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The prognosis for patients diagnosed with cholangiocarcinoma (CCA) is dismal, with

an overall 5-year-mortality rate of 80%. Therapeutic approaches for this cancer are

very limited and the only curative treatment is total surgical resection despite recent

advancements in CCA research. However, only a minority of patients are eligible for

surgery due to late-stage diagnosis. Therefore, there is an urgent need to gain a

deeper understanding of CCA and to discover new treatments, which can be

achieved by utilization and optimization of 3D tumor models. Traditional 2D cell

culture is still undeniably important in cancer research, especially for the discovery of

biomarkers and drug screening. However, classical 2D tumor models do not

represent the tumor biology in its full complexity as they lack the vital interactions

between cancer cells, angiogenesis, and tumor microenvironment. In recent years,

3D models, including spheroids, 3D co-culture systems, organoids, tumors-on-a-

chip, and the in vivo chorioallantoic membrane (CAM) model, have been used for

CCA research. These models enable the study of the tumor microenvironment,

investigation of metastases, drug development and testing, cholangiocarcinogenesis

and personalized therapy. This review summarizes the applications of the different 3D

tumor models that have been used for the investigation of CCA. Moreover, the

advantages and disadvantages of the different 3D tumor models are discussed, and

suggestions for future research possibilities are described. By optimizing 3D models,

the gap between basic research findings and clinical applications can be bridged,

enabling the discovery of more effective therapies for CCA and other cancers.
KEYWORDS

cancer, cholangiocarcinoma, in vitro cancer models, 3D (three-dimensional) models,
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1 Introduction

Liver cancer is the third leading cause of cancer-related death

globally (1). Cholangiocarcinoma (CCA) is the second most

common type of primary liver cancer after hepatocellular

carcinoma and accounts for 10-15% of primary liver malignancies

(1, 2). CCA arises in the biliary tract and is categorized into

intrahepatic CCA (iCCA), perihilar CCA, and distal CCA,

depending on the affected anatomical location of the bile ducts

(Figure 1) (3). Often detected at a very late stage of the disease, this

malignancy is characterized by a poor outcome (2).

A total surgical resection of the tumor is the only potentially

curative treatment for CCA, but many patients are not eligible for

surgery (4, 5). Therefore, systemic chemotherapy with gemcitabine,

cisplatin and durvalumab is the first treatment option for patients

with inoperable or metastasized CCA (2, 6). As an adjuvant therapy,

capecitabine has been the only first-line standard therapy since the

publication of the BILCAP study (7). Another combination that was

studied was gemcitabine and cisplatin, which were investigated for

the use as an adjuvant therapy in the ACTICCA study (2). However,

most CCAs develop resistance to chemotherapy over time (8).

With these limited therapeutic options, the impending need to

understand this malignancy more thoroughly and identify new,

effective treatments is evident. For studying carcinogenesis and

researching novel therapeutic options, it is fundamental to develop

and optimize “modern” models such as three-dimensional (3D)

tumor models.

Two-dimensional (2D) cell culture, has been the gold standard for

in vitro cancer research. However, as 3D models resemble the

pathological tumor microenvironment (TME) in a more realistic

way (9, 10), they have increasingly gained attention and are now

integrated into cancer research across various tumor entities (11–15).

3D tumor models for studying CCA range from simple spheroids and

3D co-culture systems to more advanced approaches like organoids

and tumors-on-a-chip and even include the in vivo chorioallantoic

membrane (CAM) model. This vast array of different 3D tumor

models can be utilized for various applications, such as

cholangiocarcinogenesis research, drug development, investigating

personalized therapies, studying metastasis and TME. This review

aims at summarizing the different types and various applications of

3D models that are used to study CCA.
1.1 3D models vs. traditional 2D models

2D cell culture, in which cells grow as a monolayer on a flat

surface, has been used as a method for over 100 years. The different 2D
Abbreviations: CAF, Cancer associated fibroblast; CAM, chorioallantoic

membrane; CCA, Cholangiocarcinoma; CSC, Cancer stem cell; eCCA;

Extrahepatic cholangiocarcinoma ECM, Extracellular matrix; FGFR2,

Fibroblast growth factor receptor 2; HBV, Hepatitis B virus; HS, Hepatic

stellate; iCCA, Intrahepatic cholangiocarcinoma; IDH, Isocitrate

dehydrogenase; PDO, Patient-derived organoid; PDT, Photodynamic therapy;

PSC, Primary sclerosing cholangitis; TME, Tumor microenvironment
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cell culture methods like monolayer monoculture (16) and co-culture

(17, 18) are widely accepted, have been optimized and appear to be

cheaper than 3D cell cultures, which makes themmore accessible. The

growth of cells in a monolayer enables all cells to obtain the same

amount of nutrients, thus having a simplified system with a

homogenous proliferation. Unfortunately, this type of culture has

many disadvantages, with the most important one being the lack of

resemblance to the physiological conditions of an organism and the

absence of a complex biological microenvironment (9, 19).

3D cell culture models enable the investigation of cell-cell and

cell-matrix interactions, which are of high importance to cancer

cells and are connected to physiological and pathological

characteristics of the tissue and the affected organs. Signals from

the extracellular matrix (ECM) are fundamental for cancer

development and progression. Therefore, cancer cells cultivated in

3D showcase a different behavior than cancer cells cultivated in a

2D system (Figure 2) (9, 20, 21).

Molecular characterization of CCA models involves various

detection methods, each offering distinct advantages depending on

whether 2D or 3D culture systems are used. Next generation

sequencing is widely applied in 3D CCA models, especially in

patient-derived organoids (PDOs) (22–25). Next generation

sequencing is used in patient tumor tissue for identifying gene

variants in CCA, with the aim of finding possible targeted

treatments (26). RNA sequencing is a popular detection method

for researching transcriptomics in 3D models (27–29). However,

despite its increasing relevance, sequencing remains a relatively new

and underrepresented method for the molecular characterization of

CCA cell lines (30). To analyze protein expression in 3D models of

CCA, immunohistochemistry or immunofluorescence are commonly

used, with the added advantage of spatial distribution information

(23, 27, 31). In the clinical setting, immunohistochemistry provides

important information, aiding diagnosis and prognosis of the patients

(32). Immunofluorescence was successfully used to visualize even

whole-mount organoids (33). To quantify protein expression levels in

the 3D models, without gaining spatial distribution information,

western blotting is also possible, even though it requires a

slightly more complex dissociation process compared to 2D cell

cultures (34–41).
2 Different types of 3D tumor models

2.1 Spheroids

The generation of multicellular spheroids represents a

cornerstone in 3D cell culture technology, offering physiologically

relevant in vitro models. Spheroids are small dense spherical

aggregates of cells that grow in a 3D structure. They can be

generated directly from primary cells isolated from tissue from

mesenchymal stromal cells with multipotent properties,

immortalized or cancer cell lines or from pluripotent stem cells

able to differentiate in almost every cell type (42–46). A further

classification divides spheroids in homotypic and heterotypic

spheroids. Both types usually have distinct regions (a central core
frontiersin.org
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FIGURE 2

Differences between two-dimensional and three-dimensional in vitro tumor models. One of the most diffused in vitro tumor models is the standard
monolayer cell culture in which only one cell line is cultivated. In the co-culture monolayer method, more than one cell line is cultivated together
but still in a two-dimensional system. Spheroids are simple free-floating cellular clusters. Organoids are complex 3D clusters in an arrangement that
resembles the function and structure of the organ of origin. Tumors-on-a-chip are advanced models that couple cell culture with microfluidic
devices. Created with Biorender.com.
FIGURE 1

Classification of CCAs according to anatomical location. Cholangiocarcinoma can be divided in intrahepatic, perihilar and distal cholangiocarcinoma.
Created with Biorender.com.
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with necrotic cells, surrounded by dormant and senescent cells and

an outer proliferative zone). For homotypic spheroids, these

different regions merely represent the same cancer cell type

showing different features, since these spheroids are composed of

only one cell line or only one type of primary cells (47). In contrast,

heterotypic spheroids include also stromal cells (e.g. fibroblasts,

endothelial cells or immune cells), as is more accurately represents

the intratumoral heterogeneity (48, 49).

The main characteristics of tumor spheroids are organization of

cells in different layers, the presence of a physical barrier created by

the deposition of ECM, impaired drug penetration, and gene

expression resembling that of in vivo tumors, which makes them

an ideal method for drug testing (48). Overall, the main advantage of

the spheroid culture is the maintenance of phenotypic properties and

physical interactions that reflect the tumor biology (20). However, the

main disadvantage is the lack of reproducibility caused by extensive

variability in spheroid formation due to different factors such as cell

type, culture method, medium and cell density (49).

Spheroids can be created using commercial cell lines (43),

embryonic bodies, as well as different types of tissue such as

tumor tissue, neural tissues and mammary glands (42). They can

utilize either scaffold-based or scaffold-free methods for their

formation (43). Scaffold-free techniques, in which the spheres are

not attached to any surface, remain among the most commonly

employed approaches, particularly the hanging drop and cell
Frontiers in Oncology 04
culture plates method. The latter works with an ultralow

attachment surface, which inhibits cells to adhere as a monolayer

on the surface, forcing them to swim in the culture medium (43).

The hanging-drop method uses surface tension and gravity to help

single cells agglomerate and form round spheroids in small droplets.

By changing the drop size or the number of cells, the size of the

spheroids can be controlled easily and at low cost (20). However,

this method is technically challenging and has a low-throughput

(Figure 3a). Scaffold-based approaches incorporate biomaterials like

hydrogels that are casted and stabilized in polydimethylsiloxane

molds to create cylindrical microwells (44). Hydrogels, used to

embed spheroids, mimic the natural environment around cells.

Both natural materials (like collagen or Matrigel) and synthetic

hydrogels (like GelMA or alginate) affect how spheroids behave -

such as how they grow, survive, and release signals (Figure 3b). In

addition, important hydrogel properties like stiffness,

viscoelasticity, and cell-adhesive molecules (e.g. RGD peptides)

can influence how cells inside the spheroid respond, especially

those near the edge that have actual contact to the material (44).

Overall, there is a variety of different techniques for the generation

of spheroids (Supplementary Table S1). These methodologies

enable tailored spheroid generation for diverse applications, from

cancer biology to tissue engineering, by integrating the right

combinat ion of medium formulat ion, ce l l type , and

structural support.
FIGURE 3

Spheroid formation methodologies. Spheroids can be generated using (a) scaffold-free approaches, including liquid overlay, hanging drop, and
agitation-based techniques, or (b) scaffold-based approaches employing either synthetic or natural polymers. Created with Biorender.com.
frontiersin.org

https://Biorender.com
https://doi.org/10.3389/fonc.2025.1598552
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Montagner et al. 10.3389/fonc.2025.1598552
2.2 Organoids

In contrast to spheroids, which are simple clusters of cells that

cannot self-assemble or regenerate (42), organoids represent a self-

organizing 3D culture system that bridge the gap between 2D

cultures and in vivo animal models. These complex 3D structures

mimic the functions and architectures of in vivo organs (50, 51).

The generation of organoids typically begins with adult or

pluripotent stem cells - including both embryonic stem cells and

induced pluripotent stem cells - which are cultured in a dome or flat

gel of a 3D scaffolding matrix (such as Matrigel or Basement

Membrane Extract Type 2), beneath a cell culture medium (52).

