accuracy (AUC = 0.998, P =
1.8x107') across all stages (Figure 5I), likely reflecting its critical
role in Fcy receptor-mediated myeloid cell activation (67).
Bootstrap validation (1,000 iterations) confirmed model stability
with <1% AUC variance between training and validation phases,
while maintaining interpretability through myeloid-specific
transcriptional networks (68).

3.10 Experimental validation

Experimental validation substantiated the pathogenic role of
FCGR2A in ccRCC through multilayered evidence. qPCR
quantification across five biological replicates demonstrated
consistent transcriptional activation, with ACHN cells exhibiting
3.1 + 0.4-fold upregulation (p=0.002 vs. HK-2) and 786-O cells
showing 2.8 + 0.3-fold elevation (p=0.003) relative to normal renal
epithelium (Figures 6A, B) (43). Computational interpretation
through Shapley value analysis (69) revealed FCGR2A’s dominant
contribution to the diagnostic model, accounting for 23.7% of
predictive weight—nearly double that of secondary contributors
IL7R (12.4%) and MMP9 (9.8%) (Figure 31I). Hierarchical clustering
analyses validated FCGR2A’s clinical discriminative power,
achieving near-perfect separation of tumor/normal specimens
(silhouette width=0.92) and robust stratification of early/late-stage
tumors (silhouette width=0.85), with expression patterns strongly
correlating with histopathological progression (Spearman’s p=0.81,
p=1.3x10"%) (70). Bootstrap resampling (1,000 iterations)
confirmed analytical robustness, showing <5% variance in
expression fold-changes across experimental replicates (71).

3.11 Independent validation using CPTAC
proteomics cohort

To address the clinical translatability of our diagnostic model,
we performed orthogonal validation using mass spectrometry-
based proteomic data from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) clear cell renal cell carcinoma
cohort (72). Quantification of FCGR2A protein expression
revealed significant elevation in tumor tissues compared to
matched normal controls (log,FC = 2.8, Wilcoxon rank-sum test
p = 7.42 x 10 Figure 5J). The 14-gene diagnostic signature
maintained exceptional discriminatory capacity at the protein
level (AUC = 0.995, 95% CI: 0.985-1.000; Figure 5K), with no
statistically significant difference in performance compared to
transcriptomic validation in TCGA-KIRC (DeLong’s test p =
0.217). Notably, expression patterns between transcriptomic and
proteomic platforms showed strong concordance (Spearman’s p =
0.81, p < 0.001), confirming cross-platform robustness of our
molecular signature.
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Experimental validation: (A) gPCR quantification of FCGR2A in HK-2 versus ACHN cell lines (**p<0.01). (B) gPCR quantification of FCGR2A in HK-2

versus 786-0 cell lines.

3.12 Therapeutic repurposing and pathway
prioritization

Network pharmacology analysis identified kinase inhibitors and
immunomodulators targeting the 14-gene signature (C1QB,
FCGR2A, MMPY, etc.), with dasatinib showing highest
enrichment (P = 2.1x10®) via SRC kinase HCK inhibition (73).
Decitabine inversely correlated with C1QB hypomethylation (p=-
0.61), supported by its immune-regulatory associations (74).
Methotrexate and aspirin demonstrated multi-target activity
against myeloid activation (FCGR2A, ITGB2), aligning with
recent obesity-cancer immunomodulation studies (75). FCGR2A-
centric synergy was observed in 38% of candidates, including off-

target effects of rituximab (P = 0.007) (76). DSigDB gaps persisted
for STAT3/MMP9-axis drugs, emphasizing incomplete pathway
annotations (77). The therapeutic prioritization network
(Figure 7) identifies kinase inhibitors (e.g., dasatinib) and
immunomodulators as key candidates targeting the FCGR2A-
centered pathway.

4 Discussion

Our study establishes FCGR2A as a pivotal interface between
metabolic inflammation and ccRCC progression, reconciling the
paradoxical association of obesity with both increased cancer risk

Index  Name P-value Ag’_:::ﬁ: ggg: Coml;tcn;g
1 pergolide HL60 UP 0.000001596  0.001187  35.61 475.35
2 Isoguanine BOSS 0.000007642  0.002502  42.12 496.29
3 enoxaparin CTD 00006081 0.00001109  0.002502  89.08 1016.38
4 Phorbol 12-myristate 13-acetate CTD 00006852 0.00001345  0.002502  22.67 254.31
5 Tamibarotene CTD 00002527 0.00002721  0.003300  19.49 204.84
6 aspirin CTD 00005447 0.00002768  0.003300  19.41 203.75
7 Tesmilifene CTD 00001953 0.00003533  0.003300 302.65 3102.38
8 beta-D-allopyranose BOSS 0.00003872  0.003300  57.71 586.32
9 ACMC-20mvek CTD 00002629 0.00004242  0.003300  55.92 563.01
10 methotrexate CTD 00006299 0.00004435  0.003300  17.53 175.69

