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AI-augmented pathology:
the experience of transfer
learning and intra-domain data
diversity in breast cancer
metastasis detection
Manuel Cossio1*, Nina Wiedemann2, Esther Sanfeliu Torres3,
Esther Barnadas Sole3 and Laura Igual1

1Department of Mathematics and Computer Science, Universitat de Barcelona, Barcelona, Spain,
2Institute of Cartography and Geoinformation, ETH, Zürich, Zürich, Switzerland, 3Biomedical
Diagnostic Center, Clinic Hospital, Barcelona, Spain
Background: Metastatic detection in sentinel lymph nodes remains a crucial

prognostic factor in breast cancer management, with accurate and timely

diagnosis directly impacting treatment decisions. While traditional

histopathological assessment relies on microscopic examination of stained

tissues, the digitization of slides as whole-slide images (WSI) has enabled the

development of computer-aided diagnostic systems. These automated

approaches offer potential improvements in detection consistency and

efficiency compared to conventional methods.

Results: This study leverages transfer learning on hematoxylin and eosin (HE)WSIs to

achieve computationally efficient metastasis detection without compromising

accuracy. We propose an approach for generating segmentation masks by

transferring spatial annotations from immunohistochemistry (IHC) WSIs to

corresponding H&E slides. Using these masks, four distinct datasets were

constructed to fine-tune a pretrained ResNet50 model across eight different

configurations, incorporating varied dataset combinations and data augmentation

techniques. To enhance interpretability, we developed a visualization tool that

employs color-coded probability maps to highlight tumor regions alongside their

prediction confidence. Our experiments demonstrated that integrating an external

dataset (Camelyon16) during training significantly improved model performance,

surpassing the benefits of data augmentation alone. The optimal model, trained on

both external and local data, achieved an accuracy and F1-score of 0.98,

outperforming existing state-of-the-art methods.

Conclusions: This study demonstrates that transfer learning architectures, when

enhanced with multi-source data integration and interpretability frameworks,

can significantly improve metastatic detection in whole slide imaging. Our

methodology achieves diagnostic performance comparable to gold-standard

techniques while dramatically accelerating analytical workflows. The synergistic
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combination of external dataset incorporation and probabilistic visualization

outputs provides a clinically actionable solution that maintains both

computational efficiency and pathological interpretability.
KEYWORDS

sentinel lymph node, breast cancer, metastasis detection, digital pathology,
transfer learning
1 Background

Breast cancer is the most commonly diagnosed cancer among

women worldwide, posing a significant global health burden (1).

The prognosis of breast cancer patients is closely tied to the stage of

disease progression, with survival rates declining sharply upon the

development of distant metastases. As a result, early detection is

critical to improving therapeutic outcomes and patient survival

(2, 3).

The evaluation of metastatic status in breast cancer patients

involves both preoperative and postoperative assessments.

Postoperative analyses provide detailed information about tumor

characteristics, including lymphatic and vascular invasion, the

extent of necrosis, and the degree of epithelial hyperplasia (4).

While these parameters are valuable indicators of metastatic

potential, they are only available after surgical intervention.

Preoperative diagnostic tools, such as imaging modalities, offer

preliminary insights into tumor behavior. However, definitive

assessment of lymph node involvement—a key determinant of

metastatic spread—relies on the analysis of the sentinel lymph

node (SLN) obtained during surgery (5, 6) (Figure 1A). SLN

biopsy is a minimally invasive technique that enables early

detection of tumor cells disseminated from the primary site,

facilitating precise therapeutic planning and reducing the need for

more extensive surgical procedures (4, 5).

Following SLN biopsy, the tissue is processed and evaluated by

pathologists through microscopic examination. Tissue structures

are differentiated using staining techniques, such as hematoxylin

and eosin (HE) for general morphology or immunohistochemistry

(IHC) for specific biomarkers (7) (Figures 2A, B, respectively). IHC

is particularly valuable for identifying metastatic cells within normal

parenchyma, especially in cases where morphological

differentiation between normal and abnormal tissue is challenging

using HE staining alone (8, 9) (Figure 1B). The IHC process

involves the use of primary antibodies that bind to specific

antigens in the tissue, followed by enzyme-conjugated secondary

antibodies that produce a visible signal, typically a brown

precipitate, at the target site (10).

Advances in medical technology have enabled the digitization of

histopathological slides, resulting in whole-slide images (WSIs).

WSIs capture multiple magnifications of the same tissue region

within a single file, allowing pathologists to navigate seamlessly
02
from a macroscopic overview to high-resolution details. This digital

transformation has facilitated the application of computer vision

algorithms, particularly convolutional neural networks (CNNs), to

automate the detection of tumor regions in biopsy specimens.

Researchers have developed CNN-based models capable of

identifying various cancer types, including breast cancer, within

WSIs (11–17). These models are trained on annotated datasets

containing both tumor and healthy tissue samples, enabling them to

learn discriminative patterns for accurate classification (18). To

manage the computational demands of processing large WSIs,

images are often divided into smaller patches at the highest

resolution. The CNN generates patch-wise predictions, which are

subsequently aggregated to produce comprehensive diagnostic

visualizations (19) (Figure 1C).

Despite its potential, computational pathology faces two key

challenges. First, the limited availability of patient data often

requires multi-institutional collaborations, delaying research

progress (20). Second, the computational resources needed for

training models are immense, with studies requiring terabytes of

storage and hundreds of thousands of GPU hours (21). These

demands strain infrastructure and contribute to environmental

concerns, as medical imaging accounts for approximately 1% of

global greenhouse gas emissions (22).

This study proposes a transfer learning approach to address

critical challenges in computational pathology for metastatic tumor

detection. Building on the established success of deep learning in

medical imaging, we investigate whether pretrained models can be

effectively adapted to overcome data scarcity and computational

constraints in clinical settings. Our work is guided by three

principal hypotheses: First, that transfer learning with strategic

fine-tuning can extract diagnostically relevant patterns from

limited histopathology datasets while maintaining clinical-grade

accuracy. Second, combining institutional data with curated

public repositories will yield more robust feature representations

than either source alone. Third, integrating intuitive visual

interpretability tools can render model decisions transparent to

pathologists without requiring specialized technical expertise.