The culture medium must be tissue-specific and is typically

supplemented with essential growth factors and signaling

proteins, including epidermal growth factor EGF, R-spondin 1

RSPO1, Noggin, and Wnt-3a, which support the maintenance of

stemness, proliferation, and lineage specification (53) (Figure 4).

The efficiency of organoid formation is influenced by the

mechanical properties of the matrix, that can be modified to

mimic the stiffness of physiological organs (50). In summary,

there is an abundant variety of different methodologies for

organoid generation (Supplementary Table S1). The most used

method for cultivating organoids entails a submerged culture in

which cells are embedded in ECM gel and submerged by liquid

medium. The air-liquid interface culture method uses tissue

fragments that are embedded in collagen gel and placed in an

inner chamber with the top directly exposed to the air, while the

nutrients of a medium placed in an outer chamber diffuse to the

inner dish that contains the organoid (54). The most complex

culture is the microfluidic device technique, which consists of

channels that hold organoids embedded in gel, while fluid (i.e.

medium) is pumped through the system (55).
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When successfully cultured, organoids typically contain both

proliferative and differentiated cells and recapitulate functional and

histological characteristics of the donor tissue. Using these

protocols, PDOs have been successfully established from a wide

range of tumors, including gastrointestinal, pancreatic, colorectal,

and hepatic malignancies. Establishment rates vary widely, from

less than 20% to over 90%, depending on tumor type, tissue quality,

and prior treatments (52). A notable example of organoid

generation from adult tissue includes the development of

intrahepatic cholangiocyte organoids, first described by Huch

et al. (56), where Lgr5+ liver stem cells were cultured under

conditions enriched with growth factors to yield biliary epithelial-

like structures. These organoids expressed specific cholangiocyte

markers such as Epithelial Cell Adhesion Molecule, SRY-Box

Transcription Factor 9 and Keratin7/19, and demonstrated biliary

function, including Multidrug Resistance Protein 1-mediated

Rhodamine123 transport into the organoid lumen (56). Parallel

approaches enabled the long-term culture of hepatocyte organoids

using hepatocyte-specific medium, which resulted in the expression

of hepatic markers such as albumin and HNF4a (57). Collectively,

these methodological advances have enabled the establishment of

diverse organoid systems - from brain and pancreas to colon and

liver - that serve as robust platforms for disease modeling,

regenerative medicine, and precision oncology.
2.3 Tumors-on-a-chip

Tumors-on-a-chip are one of the most advanced and

complicated in vitro models. These devices mimic the

organization of the cells inside a particular tissue and thereby aim

to replicate the functionality of an organ. This model combines 3D
FIGURE 4

Organoids methodologies. 3D organoids can be generated from various cell sources, including pluripotent stem cells, organ restricted adult stem
cells and differentiated cells. With the support of ECM-hydrogels providing physical structure and biochemical cues, cells undergo self-organization
based on Steinberg’s differential adhesion hypothesis. This is followed by differentiation, influenced by positioning, stem cell niche and growth
factors, ultimately leading to a mature 3D organoid structure that mimics the structural and functional features of the original organ or tumor.
Created with Biorender.com.
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cell culture with microfluidic devices (58). 3D channels and

chambers are 3D-printed by using flexible polymers. These spaces

are then filled with cells inside hydrogel or perfused with different

types of fluids. Not only tumor cells can be seeded inside this model

but also cells of the stroma such as monocytes, endothelial cells,

fibroblasts, hepatocytes and hepatic stellate (HS) cells. All in all, this

model allows to mimic the primary tumor and the metastatic

microenvironment due to its modular design and highly

controlled physiochemical properties (59).
2.4 Chorioallantoic membrane model

In contrast to the previously mentioned models which are all in

vitro tumor models, the CAM model is an in vivo 3D tumor model.

It is based on the CAM, an extraembryonic, highly vascularized

membrane that develops within fertilized chicken eggs and is

responsible for gas exchange of the chick embryo (60, 61). Both

commercial cell lines and tumor tissue can be grafted onto the CAM

for subsequent cultivation in vivo (in ovo). During the cultivation

period on the CAM, many different aspects of the tumor biology

can be monitored, such as tumor growth, angiogenesis and

metastasis (62). The model is also an ideal platform for the

testing of therapeutics (63), with the possibility to inject drugs

intravenously due to the high vascularization of the CAM (64). 3D

models can also be combined, e.g. the CAM model and tumor

spheres. In a recently published study, Wagner et al. validated the

successful cultivation of tumor spheres on the CAM, demonstrating

their potential to monitor therapeutic response and disease

progression (65). These studies highlight the crucial role of the

CAM model in developing and testing novel therapeutic

approaches. Moreover, this model contributes greatly to reducing

animal testing in accordance with the 3R principle (“Reduce,

Replace, Refine”) (66). In cancer research, the CAM model is

regarded as an intermediate step for the translation of preclinical

research results into clinical applications (67).
3 Use of 3D tumor models for
research of cholangiocarcinoma

Preclinical research is crucial for gaining a deeper

understanding of CCA and enhancing therapeutic outcome. This

involves the development and management of various experimental

models, including traditional in vitro assays with primary or

commercial cell lines cultured in 2D, 3D spheroids and

organoids, 3D co-culture of cancer cells with microenvironmental

cells, advanced tumor-on-a-chip systems, and 3D in vivo models

with engrafted tumor tissue. Each model offers distinct advantages

and limitations (see Table 1) (10). Since traditional 2D culture

presents altered signaling and migration (68), increased

proliferation and different chemosensitivity compared to testing

in patients (9, 69), there is an urgent need to implement more 3D

tumor models in cancer research. 3D models can be utilized for

various applications in CCA research, since they offer the possibility
Frontiers in Oncology 06
to accurately reproduce tumor biology, investigate cell interactions

and to develop personalized therapies (Figure 5).
3.1 Spheroids/tumor spheres in
cholangiocarcinoma

Recently, there has been an increased inclusion of these 3D

tumor models for the study of CCA with a focus on molecular

mechanisms, biomarkers, cancer stem cells (CSCs), tumor growth

and TME. Spheroids are three-dimensional aggregates of cancer

cells cultured under non-adherent conditions, serving as models to

study tumor behavior and drug responses. Tumor spheres, on the

other hand, are derived from single tumor cells cultured in serum-

free media supplemented with growth factors, primarily used to

enrich and study cancer stem-like cells (70). Therefore, CCA-

derived spheroids and tumor spheres may provide a promising

experimental approach for future CCA research.

3.1.1 Spheroids as a model for cancer stemness
studies

One of the most widespread applications of the spheroid model

is the study of stemness, the ability of CSCs for self-renewal and

differentiation (71), through the spheroid/sphere formation assay.

The role of CSCs in cholangiocarcinoma progression has been

extensively studied, with numerous reports highlighting key

molecular regulators that drive stemness, metastasis, and therapy

resistance. Cardinale et al. investigated the tumorigenic potential of

different CSC populations and they generated stromal tumors or

epithelial tumors depending on the microenvironment (72).

Arnoletti et al. demonstrated that CSCs form immune cell

clusters that enhance metastatic potential, emphasizing their

crucial role in CCA progression (73). Panawan et al. established a

CCA-like cancer stem cell line that is able to form tumor spheres,

and thereby serves as a representative model for CSCs (74). Wang

et al. used a fluorescent reporter system to track and isolate CSCs in

CCA, revealing a bidirectional crosstalk between CSCs and

macrophages that facilitates CSC renewal and macrophage

polarization in 3D cultures (75). Additionally, Yogo et al. found

that inhibiting dopamine receptor D1 signaling promotes CSC-like

growth in bile duct cancer cells (76). This further underscores the

intricate regulatory networks sustaining CSC populations.

A number of studies focused on investigating the role of various

molecules within the CSCs in CCA, especially regarding their role in

tumor sphere formation. This included four newly identified

stemness associated genes (SDHAF2, MRPS34, MRPL11,

COX8A) (77), the immune regulator Tripartite motif-containing

29 (78), the GTPase RAB6A (79), the deubiquitinating enzyme

Ubiquitin Specific Peptidase 10 (80), Keratin18 (81) and the

ganglioside GD2 (82). In addition, non-coding RNAs have been

studied as they are implicated in maintaining stemness and

oncogenic properties in CCA. It was shown that miR-200b/c

regulates tumorigenic and metastatic properties by targeting Rho-

kinase 2 and SUZ12 (83), while the long non-coding RNA PKD2-2–

3 promotes drug resistance and CSC marker expression (84). In line
frontiersin.org
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with findings regarding the molecular pathology of cancer stem cells

and resistance, Shi et al. demonstrated that Y-box binding protein 1

enhances stemness and cisplatin resistance in iCCA by activating

the AKT/b-catenin pathway and promoting spheroid formation

(85). Similarly, Sugiura et al. reported that inhibiting the Yes-

Associated Protein, through siRNAs or verteporfin, reduces

spheroid formation and anoikis (a form of programmed cell

death) resistance in iCCA, further supporting the role of

molecular pathways in CSC maintenance (86).

Together, these studies illustrate the complexity of CSC

regulation in CCA, highlighting critical molecular pathways and

potential therapeutic interventions aimed at disrupting CSC-

driven tumorigenesis.

3.1.2 Drug testing in spheroids
3D spheroid models have become an essential tool in drug

discovery. By resembling the TME, spheroids allow for a more

accurate assessment of drug penetration, resistance mechanisms,

and therapeutic efficacy. The search for novel therapeutic

compounds for CCA using spheroids has led to promising

discoveries, including also natural compounds. The effects of

Resveratrol (polyphenolic compound produced by plants) were

investigated in 3D CCA spheroid models, demonstrating

significant inhibition of cell growth, reinforcing its potential as a

therapeutic agent (87, 88). Similarly, Pant et al. explored an

innovative treatment strategy using butyrate, a fatty acid
Frontiers in Oncology 07
produced through fermentation of fibers by gut bacteria (89).

Pang et al. isolated new steroidal glycosides from the Trillium

tschonoskii rhizome that were able to suppress sphere formation

(90). In these studies, 3D CCA spheroids were created using CCA

cell lines, and various concentrations of therapeutic compounds

were tested to assess their effects on spheroid growth, size,

proliferation, and viability.

Targeted therapies have emerged as promising approaches for

CCA focusing on key signaling pathways, metabolic regulators, and

immune-based strategies. Several studies have identified critical

molecular targets that regulate tumor growth and therapeutic

resistance. Possible targeted therapy approaches for CCA, like

inhibiting the tyrosine kinase with Ceritinib (91), or the

inhibition of the cyclin-dependent kinases 4 and 6 (92), of cell

division cycle protein 20 (93), of long non-coding RNA LINC00665

(94), of mTORC1 (95), of CCR5 (96), and of protein SUMOylation

(97), were studied using spheroids. Targeting CSC-associated

pathways has also emerged as a promising therapeutic strategy. It

was demonstrated that targeting the oncogene CXCR7 and the

tumor suppressor FBXO31 could be effective approaches (98, 99).

In these studies, the inhibition of these molecules was able to

suppress spheroid growth.

Inhibiting drug resistance mechanisms has also been a focus of

recent studies, since chemoresistance is still a major problem in

CCA (8). Some candidate drugs possibly able to target

chemoresistance in CCA were discovered using the spheroid
TABLE 1 Summary of the most important advantages and disadvantages of the various culture models.