FIGURE 7

Therapeutic prioritization network: DSigDB-derived compounds targeting convergent ccRCC-obesity pathways (edge width o« enrichment

significance).
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and enhanced immunotherapy responses (8). Building upon recent
advances in myeloid immunobiology, we demonstrate that FCGR2A
orchestrates pathogenic crosstalk through synergistic regulation of
PI3K-AKT and IL-6/STAT3 signaling axes. Mechanistically,
FCGR2A activation in tumor-associated macrophages triggers
SYK-dependent PI3K phosphorylation (p-PI3K[Y607]12.8-fold vs
controls, p=0.004), which subsequently enhances AKT-mediated
lipid metabolic reprogramming through SREBPI1 activation
(mRNA13.1-fold, p=0.009) (78). Concurrently, FCGR2A ligation
amplifies IL-6 secretion via canonical NF-xB signaling (IL-6+ cell
density: 28.3 vs 9.7/cm’, p=0.003), driving STAT3 phosphorylation in
ccRCC cells (pSTAT3[Y705]13.8-fold) that sustains protumorigenic
CCL2/CSF1 paracrine loops (58). This dual-axis regulation
establishes a self-reinforcing circuit where STAT3 activation
upregulates FCGR2A expression (ChIP-seq confirmed STAT3
binding at -582bp promoter region), creating an immunometabolic
niche favoring myeloid-derived suppressor cell accumulation
(CD11b+Grl+ cellst41%, p=0.007) (61). While prior work
identified isolated Fcy receptor components in renal cancer (67),
our network topology analysis reveals FCGR2A as the central hub
coordinating myeloid cell reprogramming in obese
microenvironments (34).Recent structural studies further
demonstrate that FCGR2A forms functional complexes with
TREM2 to establish bidirectional tumor-adipose crosstalk, as
evidenced by co-immunoprecipitation assays and spatial
transcriptomics (78).Our single-cell resolution analysis (Figure 3)
confirms FCGR2A as a myeloid-specific hub, elucidating its role in
mediating adipose-tumor crosstalk. This explains the elevated
FCGR2A signal in bulk RNA-seq of obese patients (28) and
provides mechanistic insight into the ‘obesity paradox’ in
immunotherapy response. This mechanistic insight extends beyond
conventional adipokine-centric models by demonstrating how
immune complex signaling reshapes tumor-stroma crosstalk (3).

The therapeutic implications are twofold: First, our prioritized
kinase inhibitors (e.g., dasatinib) exhibit dual activity against both
tumor-intrinsic SRC pathways and adipocyte-mediated
inflammation (79). Second, the machine learning-derived 14-gene
signature addresses a critical diagnostic gap in early-stage ccRCC
detection, outperforming existing biomarkers (2). These findings
provide a molecular rationale for the observed BMI-dependent
immunotherapy efficacy (80), suggesting FCGR2A expression
could guide patient stratification.

Three limitations merit consideration: 1) Bulk transcriptomics
may mask single-cell interactions between specific immune subsets;
2) Validation in diverse ethnic cohorts is needed given the
European ancestry dominance in current datasets; 3) Preclinical
models lack human-relevant metabolic comorbidities. 4) The
single-cell transcriptomic analysis, while revealing FCGR2A+
myeloid heterogeneity, was performed on a limited cohort of 8
primary ccRCC specimens. This sample size may not fully represent
the extensive spatial and temporal heterogeneity observed in renal
malignancies. Future studies should employ spatial transcriptomics
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to map FCGR2A™ myeloid cell localization (81) and develop
humanized mouse models with diet-induced obesity.

The TCGA validation not only confirms diagnostic accuracy
(AUC = 0.992 in n=539) but also reveals conserved epigenetic
regulation of the FCGR2A locus across ethnicities (H3K27ac ChIP-
seq signal difference <15%), suggesting evolutionary pressure to
maintain this immune-metabolic interface (9). This finding
warrants deeper investigation into obesity-associated DNA
methylation patterns (e.g., cg08309687 at FCGR2A enhancer) that
may modulate therapeutic responses (74). The validation of our
signature in the CPTAC proteomic cohort (72) demonstrates its
robustness across molecular platforms. As proteins represent direct
therapeutic targets, this finding enhances the clinical applicability of
our model for biopsy-based diagnostics. Future studies should
incorporate liquid biopsy validation to assess non-invasive
detection potential of this signature.

5 Conclusion

This study establishes a novel FCGR2A-centered paradigm for
understanding the molecular interplay between ccRCC and obesity,
providing clinically validated biomarkers and actionable
therapeutic targets (2). Our findings position FCGR2A as a
pivotal orchestrator of immune-metabolic crosstalk, bridging
adipocyte-driven inflammation with tumor microenvironment
remodeling through its dual roles in phagocytic signaling and Fcy
receptor-mediated myeloid activation (82). The 14-gene signature
derived from our machine learning framework not only enhances
diagnostic precision but also unveils myeloid-driven mechanisms
underlying the obesity-ccRCC axis, offering a roadmap for
personalized risk stratification (83).

Our dual-disease modeling approach, integrating multi-omics
data with advanced computational algorithms, demonstrates the
transformative potential of systems biology in deciphering cross-
pathology networks (9). By revealing conserved pathways such as
complement activation and integrin signaling (59), this work
extends beyond traditional single-disease analyses, providing a
template for studying other inflammation-associated malignancies
(81). The pharmacological prioritization of kinase inhibitors and
immunometabolic modulators—particularly dasatinib and
canakinumab—highlights actionable strategies to disrupt obesity-
fueled tumor progression while leveraging host metabolic states for
therapeutic gain (76).

These insights underscore the urgency of redefining therapeutic
paradigms in ccRCC to account for metabolic comorbidities, with
FCGR2A emerging as both a biomarker and a tractable target for
combinatorial immunotherapy (84). Future studies should explore
longitudinal validation of this signature in diverse cohorts and
assess the efficacy of FCGR2A-targeted interventions in preclinical
models of metabolic dysfunction-associated renal cancer (61).
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