The experimental framework employs a ResNet50 architecture

initialized with ImageNet weights, subsequently fine-tuned on

annotated whole-slide images of sentinel lymph node biopsies

from Hospital Clinic Barcelona1. Through carefully designed

comparisons across eight experimental conditions, we
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FIGURE 1

Overview of the metastasis detection process with transfer learning. (A) demonstrates the sampling process conducted in the operating room,
wherein the surgeon performs a procedure to locate and extract the sentinel lymph node (SLN) for subsequent pathology processing. (B) depicts the
biological sample processing and image recording stages, which comprises two primary components. The first component involves slide
preparation, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) with cytokeratin staining. The second component involves slide
identification via a barcode, image scanning as a whole slide image (WSI) file, and storage within the hospital server. (C) the computational section,
comprises three distinct components. C1 pertains to the procedures associated with data generation and data processing, C2 is dedicated to the
fine-tuning of the ResNet50 model, and the patch-level testing thereof, while C3 is focused on whole-slide testing. C1, in particular, encompasses
the generation of 4 distinct patch datasets and encompasses the data preprocessing stage, which includes the creation of patches and various data
augmentation techniques. C2 is characterized by the detailed procedures for fine-tuning the ResNet50 model, employing various configurations,
including the different dataset types and augmentation settings. In this phase, patch-level testing is performed, and metrics such as accuracy (ACC),
sensitivity (SEN), specificity (SPE), and F1-score (F1) are reported. C3 provides an elaborate account of the patch-level testing, using patient WSI of
HE stained tissue sections. This phase also involves the reporting of metrics such as ACC, SEN, SPE and F1. Furthermore, it elucidates the
implementation of a visual interface designed for medical professionals to facilitate the interpretation of model predictions. This interface supports
the analysis and assessment of the model’s performance, thereby enhancing its practical utility in clinical settings. FIB, tumor associated fibrosis;
AUG, augmentations.
FIGURE 2

Details of the mask generation process. (A) Patch of a whole slide image (WSI) stained with hematoxylin and eosin (HE) with tumoral cells. (B) The
consecutive slice of the same surgical piece, stained with Cytokeratin immunohistochemistry (IHC, brown deposits indicating tumoral cells). (C) Mask
generated only over tumoral cells. (D) Mask generated over tumoral cells and tumor-associated fibrosis (FIB). (A, B) were generated during the
pathology section. (C, D) Were generated during the computational section.
Frontiers in Oncology frontiersin.org03

https://doi.org/10.3389/fonc.2025.1598289
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cossio et al. 10.3389/fonc.2025.1598289
systematically evaluate the impact of key factors including: (i) data

composition strategies balancing local and public datasets, (ii)

augmentation techniques for improved generalization, and (iii)

evaluation protocols that assess both computational and

clinical viability.

A novel aspect of this research is its dual-focus evaluation

methodology, which combines traditional performance metrics

with clinician-centric visualization tools. This approach seeks to

establish whether computational predictions can simultaneously

satisfy quantitative benchmarks and operational requirements for

pathological diagnosis. The study design intentionally avoids

presupposing optimal configurations, instead examining how

varying degrees of data diversity and explainability influence

model behavior in diagnostically relevant scenarios.
2 Related work

The detection of metastasis from primary tumors is a critical

step in tumor staging, with SLN biopsies serving as the gold

standard for assessing lymph node involvement (5, 6).

Historically, pathologists relied on optical microscopes to

examine processed and stained tissue samples (23). However, the

introduction of digital slide scanners has transformed this process,

enabling the creation and storage of WSIs that can be analyzed

computationally (24).

A central challenge in automated WSI analysis is the accurate

classification of tumor regions. This requires the generation of

masks—annotations that distinguish cancerous cells from healthy

tissue. Masks can be binary, indicating the presence or absence of

cancer, or multi-label, providing additional information such as

malignancy grades or the presence of immune cells within the

tumor microenvironment (25, 26). These masks are typically

created by pathologists or derived from ICH techniques. In the

latter approach, IHC is used to identify cancer regions in a tissue

slice adjacent to the HE-stained slide. The spatial information from

the IHC slice is then transferred to the HE slide to generate the

corresponding mask (26, 27).

In machine learning-based analysis of WSIs, the images are

typically divided into smaller patches, where patch size serves as a

critical parameter affecting both computational efficiency and the

model’s capacity to capture relevant contextual information (19, 28,

29). To mitigate challenges associated with limited dataset size and

variability, data augmentation techniques—including rotation,

contrast adjustment, noise injection, and grayscale conversion—

are widely adopted (15, 16, 30, 31). While such augmentations can

enhance model robustness and generalization, excessive application

may introduce artificial patterns or distort underlying data

distributions (32). Notably, some studies mention some benefits

of augmentation without providing full comparative analyses

against non-augmented baselines, raising questions about their

necessity in certain contexts (33).
1 https://www.clinicbarcelona.org/.
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Two primary methodologies are commonly employed for

training models in WSI patch classification. The first is transfer

learning, wherein a model pretrained on a large-scale dataset (e.g.,

ImageNet) is fine-tuned for the target histopathological task. A key

variant of this approach is end-to-end learning, which unifies

feature extraction and classification within a single framework,

enabling direct learning from image patches. This method is

particularly beneficial when working with limited annotated data,

as it leverages pre-existing feature representations. Widely used

architectures for transfer learning include ResNet, AlexNet,

DenseNet, EfficientNet, Inception V3, and VGG (34–37). For

example, ResNet-50 has demonstrated strong performance in

breast cancer histopathology detection (38). However, a notable

limitation of these deep learning models is their inherent “black-

box” nature, often lacking interpretability in decision-

making processes.

The second methodology separates feature extraction from

classification. Handcrafted feature extraction involves using

domain specific knowledge and algorithmic methods to identify

and quantify relevant features within an image. These features are

then fed into a separate classifier, such as a Support Vector Machine

(SVM) or Random Forest (34, 39, 40). Examples of handcrafted

features include those derived from texture analysis (e.g., Local

Binary Patterns, Gabor filters), edge detection (e.g., Canny edge

detector), or feature descriptors (e.g., SIFT, HOG) (41–43). While

handcrafted features are interpretable, they require extensive

domain expertise and may not capture high-level abstractions as

effectively as deep learning models.