Model type Model subtype Advantages Disadvantages References

2D models Classical Good standardization and reproducibility
Simple handling

Controllable environment
Large scale testing
Cost-effective

No ECM
Unrealistic cell-cell interactions

(9, 10, 19, 269)

2D co-culture Intercellular interactions
Flexible cell composition

Complexity of analysis
Varying growth requirements

(17, 18, 270)

3D in
vitro models

Spheroids Mimic cell-cell signaling of in vivo tissue
Heterotypic spheroids represent

intratumoral heterogeneity
More affordable than organoids

Lack of standardized techniques and assays
Lack of reproducibility

(48, 49)

Organoids Mimic physiology of in vivo organs
Possibility of personalized medicine

applications
Genetic stability maintained from

parental cells

High cost of growth factors and nutrients
Lack of reproducibility

(51, 54, 266)

3D co-culture Intercellular interactions in the presence
of ECM

Lack of standardization (17, 18)

Tumors-on-a-chip Mimic TME
Highly controlled physiochemical properties

Real-time monitoring

Lack of user-friendly methods
High cost of bioprinting

(58, 59,
245, 248)

3D in
vivo models

CAM model Potential for personalized therapy
Conforms to the 3R principle

Analysis of angiogenesis in real time
Cost-effective

Sensitive to environmental influences
Limited observation time due to fast

embryo development

(62, 263)
2D cell culture is a method that has been used for more than a century. Therefore, it has been highly optimized and its cost are relatively low. A major advantage of 3D in vitromodels is the ability
to mimic the important TME, thus they represent a good option especially for drug testing and (personalized) therapy. Unfortunately, such 3D models lack standardization and reproducibility
and are usually expensive.
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model like insulin and insulin-like growth factor 1 receptor

inhibitors (100), the cardiac glycoside Ouabain (101), the natural

compound Saikosaponin-a (102) and the antibiotic Metronidazole

(103). Sphere formation assay was also utilized in the realm of

chemoresistance studies for the development of new cell lines that

present a similar sensitivity as the in vivo tumor. Two new iCCA

cells lines were created, one highlighting chemotherapy resistance

(104) and the other one that could serve in the future as tool for

drug testing in preclinical research (105).

Combination therapies have also shown efficacy in preclinical

models. Fu et al. demonstrated that verteporfin, a photodynamic drug

(is activated by light), reduced tumor growth, apoptosis, and

stemness; and when combined with anti- programmed cell death 1,

significantly lowered tumor burden in CCA mouse models (106).

While Bai et al. showed that the combination of Hinokitiol and

palbociclib had a strong inhibition in tumor sphere formation (107).

Another drug combination that effectively induced cell death and

decreased proliferation in CCA spheroids was the combined

treatment of CDK4/6 (key regulators of cell cycle progression)

inhibitor palbociclib with the Smac mimetic LCL161(a Cellular

Inhibitor of Apoptosis Proteins 1 and 2 antagonist) (108).

Immune-based therapies have also proven effective in

disrupting CCA spheroids and boosting immune responses.

Phanthaphol et al. developed CAR-T cells targeting integrin

avb6, demonstrating high cytotoxicity against CCA spheroids

(109). Suwanchiwasiri et al. further expanded on this strategy by

designing a bispecific T cell engager targeting integrin avb6 and
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(110). Recently, Phanthaphol et al. tested fifth-generation CAR-T

cells that target the PD-1/PD-L1 pathway, exerting a high

cytotoxicity and penetrating deep into spheroids (111).

Additionally, CAR-T cells against CD133 were created and they

lysed CCA spheroids almost completely (112). Afterwards, T cells

were engineered to secrete a bispecific T-cell engager targeting

CD133, that was effective in disrupting spheroids (113). Supimon

et al. created anti-MUC1 CAR-T cells, which significantly enhanced

cytotoxicity against Mucin1-expressing CCA cells (114). Lastly, a

novel treatment strategy involving induced pluripotent stem cell-

derived natural killer cells was explored for cholangiocarcinoma

(115). These studies underline the importance of therapeutic

strategies that target the immune microenvironment in CCA.

Collectively, these findings highlight the diverse and evolving

treatment options in CCA, emphasizing the potential of molecular

inhibitors, metabolic regulators, and immune-based strategies to

improve treatment outcomes. By providing a more physiologically

relevant platform, spheroids facilitate the identification of novel

therapeutics and combination treatments, ultimately advancing the

development of more effective treatment strategies for CCA.

3.1.3 Study of molecular pathogenesis in
spheroids

Molecular pathology studies have identified key oncogenes and

tumor suppressors that regulate CCA progression, stemness, and

therapeutic resistance using spheroids.
FIGURE 5

Applications of spheroids and organoids in cholangiocarcinoma research. Tumor tissue from CCA patients or established CCA cell lines is used to
generate 3D models through Optimized culture methodologies. These 3D models support studies regarding Molecular pathogenesis, Metabolism,
Stemness, Drug Testing and Personalized therapy approaches. Created with Biorender.com.
frontiersin.org

https://Biorender.com
https://doi.org/10.3389/fonc.2025.1598552
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Montagner et al. 10.3389/fonc.2025.1598552
Oncogenic pathways driving cholangiocarcinogenesis have

been extensively studied. Hasegawa et al. demonstrated that

inhibiting fatty acid desaturase 2 significantly reduced

tumorigenicity, cell proliferation, migration, and sphere formation

in CCA cells (116). Likewise, Correnti et al. showed that SerpinB3

overexpression enhances invasion and sphere formation in CCA

stem-like cells, correlating with poor prognosis (117). Other studies

focused on tumor-promoting genes, with Singsuksawat (118),

Carotenuto et al. (119) and Lobe (120) identifying the hormonal

regulator E26 transformation-specific variant 4 (118), the

transcribed-ultraconserved region uc.158- (119) and the

transcription factor zinc finger E-box-binding homeobox 1 as

potential therapeutic targets (120). Also, the thyroid hormone T3

was shown to possibly have a pro-tumorigenic effect as CCA cells

treated long term with the hormone formed spheroids in bigger size

and quantity, in the presence of gemcitabine (121).

Conversely, tumor suppressors have also been identified as key

regulators of CCA. Yoshino et al. found that AT-rich interactive

domain-containing protein 1A deficiency promotes tumor growth

and stemness, correlating with poor prognosis (122). Additionally,

Shu et al. identified Numb as potential therapeutic target (123).

Tumor suppressing properties were also investigated in non-coding

RNAs. A novel tumor suppressor role was discovered for

microRNA-876 (124), while microRNA let-7c presented a dual

function in CCA, inhibiting tumor growth but promoting distant

metastasis (125).

Several studies have explored molecules in oncogenic pathways

that could be targeted in future treatment approaches. Puthdee et al.

demonstrated that blocking TGF-b signaling effectively prevents

LIN28B-induced metastasis in CCA (126). Similarly, Romanzi et al.

showed that angiopoietin-2 and vascular endothelial growth factor

stimulate tumor invasion, while their inhibitors suppress this

effect (127).

Together, these findings emphasize the complex interplay

between oncogenes and tumor suppressors in CCA, highlighting

key molecular targets for potential therapeutic intervention.

3.1.4 Metabolism studies in spheroids
Research on the metabolic regulation and tumor biology of

CCA has demonstrated that 3D spheroid models provide crucial

insights into underlying mechanisms.

Phukhum et al. created spheroids from well differentiated CCA

cell lines resulting in a hypoxic and oxidative microenvironment

(129). Similarly, Mischiati et al., showed that spheroids presented an

altered protein expression, a metabolic rewiring, and an enhanced

mitochondrial respiration (130). Specifically, CCA spheroids

exhibited increased iron content, heightened oxidative stress, and

elevated CSC markers (131). Moreover, CCA cells were grown as

spheres, they showcased an enhanced mitochondrial respiration

(132). Moreover, altered fatty acid metabolism in iCCA promoted a

stem-like phenotype, and inhibiting fatty acid synthase significantly

reduced sphere formation and tumor growth (133).

Another therapeutic approach targeting CCA metabolism was

explored by Di Matteo et al. (134). Their research based on the fact

that the farnesoid X receptor, a nuclear metabolic receptor, is
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strongly downregulated in iCCA. Thus, they tested an farnesoid X

receptor agonist obeticholic acid in spheroid models and found a

significant inhibition of cell proliferation, migration, and spheroid

formation, with higher concentrations (up to 2 µM) completely

prevented spheroid formation. These findings highlight obeticholic

acid as a potential therapeutic compound for CCA (134). Lastly,

Ciufolini et al. examined metabolic differences between 2D and 3D

cultures of iCCA cell lines, revealing significant metabolic shifts in

3D models regarding central carbon and glutathione metabolism

(135). In conclusion, this emphasizes the relevance of 3D spheroid

models for accurately assessing metabolic processes and developing

targeted therapies.

3.1.5 Spheroids for investigation of CCA
heterogeneity and developmental mechanisms

Yang et al. (136) used the spheroid model to compare the

growth between iCCA and extrahepatic (eCCA). Even though the

size of the two types of spheroids was similar, the mechanism of

spheroid formation differed. iCCA developed spheroids from single

cell proliferation, while eCCA developed spheroids through the

aggregation of cells (136). Recently, it has been inferred that

bipotent hepatic progenitor cells (cells that can differentiate into

either hepatocytes or cholangiocytes) could be a cell lineage with the

ability to potentially generate cholangiocarcinoma. Xu et al. (137)

selected a population of CCA cells through fluorescence-activated

cell sorting. Through colony formation, cell proliferation, and

spheroid formation assays, it was confirmed that this cell

population presented indeed features of hepatic progenitor cells

(137). Furthermore, the infection of the biliary duct with the human

liver fluke Opisthorchis viverrini , has been identified as

environmental risk factors for CCA. Cholangiocyte spheroids

were treated with excretory-secretory products from flukes and

afterwards subjected to transcriptomic profiling for better

understanding liver fluke infection as a risk factor for CCA (138).
3.2 Organoids of cholangiocarcinoma

Organoids are being increasingly integrated into cancer

research for a wide range of tumor entities (139). Technologies

regarding bile duct organoids have continuously advanced in the

last years (140). Possible applications of CCA organoids include

drug screening, molecular pathogenesis, metabolism studies and

research on risk factors that influence the development of

this malignancy.

3.2.1 Drug screening and testing in organoids
One of the most important applications of organoids is drug

testing (141). Fidelity in drug testing means that different

generations of organoids have consistent testing results,

organoids’ results are similar to patients’ and consistent results

are present in technical repeats (142). Moreover, for organoids to be

reliable preclinical models, it is essential that they resemble the

original tumor not only morphologically, but also on a molecular

level. This includes the retention of key driver mutations, copy
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number alterations, and gene expression patterns found in the

patient`s tumor tissue. Organoids usually display high fidelity and

their genomes are stable, even after multiple passages (142, 143). An

often overlooked factor is intratumoral heterogeneity. While bulk

sequencing mainly captures dominant clones, only organoids

derived from multiple tumor regions or single cells can reflect full

clonal diversity. However, most CCA studies lack such analyses

(144). The composition of the culture medium also plays a crucial

role in maintaining tumor fidelity. In the context of CCA, the

medium may include hepatocyte growth factor to promote

hepatobiliary growth (90, 145).

Several studies have successfully applied CCA organoids for drug

screening. Koch et al. (27) used iCCA PDOs for testing the multikinase

inhibitor sorafenib. A pipeline was created to evaluate the effect of the

drug including measurement of organoid size, immunohistochemistry

and RNA sequencing as a method for future patient-specific drug

screening (27). Recently, Kaldjob-Heinrich et al. tested Namodenoson

(an adenosine A3 receptor agonist) on CCA cell lines and on a CCA

PDO (128). Not only single drugs but also combination treatment can

be tested with the CCA organoid model. The triple therapy consisting

of gemcitabine, cisplatin and LCL161 (second mitochondrial-derived

activator of caspases mimetic) was tested in CCA PDOs and was seen

as an effective synergic combination, preventing multidrug resistance

(146). The combination of oxaliplatin and palbociclib caused drug

synergism in iCCA PDOs (147). Treatment with gemcitabine and the

HER2 inhibitor lapatinib also resulted in a synergistic effect, when

tested in CCA PDOs (148). Bai et al. tested the combination of

Hinokitiol, a phytochemical from cypress trees, with the CDK-

inhibitor palbociclib which significantly inhibited the formation of

organoids (107). Other natural compounds that were effective against

iCCA organoids were steroidal glycosides extracted from Trillium

tschonoskii rhizomes (90). Further, Cavalloro et al. identified and

isolated a metabolite from a lichen called usnic acid with anti-cancer

properties, that when tested in ICCA organoids led to a decreased

viability and modified morphology (145).

Another highly relevant therapeutic strategy is immunotherapy.

An example of immunotherapy that has especially attracted a lot of

attention lately is CAR-T cell therapy (149). Qiao et al. established a

co-culture system with digested CCA organoids and autologous

CAR-T cells with knockdown of six inhibitory membrane proteins,

that resulted in elevated apoptosis (150). In the realm of

immunotherapy antibody-conjugates for antibody-targeted

delivery of drugs are also included. Hosni et al. tested the

conjugate sacituzumab govitecan on iCCA organoids and all

PDOs presented growth inhibition and altered organoid

morphology (151).

Photodynamic therapy (PDT), a minimally invasive treatment

that combines a photosensitizing agent with light to produce reactive

oxygen species and induce cancer cell death (152), was also

investigated using the CCA organoid model. CCA PDOs were

treated with polyhematoporphyrin-mediated PDT and sulfasalazine

individually. The combination of both treatments led to a significant

increase in apoptosis, suggesting that this approach could be a

potential future treatment for CCA (153). Huang et al. (154) tested

a different combination treatment of PDT including surufatinib (a
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surafatinib and PDT effectively killed CCA organoids (154).

Organoids can also be used for screening drug panels. Feng et al.

performed high-throughput screening on iCCA to find new

therapeutic strategies, resulting in different drug sensitivities

throughout different tumor mutations organoids (155). Drug

screening was also performed in iCCA PDOs with different BRAF

variants, to associate BRAF variants with targeted therapy results

(156). While Wang et al. focused on establishing an eCCA PDO for

drug screening, after confirming the comparability between the

primary tumor and the organoid (157). Through drug screening,

interesting compounds were discovered having significant

suppressive role in CCA organoids such as the antifungal drugs

amorolfine and fenticonazole (25). After extensive drug testing on

CCA and hepatocellular carcinoma PDOs, Li et al. discovered that

some candidates, e.g. histone deacetylases inhibitors, were effective

in the majority of organoids, making them possible candidates for

pan-effective treatments in the future (158). Screening of various

kinase inhibitors revealed many compounds that could also serve as

pan-effective inhibitors, based on the finding that CCA organoids

presented a similar increase in the activity of multiple kinases (159).

The multikinase inhibitor Sorafenib was discovered as being

efficient in decreasing the size of organoids that lacked the tumor

suppressor Cullin3 (160). Overall, the organoid emerges as a good

model to both screen panels of drugs for discovering new effective

compounds for cholangiocarcinoma as well as to test drugs already

used in the clinic to investigate their molecular mechanism further

and find new successful drug combinations.

3.2.2 Personalized therapy approaches using
organoids

One of the most advanced applications of the organoid model are

personalized therapy approaches, allowing for the direct translation of

laboratory results to patient treatment. The first step in this process is

the generation of PDOs that derive from primary material. Broutier

et al. (24) were successful in establishing organoids from primary CCA

cells. These organoids maintained the characteristics of the individual

patients (histology and bulk mRNA expression pattern) even after

prolonged in vitro expansion. Moreover, in vitro testing of different

compounds was performed on these organoids and ERK inhibition was

uncovered as a potential therapeutic strategy for cholangiocarcinoma

(24). Maier et al. (31) also established CCA organoids from surgical

resection material, with an impressive organoid from a patient with

metastatic iCCA that was successfully kept in culture for 103.3 weeks.

To evaluate their tumorigenicity, PDO xenografts were created by

injecting immunodeficient mice with PDOs. The xenograft tumors

presented similar histological features compared to their primary

tumors (31). Wang et al. (161) performed personalized drug

screening in an iCCA organoid to compare the effect of conversion

therapy on organoid to patient testing. The results of the organoid drug

testing were comparable with those of treatment of the respective

patient (161). Ren et al. (162) screened common chemotherapeutic

drugs on CCA PDOs and the testing was repeated on CCA PDO

xenografts: the response of treatment in the majority of the patients was

comparable to the response of the respective PDOs. The overarching
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goal would be to predict in advance the response of CCA to

chemotherapeutic treatments (162). A recent example for application

of personalized treatment using the organoid model involved the

establishment of PDOs from a patient with perihilar CCA which was

then subjected to drug screening, showing sensitivity to gemcitabine and

cisplatin. Therefore, the drug combination was used in the patient

together with toripalimab and lenvatinib. The patient experienced no

recurrence a year after surgery (163). Personalized therapy is one the

most ambitious goals in oncology. Using a 3D patient-derived model,

like the PDO, to predict the efficacy of the treatment for a specific

patient could greatly assist the tumor board in making informed

therapeutic decisions.

3.2.3 Study of molecular pathogenesis in
organoids

The organoid model has also been extensively used to

investigate CCA key driver mutations as well as for the

exploration of the role of less researched molecules in CCA

tumorigenesis. The most distinctive key driver alterations of

iCCA include Fibroblast Growth Factor Receptor 2 (FGFR2)

fusions and isocitrate dehydrogenase (IDH) 1 mutations (164). In

contrast, eCCA is typically characterized by KRAS and SMAD4

mutations (165), thus molecularly more similar to pancreatic cancer

(166). Despite advances in molecular profiling, there are two main

challenges in targeted therapies in CCA patients. Firstly, many

patients lack targetable mutations – for example, FGFR2 fusions/

rearrangements are present in only 8-14% of CCA patients (167).

Secondly, many patients develop resistance even to the targeted

therapies (168). Therefore, there are currently very limited targeted

therapy approaches in CCA (169). To overcome these challenges,

further investigation into the most prevalent and functionally

relevant mutations in CCA is crucial and a possible model for

this application is the organoid.

Fujiwara et al. (170) used intrahepatic biliary organoids with

mutated IDH1 (an enzyme involved in the Krebs cycle), to study the

consequence of this mutation. The mutation was able to increase

the organoid formation and altered cell metabolism (170). iCCA

PDOs with the wild type and the mutated IDH1 were treated with

dasatinib in combination with M2698 (inhibitor of p70 S6 kinase

and AKT) to block phosphorylated ribosomal protein S6. The levels

of phosphorylated ribosomal protein S6 decreased in PDOs with

IDHmutation, while organoids with wild type IDH did not respond

to the treatment (171). Regarding the fusion of the growth factor

FGFR2, liver organoids with the FGFR2 fusion protein were used to

discover that Ras-Erk is a necessary pathway downstream to FGFR2

fusion protein (172). Hogenson et al. (173) identified a new FGFR2-

KIF5C chromosomal fusion in CCA patient intrahepatic metastasis

and the fusion was also preserved in the PDO. The efficacy of the

FGFR inhibitor tested in this PDO was higher compared to a

general multikinase inhibitor Lenvatinib. Thus, underlining the

importance of sequence in directing possible treatments (173).

However, other therapeutic targets for patients who do not

present these distinctive CCA mutations have to be explored.

Thanks to the organoid model, many oncogenes have been

explored regarding their function in cholangiocarcinoma,
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arginine-methyltransferase 5 (175), the ribosomal protein S6

(176), dopamine receptor D1 (76), the pathway LTb/NIK/RelB
(177), the enzyme Glycogen Phosphorylase Brain Form (178), the

enzyme Aspartate Beta-Hydroxylase (179) and the transporter

Solute Carrier Family 16 Member 3 (180).

Non-coding RNAs, like microRNA-21 have also an oncogenic

function in many different malignancies (181). Using the CCA

organoid model, the predictive role of microRNA-21 regarding the

effect of chaperone HSP90 inhibition (182) and the involvement of

long non-coding RNA titin-antisense RNA1 in CCA regulation was

investigated (183). Finally, DNA networks like neutrophil

extracellular traps were also researched in connection to CCA (184).

Besides studying oncogenes in the CCA pathogenesis, also

tumor suppressors, like the deubiquitinating enzyme BAP1 (185),

the CDK4/6 inhibitor Ink4 (186) and the non-coding circular RNA

circPCSK6 were discovered using CCA organoids (187). Moreover,

organoids were utilized for target testing approaches, for example

with the new tyrosine kinase inhibitor called NTRC 0652–0,

showing cytotoxic effects (188). Cholangiocarcinoma organoids

were also treated with antagonists against the voltage-dependent

anion-selective channel isoform 1, a protein that regulates

apoptosis, resulting in decreased cell survival (189). Aided by the

iCCA organoid model, it was discovered that the downregulation of

the multispan transmembrane protein MAL2 either through

knockdown or using the MAL2 inhibitor Sarizotan decreased the

resistance to cisplatin (190).

For studies investigating potential therapeutic targets, it is

essential that the model maintains the molecular characteristics of

the tumor. Therefore, stability and precision of the organoid makes

them an excellent model for this application (142, 143).

3.2.4 Metabolism studies in organoids
CCA organoids have previously been used for metabolic studies.

Yoshikawa et al. (40) showed that CCA organoids cultured in

absence of glucose were smaller and had low proliferative activity,

but the expression of different stem cell markers increased

compared to organoids cultivated in the presence of glucose. Not

only did the organoids grown without glucose have an increased

stem cell phenotype, but also became less sensitive to gemcitabine

(40). Lysine deprivation or treatment with the Lysyl‐tRNA

Synthetase inhibitor cladosporin in CCA PDOs resulted in

significant inhibition of organoid growth and organoid initiation

from single cells (191). Li et al. (192) focused on the study of

mitochondrial fusion, a phenomenon that could lead to a metabolic

advantage in CCA. Mitochondrial fusion was discovered to be

increased in CCA organoids and promoted the growth of

organoids. Knocking down the fusion regulator genes, Optic

atrophy 1 or Mitofusin 1, resulted in a change of mitochondrial

morphology and growth inhibition (192). Recently, Shan et al. (193)

discovered that targeting lipid metabolism could sensitize iCCA to

chemotherapy. RNA sequencing was performed on PDOs that were

sensitive or resistant against gemcitabine. SUMO-specific protease 3

expression was decreased in resistant organoids and it was involved

in reprogrammed lipid metabolism in CCA (193). Mitochondrial
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hyperfusion was also connected to chemotherapy resistance.

Treatment with cisplatin increased adaptive mitochondrial

hyperfusion, which in turn caused cisplatin resistance. Therefore,

targeting mitochondrial morphology could be a possible approach

to sensitize CCA against cisplatin (194).