The performance of deep learning models in histopathology is

typically evaluated using a combination of quantitative metrics

and qualitative visualizations. Standard quantitative measures

include accuracy, sensitivity, specificity, precision, recall, F1-

score, and the Area Under the Receiver Operating Characteristic

Curve (AUC-ROC) (19, 28, 40). On the qualitative side,

visual assessments often involve the use of heatmaps, which

highlight regions of interest within WSIs. These heatmaps can

be displayed independently or overlaid on the original tissue

images, occasionally requiring grayscale conversion to improve

visual clarity (28, 44). Such visualizations play a critical role in

aiding medical professionals by enhancing the interpretability

of model predictions and by facilitating the identification of

cancerous regions, which in turn can support the development

of new training datasets (28).

Among the various visualization techniques, Class Activation

Map (CAM)-based methods are widely used for explaining CNN

outputs. These techniques work by projecting back the weights from

the final convolutional layers to generate saliency maps that

highlight spatial regions most influential to a model’s prediction

(45). While effective for small-scale images, applying CAM-based

methods to WSIs—which can exceed 10 billion pixels at high

resolution—poses significant challenges. First, generating maps

for each of the thousands of patches in a WSI can be

computationally expensive. Second, the resulting pixel-level

heatmaps across such a massive canvas can become visually

overwhelming, introducing excessive detail that obscures broader
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diagnostic patterns. Third, in contrast to natural images where

objects of interest are often visually prominent, regions of interest in

pathology images tend to be subtle and lack strong saliency or clear

boundaries. This makes it difficult for CAM-based methods to

consistently localize relevant features, often resulting in under- or

over-activation of regions and reducing the interpretability of the

visualization at the clinical scale (45–47).

In summary, despite notable advancements in automated WSIs

analysis, key challenges persist in addressing data variability,

optimizing data augmentation, and improving model interpretability.

Our work advances current methodologies by (1) incorporating

external datasets to better capture domain variability, (2)

systematically evaluating the influence of augmentations on model

performance, and (3) developing visualization tools to increase the

transparency of deep learning models in metastasis detection.
3 Data and methods

3.1 Data

In this study, WSIs were obtained from the Pathological

Anatomy Service of the Biomedical Diagnostic Center at the

Hospital Clinic Barcelona (BDC-HCB), Barcelona. The images

were digitized using the Roche Diagnostics Ventana DP200 slide

scanner at a final magnification of 40X. To ensure data privacy, the

images were stored on a secure virtual disk with encryption and

password-protected access. The Ethics Committee of HCB

authorized the use of the images for this study.2 BDC-HCB

provided two distinct batches of images. The first batch

comprised 10 hematoxylin and eosin (HE) images and 5

immunohistochemical (IHC) images, which were utilized for

model fine-tuning and patch-based testing. These images had an

average resolution of 0.5 µm/px and an average size of 75,000 px ×

50,000 px. Among the HE images, five were confirmed as positive

for metastasis in the sentinel lymph node (SLN) (Table 1, columns

HE’+’), as validated by IHC using the mouse monoclonal antibody

Cytokeratin 19 (A53-B/A2.26) against simple and complex

epithelia, developed by Cell Marque Tissue Diagnostics (Table 1,

columns IHC-GT).

Consequently, each positive case included two corresponding

images: one in bright field HE and another in bright field IHC. A

key diagnostic feature of cancer cells in IHC images is the presence

of brown deposits. The remaining five HE images, which were

negative for SLN metastasis, were provided exclusively in bright

field HE format (Table 1, columns HE’-’). The second batch,

consisting of 5 positive HE images and 5 corresponding IHC

images, was reserved for whole slide testing.

Following the pathology section, the computational section

was initiated, beginning with the annotation process. Tumor

masks were generated by manually delineating tumor regions in

HE images from positive cases (Figures 2C, D; Table 1, column
2 See Section 6.1: Ethics Approval and Consent to Participate.
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MC). Tumor areas were identified based on the presence of the

marker in the corresponding IHC WSIs, as confirmed by

pathologists (Figure 2B). The delineation of these masks was

performed using the labelme3 software, applied to each

previously identified tumor region. Each mask assigned a

value of 1 to pixels corresponding to tumor cells and 0 to non-

tumor cells. The alignment of the masks was rigorously validated

through a three-stage visual inspection process: first by the

pathologist, then by the imaging technician, and finally by the

computational engineer.

Patches measuring 90 × 90 pixels were extracted from theWSIs,

each containing regions labeled as positive (tumor), negative (non-

tumor), or a mix of both. A patch was classified as positive if more

than 20% of its pixels were tumor-associated (Table 1, column Label

‘+’). Critically, no upper threshold was imposed—patches with

varying tumor burdens (e.g., 30%, 50%, 80%, etc.) were randomly

included in the positive class to improve model generalizability and

reduce the risk of misclassifying partially tumorous patches.

Conversely, patches with no tumor pixels were labeled as negative

(Table 1, column Label ‘-’). To address class imbalance, the more

abundant negative class was subsampled to match the number of

positive patches. Finally, a subset of patches was manually reviewed

to verify label accuracy.

Four patch datasets were constructed using the first batch of

WSIs, which included 10 HE images (5 positive and 5 negative

cases), for model training (Table 1, columns Patch datasets). The

first dataset, labeled ‘Tumor’, exclusively contained patches with

tumor cells, as defined by the masks of positive patches (Table 1,

first row). The second dataset, ‘Tumor + FIB’, incorporated

tumor-related fibrosis alongside tumor cells within the masks of

its positive patches (Table 1, second row). The third dataset,

‘Tumor extended’, was created by expanding the ‘Tumor’ dataset

with additional patches (Table 1, third row). The fourth dataset,

‘Interhospital’, comprised a 50%/50% mixture of patches from the

‘Tumor’ dataset and samples from the Camelyon 16 dataset of

equivalent size (Table 1, fourth row). The Camelyon 16 dataset

was developed by retrospectively sampling sentinel lymph nodes

(SLNs) from 399 patients who underwent breast cancer surgery at

two Dutch hospitals: Radboud University Medical Center

(RUMC) and University Medical Center Utrecht (UMCU). The

slides were digitized using a Pannoramic 250 Flash II scanner

(3DHISTECH) with a 20x objective lens. Metastases on the slides

were annotated under the supervision of expert pathologists.