Metabolism studies could also be combined with research on

diagnostic techniques using the organoid model. 5-aminolevulinic

acid is a non-proteinogenic amino acid and its metabolite accumulates

in tumor tissue and can be utilized for photodynamic diagnosis in

different cancer types (195). CCA PDOs showed higher photodynamic

activity caused by a higher accumulation of 5-aminolevulinic acid

metabolite compared organoids derived from cancer-adjacent tissue.

Therefore, 5-aminolevulinic acid photodynamic activity could be

potentially used in CCA diagnosis (195). These findings shed light

on the metabolism of this tumor entity, but further studies are

necessary to clarify the specific molecular processes involved in

these pathways and to explore the role of other metabolic pathways

in the disease. CCA organoids provide a valuable platform for

studying the metabolic dynamics of this disease, offering insights

into stem cell phenotypes and potential diagnostic applications, while

highlighting the need for further research to fully elucidate the

underlying molecular mechanisms.

3.2.5 Organoids as model for
cholangiocarcinogenesis

Recently, the original theory that iCCA derives from

cholangiocytes has been challenged by evidence suggesting a

potential hepatocytic origin. Saito et al. (39) used the

cholangiocarcinoma model to support the hypothesis that iCCA

cells could be derived from hepatocytes. iCCA organoids were

cultured under conditions that induced differentiation into cells

expressing mature hepatocyte markers, such as albumin and bile

acid. Moreover, reseeded iCCA organoids cultivated in a medium

that favors hepatocyte-like phenotype, presented less spheres,

suggesting a reduction of malignancy through hepatocyte

differentiation. Here, it was found that Wnt3a may transform

mature hepatocytes into iCCA cells (39). Sun et al. (196) also used

the model to investigate the molecular mechanism of the hepatocytic

origin of iCCA. The transfection of RAS in reprogrammed human

hepatocyte organoids developed typical human iCCA structures after

transplantation, which was not the case in RAS transfected

reprogrammed hepatocytes in 2D cultures, thus showing the

importance of a 3D tumor model (196). To further investigate the

origin of CCA, Saborowski et al. genetically modified liver organoids

to study cholangiocarcinogenesis. Once transplanted into mice,

depending on their genetic profile, they formed tumors with

histological characteristics of CCA or hepatocellular carcinoma

(197). Using mice transplanted with organoids, Li et al. proved that

hepatocellular carcinoma can acquire CCA characteristics during

later stages, thus demonstrating that tumors with mixed

hepatocellular and CCA features derive from advanced-stage

hepatocellular carcinoma (198). Following this discovery, Fan et al.

found that Hkdc1 in the organoids was associated with increased

metastases in an allograft mouse model (199).
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A rare primary liver cancer, known as combined hepatocellular-

cholangiocarcinoma, with both hepatocytic and biliary

characteristics. Due to its low incidence and biological

complexity, this rare malignancy lacks a reliable model. To

address this gap, Gao et al. (22) established two combined

hepatocellular-cholangiocarcinoma organoids, and these PDOs

were characterized through fingerprinting, whole-exome

sequencing as well as through analysis of their morphology,

growth and histology. The organoids were xenografted into mice

and the subcutaneous tumors showcased high levels of similarity to

the patients’ tumors (22). In a similar effort, Tang et al. (200)

developed a new combined hepatocellular-cholangiocarcinoma cell

line and demonstrated its capacity to form tumor spheres under

low-attachment conditions. Furthermore, this cell line was

successfully used to generate organoids, supporting its utility as a

versatile tool for studying this rare tumor entity (200).

Another application of the model for cholangiocarcinogenesis

research was to study the two distinct subtypes of iCCA: small duct

and large duct. The morphology was similar between the primary

tissue and the derived organoids, with the large duct presenting

glandular and columnar cells, while the small ducts presented

compact, small round cells (23). The advantage of using organoids

for subtyping is their ability to facilitate deep analysis despite the often

limited availability of tumor tissue (23). Another classification of iCCA

was also recently established by Cho et al. (201), who theorized three

iCCA groups based on mutations, transcriptomics, proteomics and

metabolomics, called “stem-like”, “poorly immunogenic”, and

“metabolism”. The “stem-like” CCA is characterized by an

overexpression of genes connected to stemness, an increase in the

glycolysis pathway and ALDH1A1 overexpression and patients have

an intermediate prognosis Therefore, a combination treatment

consisting of an ALDH1A1 inhibitor and nab-paclitaxel had a

synergic effect in ALDH1A1+ organoids but presented an

antagonist effect in the ALDH1A1- organoids (201). These studies

focus more on basic research but understanding the origin of a cancer

and classifying it thoroughly could be a fundamental step in finding

alternative ways to target the malignancy.

3.2.6 Organoids for studying CCA risk factors
The multifaceted organoid research model also allows the study

of CCA risk factors. Hepatitis B virus (HBV) is one of the most

common risk factors for iCCA. Organoids from HBV+ iCCA

patients were cultured and showed positive Hepatitis B surface

antigen staining. This led to the conclusion that the virus played a

role in the transdifferentiation of hepatocytes into iCCA cells. Since

HBV only affects hepatocytes, but not healthy bile duct cells, the

surface antigen was declared a “tracer protein” (202) However, even

if HBV is a risk factor for CCA, the activation of the immune

response caused by the infection could influence the prognosis of

this malignancy in a positive way. The immune related gene

TNFSF9 was underexpressed in iCCA organoids with HBV

infections. Additionally, the growth of non-infected iCCA

organoids had a decreased cell viability by inhibiting the

expression of TNFSF9 (203).
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Primary sclerosing cholangitis (PSC), a chronic inflammation of

the bile ducts, is a known risk factor for CCA development. To

discover the direct effect of inflammatory cytokines associated with

PSC on CCA cell proliferation, Lieshout et al. (204) exposed CCA

organoids to various cytokines. IL-17A specifically stimulated cell

proliferation, leading to a visible increase in organoid size (204). PSC

and CCA organoids were utilized for testing the effect of the JAK

inhibitor baricitinib and it inhibited the secretion of different cytokines

in the two types of organoids (205). Frank et al. (28) established PDOs

from patients with PSC. 5 months after the surgery, one patient was

diagnosed with CCA. Therefore, a transcriptomics study was

performed, which found an upregulation of cancer-related genes in

the organoids of the patient that developed CCA later. This highlights

how organoid models could be used for determining CCA prognosis

in future applications (28).

Even bacteria have been linked to CCA development. It was

concluded that bacteria have an important role in formation of

hepatolithiasis, a condition characterized by biliary stones in the

intrahepatic bile ducts, which is linked to iCCA progression. First, a

3D spheroid migration assay was performed in an indirect co-

culture with Escherichia coli, revealing increased migration of iCCA

cells. Then, organoids derived from patients with both iCCA and

hepatolithiasis presented greater resistance to gemcitabine

(206).Other risk factors for the development of CCA are

choledochal cysts, congenital dilations of bile ducts. Using

organoids of choledochal cysts, Ye et al. showed that a higher

expression of FGFR2 and CEBPB could increase the risk of

developing cancer in patients having choledochal cysts (207).

Finally, the connection of biliary epithelial injury and

cholangiocarcinoma formation was studied. Nakagawa et al. (208)

discovered that after biliary epithelial injury the regenerative

response mediated through IL-33 increased the development of

eCCA. Biliary organoids were created and transplanted into nude

mice. The detached, dying biliary epithelial cells released a high

quantity of IL-33 (208). The hyperplastic role of IL-33 in the bile

ducts was also previously investigated by Razumilava et al. (209).

The growth of extrahepatic biliary duct organoids was stimulated by

IL-33 and immunohistochemistry demonstrated that IL-33 was

overexpressed in CCA tumor tissue. In summary, these studies

underline the role of this interleukin in bile duct proliferation and

possible involvement in cholangiocarcinogenesis (208, 209).

These findings highlight risk factors associated with

carcinogenesis, and further research could explore therapies

targeting molecular pathways specific to CCA developed in the

presence of other conditions, such as HBV, hepatolithiasis, and

choledochal cysts.

3.2.7 Progress in organoid techniques
Organoids are a relative new 3D model, therefore optimizing

organoid methodologies and conducting basic research to find

novel applications for this model is crucial for its use in tumor

research. Roos et al. (33) established cholangiocyte branching

organoids to more accurately represent the bile duct architecture,

and to better understand the signaling pathways involved in tubular

development. Branching CCA organoids better mimicked the
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primary tumor and presented increased chemoresistance (33). Mi

et al. (41) compared undifferentiated organoids and organoids with

mature branching phenotype. Branching organoids compared to

undifferentiated organoids displayed greater resistance to standard

chemotherapeutic treatment, especially to gemcitabine. However,

the combination of the treatment with gemcitabine and a Bcl-xl

inhibitor was effective, increased apoptosis and changed the

morphology of the braching organoids (41).

Conventional hydrogel used for 3D cell culture often contain

high concentrations of gelatin, but they can limit cell growth. To

address this limitation, an ultra-low-gelatin-content hydrogel was

recently developed, that was able to improve both cell spreading and

cell growth (210). Furthermore, CCA PDOs have also been

cultivated in hydrogels derived from decellularized tumor ECM to

more accurately replicate the TME (211). All in all, media

composition is of primary importance for proper organoid

culture, especially in drug testing (173). Lisky et al. (212)

developed a FGFR2 PDO from a PDX. Interestingly, the

constitutive activation of FGFR2 allowed the culture of organoids

even without growth factors (EGF, FGF10, and HGF) (212).

In order to address one of the main problems of organoids -

namely poor reproducibility - Van Tienderen et al. (213) developed an

ECM containing microcapsules that allow for scalable and size-

controlled growth of CCA PDOs. This encapsulation technique

allowed the formation of size-standardized organoids (213). Another

frequent challenge is the extended cultivation times required for some

PDO lines. Wang et al. found that the addition of lactate to the culture

medium increased the growth of hepatopancreatobiliary cancer PDOs,

while maintaining their pathological features, genetic profile and

chemosensitivity (214). The objective of Roalsø et al. was to

discover the feasibility of the establishment of organoids following

pancreatectomy. Only one patient in this study presented dCCA and a

PDO was established successfully from the resected tissue, later it was

cryopreserved for biobanking (215). However, in the realm of PDOs,

less invasive methods for obtaining cancer cells from patients

compared to the aforementioned surgery, are highly encouraged.

Kinoshita et al. established a method to generate organoids from the

bile of patients with cholangiocarcinoma, using an endoscopic

retrograde cholangiopancreatography (216).

Organoids can also be used to establish mouse models, which

can then be utilized in other experiments. Kasuga et al. created a

newmouse model through injecting cells with biliary epithelial stem

properties derived from KRAS(G12V)-expressing organoids (186).

Then, these mouse tumors were compared to human CCA tumors

through pixel-level clustering of hematoxylin and eosin-stained

slides (217). Finally, CCA organoids were analyzed and

characterized for better understanding. Single cell RNA

sequencing was used to compare primary tumor to the derived

PDO (218) and CCA organoids were imaged to define principles

and patterns regarding their morphogenesis (219).

Finally, artificial intelligence is increasingly integrated in

oncological research, including its potential application with 3D

tumor models. Piansaddhayanon et al. established a deep learning

model that can distinguish organoid-derived cancer cells from

normal cells from CCA patients (220).
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Altogether, there is still much improvement needed in the novel

organoid model and this research suggests useful techniques to

ameliorate this model and make it more accessible to a wider range

of laboratories.
3.3 3D co-culture

3D co-culture entails the co-cultivation of more than one cell

line with extracellular matrix proteins, e.g. Matrigel, to create a

three-dimensional structure. It mainly includes heterotypic

spheroids and organoids. Thus, the presence of various cell types

and their interactions within an extracellular matrix resembles an in

vivo environment (221). An example of “simple” co-culture is the

indirect co-culture of cells using conditioned medium (222). Okabe

et al. (223) performed an human umbilical vein endothelial cells

tube formation assay with conditioned medium from tumor

stimulated HS cells, and from HS cells and tumor cells

individually. The results show that tumor cells could have

stimulated HS cells to secrete angiogenic factors, thus

emphasizing the importance of stromal cell interactions in tumor

angiogenesis (223). Raggi et al. (224) created a CCA sphere

conditioned medium to cultivate healthy monocytes, that resulted

in high macrophage activation. This highlights the importance of

the interactions between cancer cells and cells of the

microenvironment (224). However, the TME of CCA is far more

complex. Besides immune cells such as macrophages, it includes

cancer-associated fibroblasts (CAFs), endothelial cells, bile duct

epithelial cells, and extracellular matrix components that all

contribute to tumor growth, immune evasion, and therapy

resistance (225).

Recent advances have enabled the development of heterotypic

spheroids. These mixed-cell spheroids better mimic the cellular

heterogeneity and complex interactions within the native TME. The

spatial organization within these spheroids —such as the

localization of proliferative cancer cells at the periphery and more

quiescent cells in the core— also mirrors in vivo tumor architecture.

By incorporating multiple stromal and immune components, these

3D co-culture systems allow researchers to study intercellular

communication, drug penetration, and immunomodulation in a

highly controlled yet biologically relevant context (226).

Sueca-Comes et al. (227) investigated the addition of

mesenchymal stem cells to CCA spheroids. Spheroids were grown

as a monoculture and a as coculture with immortalized

mesenchymal stem cells from bone marrow. The presence of

mesenchymal cells in the co-culture was able to activate

important paracrine signals, thus imitating further the TME

(227). Gondaliya et al. (228) created an even more realistic

heterotypic spheroid model comprising of cancer cells, HS cells,

fibroblasts and endothelial cells. Nanovesicles decorated with

epithelial cell adhesion molecule were then used to deliver

programmed death-ligand 1 RNA therapeutics to CCA spheroids,

successfully reducing programmed death-ligand 1 expression and

enhancing immune responses (228). Tian et al. (229) focused

specifically on role of peritumoral myofibroblasts on cancer cell
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growth, a special spheroid-based co-culture system was developed.

In this system, 3D tumor spheroids containing only cancer cells,

and heterotypic spheroids with both cancer cells and intratumoral

myofibroblasts, were placed on a 2D layer of peritumoral

myofibroblasts. The co-culture was monitored over an extended

period, and it was shown that while peritumoral myofibroblasts

initially suppressed tumor growth, they later promoted tumor

dissemination. In contrast, intratumoral myofibroblasts had the

opposite effect (229). Manzanares et al. (230) also previously

performed a 3D co-culture with CCA cells and cancer-associated

myofibroblast. The 3D organotypic model mimicked the

desmoplasmatic stroma of iCCA tumors, characterized by dense

fibrous collagen. Moreover, TGF-b was found to be one of the most

fundamental drivers of formation of this desmosplatic stroma in

this co-culture (230).

Cancer-associated fibroblasts (CAFs) are gaining increasing

amounts of attention in cancer research because of their important

role in tumor progression and chemotherapy resistance (231).

Different studies focused on creating 3D tumor co-culture models

containing CAFs (232–237). Campbell et al. developed an organotypic

co-culture model with CCA and a-SMA-positive CAFs that produced

a desmoplasmatic environment, similar to the tumor in vivo from

which the cells derived (232). Liu et al. (233) used a 3D co-culture

model of organotypic growth in which cholangiocarcinoma cells were

co-cultured with CAFs in a rat type I collagen gel matrix. The novel

model was used to show that taurocholate was able to mediate an

increase in both the number and size of CCA spheroid/duct-like

structures (233). A 3D co-culture of CCA and CAFs or mesenchymal

stem cells was more resistant to the combination of gemcitabine and

cisplatin, and to the monotreatment with erlotinib compared to the

monoculture. However, the majority of co-cultured displayed

sensitivity to Afatinib (234). CAFs stimulated the 3D growth of

iCCA cells, which could be suppressed by inhibiting the placental

growth factor, offering a potential strategy to target the desmoplastic

microenvironment of iCCA (235). Moreover, CAFs significantly

contributed to resistance and metastasis in 3D models (236). Lasty,

the Notch1 inhibitor Crenigacest was able to target the cross-talk

between iCCA and CAFs (237).

More complex 3D co-culture approaches combine cancer

organoids with cells of the TME. Li et al. (238) created CCA PDOs

that contained both epithelial cancer cells and CAFs from the

corresponding tumor sample. These PDOs were resistant to

bortezomib, while organoids consisting only of cancer cells were

sensitive to the drug, highlighting the role of CAFs in

chemoresistance (238). Guo et al. (239) created an eCCA organoid

co-culture model with macrophages. First, tumor-associated

macrophages were induced from monocytes present in patient

blood, then they were cultured together with the eCCA patient

organoids. Thanks to the presence of tumor-associated

macrophages, this model better represented tumor heterogeneity,

and the co-culture model also exhibited increased levels of

chemotherapy resistance (239). CCA organoids were also co-

cultivated with peripheral blood mononuclear cells or T cells. The

co-culture system resulted in a lower number of living organoid cells

and increased cell death caused by the cultivation with immune cells,
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highlighting the importance of the immune environment of

cancers (240).

The most advanced co-culture models include decellularized tissue.

Van Tienderen et al. (29) used decellularized cholangiocarcinoma

tumor tissue to cultivate cholangiocarcinoma organoids. The

transcriptomics of organoids cultivated in decellularized tumor was

more similar to the in vivo primary tumor. Additionally, the treatment

of this model with chemotherapy exhibited increased resistance,

suggesting that the desmoplastic environment might play a role in

order to enable chemoresistance (29). CCA organoids in decellularized

tissue were also used to study metastatic colonization. First, lung and

lymph node tissues were decellularized to create an acellular ECM

scaffold, on which CCA organoids were grown. The results suggested

that metastatic migration and proliferation depended on both the

patient’s tumor and the ECM of the target organ in the lung, while

tumor tissue had the greatest influence on growth in lymph nodes (241).

Three-dimensional models that incorporate cells or structures

of the microenvironment appear to be fundamental for

recapitulating the complexity of cancer in the future, since more

and more studies are highlighting the importance of the TME.
3.4 Bioprinted 3D model and tumors-on-a-
chip

3D bioprinting is a series of techniques that is used to “print” in

vitro models designed to mimic the in vivo microenvironment of

the tumor (242), and has also been recently applied to bile duct

engineering (243). Tumors-on-a-chip are engineered miniature

tumors grown on microfluidic devices and could be defined as

one of the most complex applications of 3D bioprinting (244, 245).

Microfluidic devices can even allow the long-term live cell imaging

(246). Mao et al. (247) bioprinted patient-derived iCCA cells into a

grid structure. The characterization of the 3D bioprinted iCCA

model revealed a high cell viability, continuous cell proliferation

and chemotherapeutic resistance (247). The bioprinting technique

was used to study the role of stromal cells in CCA. An extrusion

bioprinter platform was used to print CCA cells surrounded by

stromal cells like CAFs, tumor-associated endothelial cells or

tumor-associated macrophages. Malignancy, invasion, metastasis

and stemness were particularly increased in the 3D co-culture of

cancer cells with CAFs and cancer cells with tumor-associated

macrophages (242). Unfortunately, one of the disadvantages of

bioprinting is the high cost of this method. For this reason,

Breideband et al. (248) developed an open-source device based on

a consumer-grade 3D stereolithography apparatus printer, to make

bioprinting more accessible, that was then tested by creating

successfully encapsulated CCA organoids (248).

An even more advanced model is the 3D-bioprinted CCA on a

chip. Microchannels were constructed on a chip to recreate blood

vessels and bile ducts. CCA cells and endothelial cells were seeded in

separate microchannels, while hepatocyte-like cells were embedded in a

matrix, creating an “in vitro liver”. Compared to the 2D monoculture,

the 3D tri-culture model was more sensitive to the antitumor prodrug

cyclophosphamide, likely due to the presence of neighboring functional
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hepatocyte cells that could metabolize the prodrug into its active form,

thus paving the way for novel drug testing strategies (249). Polidoro

et al. (250) created a three-channel microfluidic device to obtain a

cholangiocarcinoma-on-a-chip that also included part of the immune

microenvironment. CCA cells and CAFs were co-cultured in a main

channel, while endothelial cells were cultivated in a lateral channel, and

later, T cells were injected into the system. Stimulated T cells had an

increased migration from the endothelial channel to the tumor

compartment compared to unstimulated T cells (250).

Further applications of these microfluidic devices also include

drug testing. Sun et al. (251) discovered TBK1 inhibition as a

possible strategy to improve CAR-T therapy. Tumor spheroids were

placed in the center gel region of a microfluidic device, while CAR-

T cells were placed in the side channels. The inhibition of TKB1 was

able to enhance the efficacy of CAR-T cells against CCA spheroids

(251). Additionally, Liu et al. (252) developed an advanced

microfluidic device that combined chip-technology with PDOs for

the testing of anti-cholangiocarcinoma drugs. Organoids cultivated

in the microfluidic device were treated with trastuzumab emtansine,

the drug was able to reduce the size and number of organoids

overall, but the response varied significantly between different

PDOs. The testing was performed also on a chip co-culture of

CCA PDOs and recellularized liver and kidney, resulting in a low

hepatorenal toxicity while remaining effective against CCA (252).

Although bioprinting tumors is a complex method still in its early

stages, this powerful and advanced model holds significant potential

for the future of oncological research.
3.5 CAM model in cholangiocarcinoma

In tumor research, the CAM model serves as an intermediate

step for the translation of preclinical research into clinical

applications. Recently, the CAM model has been utilized as

additional valuable research tool for studying CCA (62).

Schmidt et al. (253) determined the antiangiogenic effects and

suitability of two phthalocyanines as photosensitizer for PDT of

cholangiocarcinoma using the CAM model. For this purpose, the

blood vessel formation in the developing CAM after the treatment

with the two photosensitizers for PDT was observed. Before PDT

treatment, the CAM had a regular vascular network with an intact

capillary bed. PDT with the photosensitizer zinc phthalocyanine

caused the degeneration of the existing vascular network, resulting

in non-perfused areas. The development of novel anticancer

compounds with antiangiogenic potency represents a crucial

approach for future treatment strategies, as CCA also requires the

formation of new blood vessels for its growth (253).

Brun et al. (254) developed a novel lysosomotropic small

molecule, GNS561, and evaluated its effect on tumor growth in

the CAM model. Lysosomes are important for cancer proliferation

including angiogenesis, aggressiveness, metastasis, and also

influence signaling, thus targeting lysosomes offers a promising

approach for anticancer therapy in iCCA. The CCA cell line

HuCCT1 was grafted onto the CAM and the treatment with

GNS561 demonstrated a significant reduction in tumor growth.
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This is an example of how tumors grown on the CAM provide a

rapid and cost-effective platform for initial preclinical analysis of

compound’s effects (254).