While obvious metastases were annotated without IHC staining,

IHC (anti-Cytokeratin [CAM 5.2], BD Biosciences) was employed

for ambiguous cases (3, 48). No image normalization techniques

—such as histogram equalization or style transfer—were applied

to the Camelyon16 dataset, as its inherent variability was

intentionally preserved to assess its impact on model

performance. As shown in Figure 3, noticeable differences in

contrast and saturation are evident across samples from

different sources.
3 https://pypi.org/project/labelme/.
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3.2 Data augmentation and preprocessing

The image preprocessing pipeline incorporated multiple data

augmentation techniques to enhance model robustness. First, color

space transformations were applied by converting images to

grayscale followed by transformation from RGB to HSV color

space, with saturation values randomly sampled from a uniform

distribution between 1 and 180. Noise augmentation included two

components: Gaussian noise with mean values randomly selected

from 0 to 10, and salt-and-pepper noise applied with probabilities

ranging uniformly from 0 to 1. Additional image manipulations

consisted of RGB channel separation and contrast adjustment

through random scaling factors a uniformly distributed between

0 and 10, combined with brightness modification using random
Frontiers in Oncology 06
offsets b sampled from 0 to 10. Finally, all images underwent

normalization to the (0,1) range, with subsequent calculation of

per-channel mean and standard deviation values across the

entire dataset.
3.3 Deep neural network model

We employed a pre-trained ResNet-50 architecture,

implementing a transfer learning strategy that has demonstrated

effectiveness in both general image classification tasks (49) and

specialized medical imaging applications including breast cancer

pathology detection (39, 50). The ResNet-50 model consists of five

hierarchical stages, each containing one convolution block and one
TABLE 1 Outline of the patch dataset generation procedure concerning image acquisition origins.

WSI Patches Production
Patch Datasets

HE (+) HE (-) IHC-GT Creation Label

Origin WSI Origin WSI Origin WSI MC Size (+) (-) ID PN

1. HCB n = 5 HCB n = 5 HCB n = 5 YES 90x90 TC >20% TC = 0 Tumor 23,900

2. HCB n = 5 HCB n = 5 HCB n = 5 YES 90x90 TC >20% TC = 0 Tumor + FIB 23,900

3. HCB n = 5 HCB n = 5 HCB n = 5 YES 90x90 TC >20% TC = 0 Tumor
Extended

227,923

4. HCB n = 5 HCB n = 5 HCB n = 5 YES 90x90 TC >20% TC = 0
Interhospital 104,107

5. CAM16 n = 5 0 0 0 0 NO 90x90 TC >20% TC = 0
front
The presented table provides a comprehensive enumeration of whole slide image (WSIs) processing steps for the creation of specific patch datasets. Each row in the table corresponds to a distinct
patch dataset and outlines various essential parameters. The “WSI” columns denote the source of the WSI to create patches, distinguishing between Hospital Clinic Barcelona (HCB) and
Camelyon 16 (CAM). Within the table, “HE +” signifies the count of positive hematoxylin and eosin (HE) WSI, “HE -” represents the count of negative HE WSI, and “IHC-GT” indicates the
number of immunohistochemistry WSI featuring brown deposits used as ground truth (GT) references. Utilizing the information from IHC-GT, masks for HE + patches are constructed, denoted
in the mask creation “MC” column with a value of YES. CAMWSIs come pre-equipped with accompanying masks that have been published alongside the images, therefore the “MC” column is
designated as NO. The “Size” column provides the dimensions of the resultant patches, while the “Label” column indicates the tumor content (TC) necessary for classifying a patch as positive or
negative. The “ID” column specifies the corresponding patch dataset identification, and the “PN” column enumerates patch number. Notably, the ‘Interhospital’ patch dataset, as delineated in
rows 4 and 5, amalgamates data from both HCB and CAM sources, consolidating patches into a unified dataset. FIB, tumor associated fibrosis.
FIGURE 3

Illustration showcasing patches extracted from our two image sources. The first row showcases 90x90 image patches with a positive label obtained
from the Camelyon 16 dataset (3, 48). The second row presents 90x90 positive image patches sourced from the Biomedical Diagnostic Center of
the Hospital Clinic (BDC-HC) in Barcelona.
iersin.org
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identity block, with every block comprising three convolutional

layers. This architecture, containing approximately 23 million

trainable parameters (51), has proven particularly successful in

cancer pathology detection tasks as evidenced by previous studies

(52, 53).

The model initialization utilized weights pre-trained on the

ImageNet dataset (1000 classes), followed by task-specific fine-tuning

for our histopathology application. All training experiments were

conducted in a Google Colaboratory environment4 with NVIDIA

Tesla K80 GPU acceleration. During fine-tuning, we adopted a

strategic approach where the first three convolutional layers

remained frozen to preserve their pre-trained weights, while all

subsequent layers including the classification head were made

trainable. This design allowed the model to maintain robust low-level

feature extractors while adapting higher-level features to our specific

histopathology domain.

The training protocol employed cross-entropy loss function

with a batch size of 128 across 18 epochs. We implemented weight

decay (L2 regularization) with a coefficient of 1 × 10−4 and used an

adaptive learning rate schedule with an initial maximum value of 2

× 10−2 that followed a cosine annealing pattern. This combination

of hyperparameters was carefully selected to balance efficient

convergence with effective regularization, enabling the model to

adapt its higher-level representations while maintaining the

fundamental visual feature extractors learned from the large-scale

ImageNet dataset.
3.4 Experimental setup

3.4.1 Patch-based testing
For patch-based testing, eight fine-tuning experiments were

conducted, each designed to address specific training conditions as

described in Table 2. These experiments involved four distinct

patch datasets, with two experiments performed per dataset: one

using original, unaltered patches and the other utilizing augmented

patches (see Table 2). The data were split into training and testing

sets using a 70/30 ratio. After training and testing, the model

weights were saved and exported, resulting in a total of eight

preserved models. Additionally, validation measures were

computed, as outlined in section 3.4.3.

3.4.2 Whole slide testing
To assess the robustness of the models generated in each

experiment, we performed whole slide testing. This involved

making predictions on WSIs that were not used for generating

training patches. Specifically, the models were tested on a set of 5

WSIs from new cancer patients, each containing varying

percentages of cancer pixels (see Table 3, column 1). Notably,

these WSIs were entirely unseen by any of the models during

training. To summarize the results, we generated tables reporting

the mean and standard deviation (SD) of model performance. These
4 Using Fastai (1.0.61), Pytorch (1.0.0), and Openslide (1.2.0) packages.
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tables were organized either by experiment or by patient WSI (refer

to Table 2, columns 5 and 6). When results were grouped by model,

the mean and SD were calculated across all five patients.

Conversely, when grouped by patient, the results were averaged

across all four trained models. This final analysis enabled us to

identify the patients for whom the models encountered the most

significant performance challenges.

3.4.3 Validation measures
To thoroughly evaluate the performance of the trained models

in each experiment, we first generated confusion matrices for the

patch-based testing stage. These matrices were created using Fastai’s

built-in functionality, with text-format labels assigned to each

patch. For the whole slide testing stage, we implemented a

custom sliding window method (illustrated in Figure 4). This

method utilized entire WSIs as the source of patches, with a

binary mask serving as the ground truth reference. The output of

this process was a probability matrix, where the prediction for each

patch was spatially linked to its neighboring patches (see Figure 4C).

To classify patches as positive or negative, a threshold of 0.5 was

applied. Patches with probabilities above this threshold were

classified as positive, while those below were classified as negative.

By comparing the patches with their corresponding labels in the

binary mask, we identified true positives (TP) and true negatives

(TN) where the labels matched. Patches with mismatched labels

were classified as false positives (FP) or false negatives (FN).

We then calculated several validation metrics to assess model

performance. These included accuracy (ACC) for analytical

validation, sensitivity (SEN), specificity (SPE), and weighted F1-

score (F1) for clinical validation, in accordance with the

International Medical Device Regulator Forum’s (IMDRF)

guidelines for the clinical evaluation of Software as a Medical

Device (SaMD)5. Additionally, AUC-ROC curves were

constructed to further evaluate model performance.

Accuracy was calculated as the ratio of correctly classified

instances (TP + TN) to the total number of instances (TP + TN

+ FP + FN). Sensitivity was determined as the ratio of TP to the sum

of TP and FN. Specificity was computed as the ratio of TN to the

sum of TN and FP. The F1 score, which combines precision (TP/

(TP + FP)) and recall (sensitivity), was derived as the harmonic

mean of these two metrics, providing a balanced measure of model

performance.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity (Recall) =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1 score = 2� Precision� Recall
Precision + Recall

=
2TP

2TP + FP + FN
5 IMDRF/SaMDWG/N41; Software as aMedicalDevice (SaMD):Clinical Evaluation.
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3.4.4 Visual aid for classification interpretation
To enhance prediction interpretability and foster collaboration

between physicians and data scientists, we developed a visual aid

system based on tumor classification prediction matrices, featuring

two visual tools. This system directly visualizes model predictions on

image patches, avoiding excessive detail when composing the complete

WSI, and bypasses further computations on model weights.

The first tool is a high-contrast monochromatic map that

highlights all regions of the image with a tumor prediction

probability above 0.5 (as illustrated in Figure 4D). The second

tool is a heatmap that uses three distinct colors to differentiate

patches based on their prediction probabilities (as shown in

Figure 4E). The color-coding for the heatmap is defined as
Frontiers in Oncology 08
follows: red for high-probability predictions (above 0.9), green for

medium-probability predictions (between 0.7 and 0.9), and blue for

low-probability predictions (between 0.5 and 0.7). These visual

tools are designed to enhance the clarity of the model’s

predictions and support effective communication between

healthcare professionals and data scientists.
4 Results

In this section, we present the results of our experiments, as

summarized in Table 2. Initially, we computed histograms for the

4 patch datasets generated. Supplementary Figure 1 illustrates that

the histograms for positive samples in all 4 patch datasets exhibited

a similar distribution to those of the negative samples, confirming

an expected increase in the relative frequency of pixels with value

255 due to white patches in negative samples.

In the subsequent fine-tuning and patch-based testing phase,

both processes utilized patches derived from the same WSIs. As

detailed in Table 4, optimal performance across all models was

consistently achieved when fine-tuning was performed without the

application of data augmentations. Specifically, the ‘Interhospital’

model (Experiment 7) demonstrated the highest accuracy (0.881),

while the ‘Tumor + FIB’ model (Experiment 3) exhibited the best

sensitivity (0.756) and weighted F1-score. Notably, the ‘Tumor’

model (Experiment 1) achieved the highest specificity (0.987).
TABLE 3 Details of pixel content in whole slide testing samples.

Case HE Case IHC Tissue
(%)

Tumor
(%)

16 1 17 1 99.97 0.03

18 1 19 1 99.65 0.35

23 1 24 1 70.59 29.41

25 1 26 1 81.36 18.64

27 1 28 1 94.89 5.11
Percentage of tissue and tumor pixels per whole slide image (WSI) are detailed in the
last columns.
TABLE 2 Comprehensive summary of the experiments conducted to fine-tune and evaluate a ResNet50 model for sentinel lymph node
biopsy classification.

Fine-tuning Patch-based Testing Whole Slide Testing

Experiment Dataset Augmentation
Metrics across
models (T4)

Metrics across
models (T5)

Metrics across WSI (T6) 1

1 Tumor 0 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

2 Tumor 1 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

3 Tumor + FIB 0 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

4 Tumor + FIB 1 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

5
Tumor
Extended

0 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

6
Tumor
Extended

1 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

7 Interhospital 0 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)

8 Interhospital 1 ACC, SEN, SPE, F1 (Mean)
ACC, SEN, SPE, F1

(Mean ± SD)
ACC, SEN, SPE, F1 (Mean ± SD)
The table presents a two-pronged analytical approach for assessing the performance of eight ResNet50 models, initially fully trained on the ImageNet dataset, in classifying sentinel lymph node
(SLN) status. The models underwent a series of fine-tuning experiments (column 1) using different datasets (column 2), with the 10 application of data augmentation assessed in a binary fashion
(column 3). Performance metrics, Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), and weighted F1 score, were evaluated under two testing conditions. The ’Patch-based Testing’ (column
4) determined the efficacy of models using patches from the same whole slide images (WSIs) used for fine-tuning, while the ’Whole Slide Testing’ (columns 5 and 6) involved a comprehensive
assessment with unseen WSI, first by collating the aforementioned metrics across identical models (column 5) for each WSI (16, 18, 23, 25, and 27) and computing the mean and standard
deviation (SD), then by aggregating these metrics for each WSI across all models (column 6), also calculating mean and SD for a thorough inter-model and intra-WSI comparison. This dual
analysis elucidates both the collective and individual model performances relative to each WSI, offering a granular view of model robustness and diagnostic precision. T4, T5 and T6 refer to
Tables 4, 5 and 6 containing reported results.
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Regarding computational efficiency, model training times,

conducted using NVIDIA Tesla K80 hardware for a fixed 18

epochs per dataset, varied considerably, and this variation appears

correlated with dataset size. The ‘Tumor’ and ‘Tumor + FIB’

datasets, comprising 23,900 samples each, showed the most rapid

training, both completing in approximately 5.87 minutes. In

contrast, the ‘Interhospital’ dataset, with 104,107 samples,

required a significantly longer duration of 25.55 minutes, and the

‘Tumor extended’ dataset, the largest with 227,923 samples,

presented the longest training time at 55.93 minutes.