Ament et al. (255) used the CAM model to study the role of

post-translational fucosylation in iCCA. It was suggested that

fucosylation levels are abnormally high in iCCA tissues. In vitro

treatment with the fucosylation inhibitor 6AF significantly reduced

cell proliferation, and the effect was reversed by adding L-fucose.

While 6AF treatment did not notably affect apoptosis in vitro,

Ament et al. were able to show a reduction of tumor growth and

increased apoptosis in the in vivo CAM model. An iCCA cell line

was pretreated with 6AF individually, and combined with L-fucose.

The cells were then grown on the CAM. The tumors treated with

6AF alone presented a decreased volume compared to the control,

while the addition of L-fucose increased tumor volume. Moreover,

the treatment with 6AF decreased proliferation and increased

apoptosis; the supplementation with L-fucose reversed both the

anti-proliferative and apoptotic effects. These findings suggest that

targeting fucosylation could be a promising therapeutic strategy for

iCCA (255).

These findings demonstrate that the in vivo CAM model has a

lot of potential regarding CCA research. The highly multifaceted

CAM model could enable the study of various aspects of CCA and

the testing of therapeutics in a more physiological setting, paving

the way for personalized medicine.
4 Discussion

CCA is the second most common type of liver cancer and has a

poor prognosis due to diagnosis at late stages of the disease (1, 2).

Preclinical research using 3D models, such as organoids and

spheroids, is crucial for gaining a deeper understanding of CCA,

tumor behavior, and drug resistance, ultimately supporting the

development of personalized therapies.

The multifaceted organoid model has especially attracted a lot

of attention in cancer research in recent years (139) and has been

widely used to study CCA. One of the most used applications for

organoids has been the drug testing realm (141): from discovery of

new targets to drug panel screening, from testing of drug

combinations to targeted therapy approaches. However, the most

impressive niche of this application is personalized treatment. Some

examples of the first personalized treatment studies using CCA

organoids were cited in this review and had promising results (161–

163). Thanks to the ability to create PDOs from patient tumor

tissue, the next step, would hopefully be to integrate this model in

the tumor board decision-making process.

Beside CCA organoids, spheroids also serve as promising

experimental models. Spheroids have been integrated in CCA

research mainly through the method called “Spheroid/sphere

formation assay”, an in vitro technique to study the self-renewal

of CSCs (256). CSCs play a fundamental role in CCA and are

especially involved in its chemoresistance (257), thus implementing

methods such as the spheroid model is of the utmost importance.
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Moreover, the spheroid model has been particularly useful for the

pursuit of new therapeutic targets and drug testing, since they better

mimic the TME compared to 2D models and this allows for more

faithful results (135, 258).

However, even if spheroids are useful models for studying CCA

and are one step ahead compared to classical 2D cell culture (16,

259), they often fail to accurately replicate the native tissue

architecture and function of the original tissue (102). In contrast,

organoids exhibit a higher and more predictable level of cellular

organization and interact more significantly with the extracellular

matrix (219). This allows them to preserve most of the histological

and malignant characteristics of the original tumor, since factors

like the targeted cell population, tissue location and oncogenic

complexity highly influence CCA development (24, 208).

Nevertheless, creating CCA organoids has been less successful

compared to other tumor types and still presents some

obstacles (153).

CCA is characterized by a highly desmoplastic stroma, which

has a fundamental role in influencing cancer growth and

chemoresistance (260). Therefore, the development of cancer

models that include tumor stroma component is non-negotiable.

3D co-culture is a vast expression, which includes all 3D models

that present more than one cell line (221) (spheroid co-culture,

organoid co-culture, decellularized tissue model etc.). All these

different models have shed more light on the function of CAFs,

tumor-associated macrophages, intratumoral and peritumoral

myofibroblasts and HS cells in CCA (223, 229, 233, 239). The

final aim of studying the tumor stroma would be to find possible

alternative therapeutic targets.

Regarding the most advanced techniques in 3D in vitro

research, approaches that combine biology and engineering, have

created interesting techniques and new models. Current efforts are

focused on developing even more complex models like assembloids,

which integrate different organoids with each other or fuse

organoids with other specialized cell types (261). Thanks to its

complexity and inclusion of non-cancer cel ls of the

microenvironment, the new assembloid model has a high

potential in CCA studies, both in the basic research field as well

as for more accurate drug screenings. The main challenge hereby is

to involve co-culturing autologous cell types from the same patient;

thus, further studies are essential to develop this approach.

Another example of a novel 3D model is the tumor-on-chip, a

tumor in miniature created through a microfluidic device in which

cancer cells and stroma cells are seeded (244, 245). The tumor-on-a-

chip is probably one of the best in vitro models regarding

mimicking the TME. Unfortunately, this method is not user-

friendly and bioprinting is still a costly technique (58, 59, 245,

248). Through methodologies that could lower some of the costs

(248) and practices of standardization, this model, possessing high

potential, could become more accessible and thus more integrated

in CCA research.

Xenografts typically represent advanced tumor stages and grow

rapidly, complicating the study of early-stage CCA. Additionally,

different CCA cell lines vary in their ability to form tumors (31).
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These tumors are implanted in non-physiological sites, rarely

metastasize, and may lose the molecular heterogeneity of human

CCA (185). This makes it difficult to study interactions between

tumor cells, the immune system and microenvironment. Patient-

derived xenografts like the CAMmodel, typically retain the original

genetic and epigenetic features. Therefore, the CAM model is

promising for predicting therapeutic responses and advancing

personalized medicine (262). However, the model is highly

sensitive to the external microenvironment and the experiment

and observation time is short due to the fast embryo development

(62, 263).

Preclinical models are crucial for developing novel clinical

strategies for CCA, especially regarding drug discovery (264).

Traditional 2D cell cultures, though widely used, have limitations in

accurately replicating the original tumor characteristics (9). A key

limitation of experimental models in general is their inability to fully

capture the complexity of tumor biology and the unique cancer traits

of individual patients. For instance, the TME, consisting of a complex

interplay between cancerous and non-cancerous cells, creates a

desmoplastic environment. Additionally, the considerable

heterogeneity within and among tumors is difficult to replicate in

models but remains essential for understanding drug resistance and

tumor progression (265).

To address these limitations, 3D models like organoids, spheroids

and 3D co-culture have been developed, offering a better mimicry of

the tumor architecture (9, 10). Unfortunately, the models face some

challenges, mainly lack of standardization, reproducibility and high

costs (17, 18, 48, 49, 51, 54, 266). Researchers still encounter the

dilemma of which model to choose for conducting their research. The

simple, standardized and reproducible 2D culture of a commercial cell

line in a petri dish is unfortunately far from the pathophysiological

conditions of in vivo tumors. On the other hand, methods like

organoids, which mimic the pathological TME and its heterogeneity,

are expensive and not highly reproducible (19). New methodologies

are being studied to improve reproducibility, accelerate the growth and

lessen the cost of 3D models (213, 214, 248), thus slightly tipping the

scale in favor of 3D models. However, this does not mean the

extinction of classical 2D culture - it is still and will be a good model

for drug screening (267) and for biomarker discovery (268) - but the

addition of more variety in models, that will improve research of CCA.
Conclusion

Disease models should ultimately facilitate the transfer of

knowledge from basic laboratory research into clinical

applications, enhancing our understanding of the disease and

enabling the development of innovative therapies. Since the

choice of model is highly dependent on the specific research

question, it is strongly recommended to gather results using

various models to ensure a comprehensive representation of the

tumor. This approach supports the consolidation of scientific data
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with well-defined minimum criteria before validating these findings

through ex vivo sample manipulation or clinical trials in patients.
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et al. SRC inhibition enables formation of a growth suppressive MAGI1-PP2A complex
in isocitrate dehydrogenase-mutant cholangiocarcinoma. Sci Transl Med. (2024) 16:
eadj7685. doi: 10.1126/scitranslmed.adj7685

172. Cristinziano G, Porru M, Lamberti D, Buglioni S, Rollo F, Amoreo CA, et al.
FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids
towards cholangiocarcinoma. J Hepatol. (2021) 75:351–62. doi: 10.1016/
j.jhep.2021.02.032

173. Hogenson TL, Xie H, Phillips WJ, Toruner MD, Li JJ, Horn IP, et al. Culture
media composition influences patient-derived organoid ability to predict therapeutic
responses in gastrointestinal cancers. JCI Insight. (2022) 7. doi: 10.1172/
jci.insight.158060

174. Cigliano A, Gigante I, Serra M, Vidili G, Simile MM, Steinmann S, et al. HSF1 is
a prognostic determinant and therapeutic target in intrahepatic cholangiocarcinoma. J
Exp Clin Cancer Res. (2024) 43:253. doi: 10.1186/s13046-024-03177-7

175. Elurbide J, Colyn L, Latasa MU, Uriarte I, Mariani S, Lopez-Pascual A, et al.
Identification of PRMT5 as a therapeutic target in cholangiocarcinoma. Gut. (2024)
74:116–27. doi: 10.1136/gutjnl-2024-332998

176. Fu W, Lin Y, Bai M, Yao J, Huang C, Gao L, et al. Beyond ribosomal function:
RPS6 deficiency suppresses cholangiocarcinoma cell growth by disrupting alternative
splicing. Acta Pharm Sin B. (2024) 14:3931–48. doi: 10.1016/j.apsb.2024.06.028

177. Xu K, Kessler A, Nichetti F, Hoffmeister-Wittmann P, Scherr A-L, Nader L,
et al. Lymphotoxin beta-activated LTBR/NIK/RELB axis drives proliferation in
cholangiocarcinoma. Liver Int. (2024) 44:2950–63. doi: 10.1111/liv.16069

178. Pan Y, Zhou Y, Shen Y, Xu L, Liu H, Zhang N, et al. Hypoxia stimulates PYGB
enzymatic activity to promote glycogen metabolism and cholangiocarcinoma
progression. Cancer Res. (2024) 84:3803–17. doi: 10.1158/0008-5472.CAN-24-0088

179. Li F, Li Y, Wang L, Xu L, Xue H, Wei W, et al. Tumor microenvironment
heterogeneity and progression mechanisms in intrahepatic cholangiocarcinoma: A
study based on single-cell and spatial transcriptomic sequencing. Hepatology. (2025).
doi: 10.1097/HEP.0000000000001423

180. Chen R, Ma C, Qian H, Xie X, Zhang Y, Lu D, et al. Mutant KRAS and CK2
cooperatively stimulate SLC16A3 activity to drive intrahepatic cholangiocarcinoma
progression. Cancer Res. (2025) 85:1253–69. doi: 10.1158/0008-5472.CAN-24-2097

181. Rhim J, Baek W, Seo Y, Kim JH. From molecular mechanisms to therapeutics:
understanding microRNA-21 in cancer. Cells. (2022) 11. doi: 10.3390/cells11182791

182. Lampis A, Carotenuto P, Vlachogiannis G, Cascione L, Hedayat S, Burke R,
et al. MIR21 drives resistance to heat shock protein 90 inhibition in
cholangiocarcinoma. Gastroenterology. (2018) 154:1066–1079.e5. doi: 10.1053/
j.gastro.2017.10.043