Following the fine-tuning phase, our research extended to the

whole slide testing phase (Table 2, Whole Slide Testing). The

metrics obtained during this phase differed significantly from the

preliminary patch-based testing metrics (Table 4). To capture these

differences, two tables were generated. Table 5 outlined the results

for each fine-tuned model with and without augmentations, while

Table 6 detailed the results for each image (individual patient)

across all models, both with and without augmentations. These

analyses aimed to identify robust models across all images and
Frontiers in Oncology 09
assess the difficulty levels in detecting metastasis for each image

using all models.

Upon analysis of this testing phase, models fine-tuned with

augmentations consistently outperformed their non-augmented

counterparts, as evidenced by the results in Table 5. Particularly,

the ‘Interhospital’ model (Experiment 8) achieved the highest

accuracy (0.982), sensitivity (0.256), and F1-score (0.978).

Additionally, ‘Tumor Extended’ (Experiment 6) demonstrated the

highest specificity (0.998). The Area Under the ROC Curve (AUC-

ROC) further supported ‘Interhospital’ as the leading model

(Supplementary Figure 2).

Examining patients individually, superior metrics were also

evident in cases where augmentations were utilized (Table 6),

aligning with the trends previously observed in the whole slide

testing phase (Table 5). This observation emphasized the potential

impact of augmentations on model performance, especially in

scenarios involving domain changes and unseen images. Notably,

patients 16 and 18 achieved the best accuracy and F1-score metrics,

despite having low tumor patch content in their WSIs (0.03% and

0.35%, Table 3). This outcome indicated the models’ proficiency in

identifying healthy tissue, offering potential benefits in the screening

of patients with normal SLN biopsies.

Quantitative metrics analysis revealed that superior metrics

were achieved without augmentations during model fine-tuning

and patch-based testing (Table 4). This result was likely due to the

low variability between the training and testing sets, sourced from

the same WSIs. However, during whole slide testing, where domain

changes occurred, models trained with augmentations

demonstrated better performance (Tables 5, 6). This underscored

the importance of using models trained on diverse data when

transitioning domains, enhancing their generalization capabilities.

The qualitative metrics section served as a vital complement to

the quantitative findings, offering valuable clinical insights. Cases

with minimal tumor pixels, such as cases 16 and 18 (Figure 5),

displayed distinct patterns from those with higher tumor counts.

These cases exhibited tumor pixel rates of 0.03% and 0.35% across
TABLE 4 Mean of patch-based testing metrics for each model with and
without augmentations.

Model AUG
Testing

ACC SEN SPE F1

Tumor
0
1

0.673
0.671

0.232
0.232

0.987
0.983

0.856
0.843

Tumor
+ FIB

0
1

0.878
0.729

0.756
0.425

0.970
0.956

0.913
0.865

Tumor
extended

0
1

0.477
0.467

0.001
0.001

0.973
0.968

0.723
0.695

Interhospital
0
1

0.881
0.787

0.000
0.000

0.948
0.895

0.890
0.810
FIB, tumor related fibrosis; AUG, augmentations; ACC, accuracy; SEN, sensitivity; SPE,
specificity; F1, weighted F1-score. Bold values indicate the highest value of the 2 metrics per
model (with and without AUG).
FIGURE 4

Protocol for prediction interpretation and visual aid. The methodology includes 5 steps, as follows: (A) the sliding window technique is applied to
extract consecutive non-overlapping patches of 90x90 pixels from a whole slide image (WSI). (B) these image patches are then input to a pre-
trained model, which generates predictions for each patch. (C) the output of the model generates a prediction matrix, where each prediction is
assigned to the corresponding location of the patch. (D) a binary color map is utilized to visualize the predicted values above the threshold of 0.5,
with red indicating the patches that meet this criterion. (E) a heatmap is constructed, utilizing red, green, and blue colors, to display the predicted
probabilities for each patch. The color codes represent high (above 0.9), medium (0.7 to 0.9), and low probability (0.5 to 0.7)
predictions, respectively.
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their WSIs, respectively (Table 3). The top-performing model,

Interhospital, showed intersections with tumor regions in its

predictions, but false positives were scattered throughout the

images. Notably, false positives were also observed above areas of

heterogeneous tissue with some degree of fibrosis in case

18 (Figure 5).

Furthermore, we evaluated the models’ performance in cases

featuring a substantial proportion of tumor pixels per image.

Specifically, we analyzed WSI case 25 (depicted in the fourth and

fifth rows) and case 27 (shown in the final row of Figure 5).

These cases displayed tumor pixel ratios of 18.64% and 5.11%,

respectively (refer to Table 3). A significant increase of at least

1600% in pixel percentage was observed when comparing cases with

low and high tumor pixel percentages. This considerable rise in

tumor pixels correlated with the tumor cell count, indicating an

extended period of tumor growth from the initial metastatic cell

invasion of the SLN to the biopsy. Consequently, this prolonged

duration likely contributed to the distinct differences between

tumor cells and normal cells visual phenotype, improving the

model’s performance.
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In the context of WSI 25, both tissue slices exhibited striking

similarities between the ground truth area for IHC and the model’s

predictions, as demonstrated in Figure 5 cases 25.1 and 25.2.

Conversely, in WSI 27, while the IHC and binary predictions

showed a significant overlap (highlighted in red), the color-coded

prediction map provided valuable insights (Figure 5 case 27).

Specifically, regions with the highest predicted probabilities (0.9

and above, indicated in red) almost entirely coincided with tumor

areas. The remaining predictions, characterized by lower

probabilities (below 0.9, depicted in green and yellow), played a

vital role in distinguishing false positives from true positives

(highlighted in red). This detailed analysis underscored the

model’s accurate identification of tumor regions in cases with

varying tumor pixel percentages, offering crucial information for

clinical evaluation and diagnosis.

Moreover, upon a meticulous inspection of the prediction maps

generated by all models overlaid on the same image (Figure 6), the

distinctive outcomes align with the quantitative metrics, as

illustrated in the F1 score results in Table 5 and the AUC ROC

values presented in Supplementary Figure 2. Notably, the
TABLE 6 Mean and standard deviation of whole slide testing metrics for each sample, with and without augmentations.

WSI AUG
ACC SEN SPE F1

Mean SD Mean SD Mean SD Mean SD

16 0
1

0.999
0.996

0.000
0.003

0.003
0.167

0.005
0.177

0.999
0.996

0.000
0.003

0.999
0.998

0.000
0.001

18 0
1

0.996
0.989

0.003
0.007

0.002
0.094

0.005
0.077

0.997
0.989

0.003
0.007

0.997
0.993

0.001
0.004

23 0
1

0.958
0.961

0.003
0.002

0.060
0.127

0.114
0.129

0.996
0.997

0.003
0.004

0.941
0.947

0.008
0.008

25 0
1

0.964
0.966

0.000
0.002

0.000
0.117

0.001
0.085

0.999
0.997

0.000
0.002

0.946
0.954

0.000
0.006

27 0
1

0.948
0.988

0.050
0.002

0.219
0.249

0.422
0.217

0.956
0.995

0.055
0.003

0.963
0.986

0.026
0.003
WSI, whole slide image; AUG, augmentations; ACC, accuracy; SEN, sensitivity; SPE, specificity; F1, weighted F1-score; SD, standard deviation. Bold values indicate the highest value of the 2
metrics per model (with and without AUG).
TABLE 5 Mean and standard deviation of whole slide testing metrics for each model with and without augmentations.

Model AUG
ACC SEN SPE F1

Mean SD Mean SD Mean SD Mean SD

Tumor 0
1

0.978
0.978

0.019
0.015

0.001
0.106

0.002
0.055

0.995
0.994

0.008
0.008

0.971
0.975

0.029
0.023

Tumor + FIB 0
1

0.979
0.978

0.020
0.014

0.001
0.241

0.002
0.132

0.991
0.992

0.004
0.002

0.972
0.977

0.029
0.021

Tumor extended 0
1

0.977
0.981

0.020
0.019

0.005
0.000

0.009
0.000

0.995
0.998

0.010
0.002

0.971
0.973

0.028
0.029

Interhospital 0
1

0.958
0.982

0.050
0.015

0.219
0.256

0.367
0.143

0.971
0.995

0.055
0.003

0.963
0.978

0.033
0.022
FIB, tumor related fibrosis; AUG, augmentations; ACC, accuracy; SEN, sensitivity; SPE, specificity; F1, weighted F1-score; SD, standard deviation. Bold values indicate the highest value of the 2
metrics per model (with and without AUG).
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‘Interhospital’ model consistently outperforms other models across

all three scenarios, followed by ‘Tumor + FIB’. The preceding

analysis provides two critical insights. First, it highlights the

importance of the visual interface for comprehensively evaluating

model performance. The interface enables direct visualization of

model outputs in the context of the original histopathology images,

conferring clinical meaning to quantitative metrics. Second, it
Frontiers in Oncology 11
underscores the significance of heterogeneity in the whole slide

testing. As observed, the top performing models were fine-tuned on

the most heterogeneous datasets. Specifically, the ‘Interhospital’

model was trained on samples from two distinct sources - locally

generated data and the public Camelyon dataset. Meanwhile, the

‘Tumor + FIB’ model was trained on patches containing not only

tumor cells, but also associated fibrous stromal tissue.
FIGURE 5

Visual interface for interpretation of classification results for WSI in whole slide testing. The figure consists of four columns, where the first column
(WSI HE) presents the original whole slide image (WSI) in hematoxylin and eosin (HE), while the second column shows the ground truth marking with
immunohistochemistry (IHC) for Cytokeratin (WSI IHC). The brown deposits inthe IHC marking represent cancer cells, and a red arrow is utilized as a
visual aid to locate brown deposits in cases that may be too small to identify. The third column depicts a binary map (BIinary MAP), with red masking
indicating patches with predictions above 0.5. Finally, the fourth column exhibits a heatmap that portrays the prediction probability (Prediction MAP),
where red, green, and blue indicate high (above 0.9), medium (between 0.7 and 0.9), and low probability (between 0.5 and 0.7) predictions,
respectively. The rows (A–E) represent different tissue sections of specific patients (16, 18, 25 and 27). Rows C and D represent different portions of
WSI 25 (upper and lower, respectively). TC stands for tumor content and represents the percentage of tumor pixels in the WSI.
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5 Discussion

This study demonstrates the effectiveness of transfer learning in

fine-tuning ResNet50 models for accurately detecting metastatic

regions in SLN biopsy images. By leveraging Cytokeratin markers

in IHC images to generate masks, we created four distinct patch

datasets for fine-tuning, incorporating both augmented and non-

augmented samples. Patch-level testing revealed that the highest

accuracy was achieved without augmentations, likely due to

overlaps between test and training samples from the same WSIs.

However, whole-slide testing showed improved performance with

augmentations, underscoring the role of data variability in enhancing

model generalization. Notably, incorporating additional variability—

such as introducing samples from Camelyon into the Interhospital

dataset—provided the optimal diversity level, leading to superior

performance on unseen images. These findings suggest that

supplementing data augmentation with diverse datasets that

maintain domain specificity can further enhance model robustness.

Our results provide support for our three initial hypotheses. First,

transfer learning with appropriate fine-tuning indeed achieved

clinically relevant performance (accuracy up to 0.982) despite using

only 25 WSIs for training, supporting that pretrained models can

overcome data scarcity limitations. Second, the hybrid Interhospital

dataset consistently outperformedmodels trained on single-institution

data (accuracy improvements of 3-5%), demonstrating that

combining institutional with public datasets enhances generalization.

Third, our visual explainability tools were able to bridge the technical-

clinical gap - pathologists could interpret the heatmaps and binary

maps with minimal training, validating their utility in real diagnostic

workflows. These findings collectively help demonstrate that our

proposed approach addresses the key challenges of data efficiency,

generalizability, and clinical adoption in computational pathology.

The observed variations in model training times reveal

important insights about computational efficiency. Models

trained on smaller datasets (‘Tumor’ and ‘Tumor + FIB’ with

23,900 samples) completed training significantly faster than those

using larger collections. The ‘Interhospital’ dataset (104,107
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samples) showed moderate training duration, while the

extensive ‘Tumor Extended’ dataset (227,923 samples) required

the longest processing time, confirming the expected scaling of

computational most accurate model (patch-based testing: 0.881;

whole-slide: 0.982 with augmentation), emphasizing that data

diversity and quality outweigh sheer volume for metastatic

detection tasks. This finding has important practical

implications for clinical implementation, where both accuracy

and computational efficiency are paramount.

We also noted a difference in performance between evaluating

individual patches and entire slides. While the model consistently

showed high specificity, meaning it was good at correctly identifying

non-tumor samples, its sensitivity decreased when analyzing whole

slides. This indicates a potential difficulty in detecting new tumor

regions not seen during training. Data augmentation proved useful,

as models trained with augmented data showed better tumor

detection without sacrificing specificity. The best accuracy we

achieved (0.98) was with an augmented model, which is

comparable to results from prior studies classifying similar lymph

node samples using GoogleNet (0.98), AlexNet (0.92), VGG16 (0.97),

and FaceNet (0.96) (54–57). Other research on different types of

oncology images, also using transfer learning and augmentations

(including techniques like edge detection we didn’t explore), reported

similar (VGG 19, ResNet 50, ResNet 152, MobileNet) and even

higher accuracies (VGG 16, ResNet 101V2, DenseNet 169) (58).

Our evaluation metrics systematically assessed model

performance across different testing conditions. When tested on

previously unseen WSIs, models exhibited overall accuracy

improvements, likely due to the higher proportion of non-tumor

regions in WSIs, which enabled models to leverage their high

specificity. However, the observed decrease in sensitivity

highlights ongoing challenges in generalizing to new tumor data.

The increase in weighted F1-score with additional training data

suggests that models benefit from the larger proportion of healthy

tissue in whole-slide images compared to tumor-enriched patch

datasets. The ability to reliably identify non-tumor regions could

facilitate computational pathology workflows by enabling
FIGURE 6

Differences in prediction map output for each model. The initial image represents the ground truth in immunohistochemistry (IHC), highlighting
tumor areas. Images 2 to 5 depict prediction maps generated by individual models. The selected models for evaluation were those trained with
augmentations, as they demonstrated superior performance. Heatmaps are constructed, utilizing red, green, and blue colors, to display the
predicted probabilities for each patch. The color codes represent high (above 0.9), medium (0.7 to 0.9), and low probability (0.5 to 0.7)
predictions, respectively.
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automatic masking of healthy areas, allowing pathologists to focus

on uncertain regions.

A key aspect of this work was creating a visual interface to

improve clinical understanding. Overlaying identified metastatic

areas onto the complete patient slides allowed pathologists to

visually evaluate the model’s predictions within the original

context. Our results demonstrated accurate tumor patch detection

when tumor content was above 16%, consistent with our quantitative

findings. Indeed, our patch-based heatmap overlay offered the ideal

level of detail for pathologists to differentiate zones of tumor

development in the predictions. As noted, larger metastatic deposits

tend to exhibit greater cellular diversity due to longer growth periods

and potential variations in oxygen and nutrient access, leading to

distinct morphologies within the same cluster (59).

Additionally, our approach offers a time-efficient alternative to

traditional IHC procedures. Generating IHC-stained slides from

biopsy tissue can take up to 16 hours (60, 61), whereas our models

process an HE-stained WSI in approximately 18 minutes—a 98%

reduction in processing time. By enabling rapid, automated

identification of tumor and healthy regions, this approach has the

potential to streamline computational pathology workflows and

reduce clinician workload. However, challenges persist in cases with

low tumor cell content or poorly differentiated morphology—such

as Cases 16 and 18—where tumor cells closely resemble normal

tissue. In addition to the lack of clear differentiation, these tumor

regions covered a relatively small surface area, resulting in fewer

representative patches with this morphology in the training data.

This raises an important question: is the issue primarily due to poor

differentiation, or is it the limited representation of such cases in the

training dataset? To explore this, future studies should focus on

datasets containing a sufficient number of poorly differentiated

tumor samples alongside normal tissue. Despite these limitations,

the model’s ability to accurately exclude healthy tissue and flag

uncertain regions for expert review highlights its time-saving

potential compared to manual IHC slide analysis.

The clinical implications of this work extend beyond technical

performance metrics. Our framework demonstrates how

computational pathology can be strategically adapted to

institutional settings through three key principles: leveraging

transfer learning to overcome data limitations, curating hybrid

datasets that balance domain specificity with diversity, and

developing interpretation tools that align with pathologists’

diagnostic workflows. This approach not only achieves diagnostic

accuracy comparable to manual assessment but does so while

respecting the practical constraints of clinical environments, where

computational resources and annotation bandwidth are often limited.

Looking forward, two parallel pathways emerge for advancing

this research. First, technical refinements should focus on

improving detection of diagnostically challenging cases,

particularly micrometastases and tumors with ambiguous

morphology. Second, clinical validation studies must establish

how best to integrate such systems into real-world workflows,

including optimal division of labor between AI and pathologists.

The interpretability tools developed here provide a foundation for

this transition, enabling collaborative decision-making where
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computational efficiency complements human expertise. Together,

these directions promise to accelerate the translation of AI-assisted

pathology from research laboratories to routine clinical practice.
6 Conclusions

This study validates three fundamental advancements in

computational pathology for metastatic detection. First, we

demonstrate that transfer learning with targeted fine-tuning can

achieve clinical-grade accuracy using limited training data,

overcoming establish that intuitive visualization tools effectively

bridge the gap between computational outputs and clinical

interpretation, facilitating pathologist adoption.

The success of our framework stems from its synergistic approach:

(1) optimizing data efficiency through strategic transfer learning, (2)

improving robustness via multi-source dataset integration, and (3)

ensuring clinical relevance through interpretable visual analytics. These

innovations collectively address the tripartite challenge of data scarcity,

domain generalization, and workflow integration that has hindered

widespread adoption of AI in pathology.

While demonstrating significant improvements over

conventional methods, two key opportunities emerge for future

research: enhancing detection of minimal residual disease and

improving performance on morphologically ambiguous cases.

Clinical translation of this validated pipeline could transform

metastatic screening protocols by combining the efficiency of AI

with pathological expertise, potentially establishing new standards for

rapid, accurate lymph node assessment. The principles developed

here may extend to other histopathological applications where data

limitations and clinical interpretability remain persistent challenges.
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