183. Zhou X, Kong X, Lu J, Wang H, Liu M, Zhao S, et al. Circulating tumor cell-
derived exosome-transmitted long non-coding RNA TTN-AS1 can promote the
frontiersin.org

https://doi.org/10.1016/j.stem.2023.05.012
https://doi.org/10.1016/j.canlet.2025.217619
https://doi.org/10.1016/j.canlet.2025.217619
https://doi.org/10.7150/thno.96027
https://doi.org/10.1016/j.tranon.2020.100840
https://doi.org/10.1016/j.tranon.2020.100840
https://doi.org/10.1016/j.livres.2021.05.003
https://doi.org/10.1016/j.livres.2021.05.003
https://doi.org/10.1016/j.gendis.2023.02.052
https://doi.org/10.1016/j.gendis.2023.02.052
https://doi.org/10.1016/j.biopha.2025.118208
https://doi.org/10.3389/fonc.2022.1021632
https://doi.org/10.3389/fonc.2022.877194
https://doi.org/10.3389/fonc.2022.860339
https://doi.org/10.3389/fonc.2022.860339
https://doi.org/10.1016/j.ymthe.2025.03.005
https://doi.org/10.1016/j.ymthe.2025.03.005
https://doi.org/10.1002/cac2.12452
https://doi.org/10.1002/cac2.12452
https://doi.org/10.1158/1535-7163.MCT-24-0972
https://doi.org/10.3390/pharmaceutics13091332
https://doi.org/10.3389/fphar.2021.723488
https://doi.org/10.3389/fphar.2024.1288255
https://doi.org/10.1038/s41419-023-06406-7
https://doi.org/10.1038/s41419-023-06406-7
https://doi.org/10.1001/jamanetworkopen.2023.1476
https://doi.org/10.1001/jamanetworkopen.2023.1476
https://doi.org/10.1186/s12935-021-02219-w
https://doi.org/10.1172/jci.insight.121490
https://doi.org/10.1186/s10020-022-00498-1
https://doi.org/10.7150/ijbs.67379
https://doi.org/10.3390/cancers13051179
https://doi.org/10.3390/cancers13051179
https://doi.org/10.1016/j.xcrm.2023.101277
https://doi.org/10.4251/wjgo.v16.i10.4274
https://doi.org/10.4251/wjgo.v16.i10.4274
https://doi.org/10.37349/etat.2022.00079
https://doi.org/10.1158/1078-0432.CCR-18-0078
https://doi.org/10.1038/s41401-020-00584-2
https://doi.org/10.1038/s41401-020-00584-2
https://doi.org/10.1080/13543784.2021.1880565
https://doi.org/10.1080/13543784.2021.1880565
https://doi.org/10.3389/fcell.2024.1408852
https://doi.org/10.1080/07853890.2024.2310196
https://doi.org/10.1080/07853890.2024.2310196
https://doi.org/10.1038/s41598-019-55211-w
https://doi.org/10.1038/s41598-019-55211-w
https://doi.org/10.1126/scitranslmed.adj7685
https://doi.org/10.1016/j.jhep.2021.02.032
https://doi.org/10.1016/j.jhep.2021.02.032
https://doi.org/10.1172/jci.insight.158060
https://doi.org/10.1172/jci.insight.158060
https://doi.org/10.1186/s13046-024-03177-7
https://doi.org/10.1136/gutjnl-2024-332998
https://doi.org/10.1016/j.apsb.2024.06.028
https://doi.org/10.1111/liv.16069
https://doi.org/10.1158/0008-5472.CAN-24-0088
https://doi.org/10.1097/HEP.0000000000001423
https://doi.org/10.1158/0008-5472.CAN-24-2097
https://doi.org/10.3390/cells11182791
https://doi.org/10.1053/j.gastro.2017.10.043
https://doi.org/10.1053/j.gastro.2017.10.043
https://doi.org/10.3389/fonc.2025.1598552
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Montagner et al. 10.3389/fonc.2025.1598552
proliferation and migration of cholangiocarcinoma cells. J Nanobiotechnol. (2024)
22:191. doi: 10.1186/s12951-024-02459-8

184. Zhang C, Wu D, Dong B, Liao G, Yu Y, Huang S, et al. The scaffold of
neutrophil extracellular traps promotes CCA progression and modulates angiogenesis
via ITGAV/NFkB. Cell Commun Signal. (2024) 22:103. doi: 10.1186/s12964-024-
01500-5

185. Artegiani B, van Voorthuijsen L, Lindeboom RG, Seinstra D, Heo I, Tapia P,
et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human
liver organoids. Cell Stem Cell. (2019) 24:927–943.e6. doi: 10.1016/j.stem.2019.04.017

186. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al.
Oncogenic KRAS–expressing organoids with biliary epithelial stem cell properties
give rise to biliary tract cancer in mice. Cancer Sci. (2021) 112:1822–38. doi: 10.1111/
cas.14703

187. Guan C, Gao J, Zou X, Shi W, Hao Y, Ge Y, et al. A novel 167-amino acid
protein encoded by circPCSK6 inhibits intrahepatic cholangiocarcinoma progression
via IKBa Ubiquitination. Adv Sci (Weinh). (2025) 12:e2409173. doi: 10.1002/
advs.202409173

188. Conboy CB, Yonkus JA, Buckarma EH, Mun D-G, Werneburg NW, Watkins
RD, et al. LCK inhibition downregulates YAP activity and is therapeutic in patient-
derived models of cholangiocarcinoma. J Hepatol. (2023) 78:142–52. doi: 10.1016/
j.jhep.2022.09.014

189. Conti Nibali S, Siervi S, LuChinat E, Magrì A, Messina A, Brocca L, et al.
VDAC1-interacting molecules promote cell death in cancer organoids through
mitochondrial-dependent metabolic interference. iScience. (2024) 27:109853.
doi: 10.1016/j.isci.2024.109853

190. Huang T, Cao H, Liu C, Sun X, Dai S, Liu L, et al. MAL2 reprograms lipid
metabolism in intrahepatic cholangiocarcinoma via EGFR/SREBP-1 pathway based on
single-cell RNA sequencing. Cell Death Dis. (2024) 15:411. doi: 10.1038/s41419-024-
06775-7

191. Zhang R, Noordam L, Ou X, Ma B, Li Y, Das P, et al. The biological process of
lysine-tRNA charging is therapeutically targetable in liver cancer. Liver Int. (2021)
41:206–19. doi: 10.1111/liv.14692

192. Li M, Wang L, Wang Y, Zhang S, Zhou G, Lieshout R, et al. Mitochondrial
fusion via OPA1 and MFN1 supports liver tumor cell metabolism and growth. Cells.
(2020) 9. doi: 10.3390/cells9010121

193. Shan J, Chen Z, Chen M, Wu Z, Zhu H, Jin X, et al. SENP3 induced HADHA
deSUMOylation enhances intrahepatic cholangiocarcinoma chemotherapy sensitivity
via fatty acid oxidation. Cancer Lett . (2025) 625:217770. doi: 10.1016/
j.canlet.2025.217770

194. Lv G-Y, MuW-T, Cao Y-N, Sun X-D, Wei F, Chai K-Y, et al. Cisplatin-induced
disruption of mitochondrial divisome leads to enhanced cisplatin resistance in
cholangiocarcinoma. J Hepatol. (2025). doi: 10.1016/j.jhep.2025.03.028

195. Fujiwara H, Takahara N, Tateishi K, Tanaka M, Kanai S, Kato H, et al. 5-
Aminolevulinic acid-mediated photodynamic activity in patient-derived
cholangiocarcinoma organoids. Surg Oncol. (2020) 35:484–90. doi: 10.1016/
j.suronc.2020.10.011

196. Sun L, Wang Y, Cen J, Ma X, Cui L, Qiu Z, et al. Modelling liver cancer
initiation with organoids derived from directly reprogrammed human hepatocytes. Nat
Cell Biol. (2019) 21:1015–26. doi: 10.1038/s41556-019-0359-5

197. Saborowski A, Wolff K, Spielberg S, Beer B, Hartleben B, Erlangga Z, et al.
Murine liver organoids as a genetically flexible system to study liver cancer in vivo and
in vitro. Hepatol Commun. (2019) 3:423–36. doi: 10.1002/hep4.1312

198. Li L, Qian M, Chen I-H, Finkelstein D, Onar-Thomas A, Johnson M, et al.
Acquisition of cholangiocarcinoma traits during advanced hepatocellular carcinoma
development in mice. Am J Pathol . (2018) 188:656–71. doi: 10.1016/
j.ajpath.2017.11.013

199. Fan L, Tian C, Yang W, Liu X, Dhungana Y, Yang W, et al. HKDC1 promotes
liver cancer stemness under hypoxia through stabilizing b-catenin. Hepatology. (2024)
81:1655–99. doi: 10.1097/HEP.0000000000001085

200. Tang H, Chai C, Miao X, Su Y, Yu C, Yi J, et al. Establishment and
characterization of CHC-X1: the third human combined hepatocellular-
cholangiocarcinoma cell line. BMC Cancer. (2025) 25:472. doi: 10.1186/s12885-025-
13876-9

201. Cho SY, Hwang H, Kim Y-H, Yoo BC, Han N, Kong S-Y, et al. Refining
classification of cholangiocarcinoma subtypes via proteogenomic integration reveals
new therapeutic prospects. Gastroenterology. (2023) 164:1293–309. doi: 10.1053/
j.gastro.2023.02.045

202. Song Z, Lin S, Wu X, Ren X, Wu Y, Wen H, et al. Hepatitis B virus-related
intrahepatic cholangiocarcinoma originates from hepatocytes. Hepatol Int. (2023)
17:1300–17. doi: 10.1007/s12072-023-10556-3

203. Li Z, Gao Q, Wu Y, Ma X, Wu F, Luan S, et al. HBV infection effects prognosis
and activates the immune response in intrahepatic cholangiocarcinoma. Hepatol
Commun. (2024) 8. doi: 10.1097/HC9.0000000000000360

204. Lieshout R, Kamp EJ, Verstegen MM, Doukas M, Dinjens WN, Köten K, et al.
Cholangiocarcinoma cell proliferation is enhanced in primary sclerosing cholangitis: A
role for IL-17A. Intl J Cancer. (2023) 152:2607–14. doi: 10.1002/ijc.34350

205. Boden C, Esser LK, Dold L, Langhans B, Zhou T, Kaczmarek DJ, et al. The IL-6/
JAK/STAT3 axis in cholangiocarcinoma and primary sclerosing cholangitis: unlocking
Frontiers in Oncology 22
therapeutic strategies through patient-derived organoids. Biomedicines. (2025) 13.
doi: 10.3390/biomedicines13051083

206. Kang F-P, Chen Z-W, Liao C-Y, Wu Y-D, Li G, Xie C-K, et al. Escherichia coli-
Induced cGLIS3-Mediated Stress Granules Activate the NF-kB Pathway to Promote
Intrahepatic Cholangiocarcinoma Progression. Adv Sci (Weinh). (2024) 11:e2306174.
doi: 10.1002/advs.202306174

207. Ye Y, Lui VC, Babu RO, Wu Z, Wu W, Chung PH, et al. Identification of
cancer-related genes FGFR2 and CEBPB in choledochal cyst via RNA sequencing of
patient-derived liver organoids. PloS One. (2023) 18:e0283737. doi: 10.1371/
journal.pone.0283737

208. Nakagawa H, Suzuki N, Hirata Y, Hikiba Y, Hayakawa Y, Kinoshita H, et al.
Biliary epithelial injury-induced regenerative response by IL-33 promotes
cholangiocarcinogenesis from peribiliary glands. Proc Natl Acad Sci U.S.A. (2017)
114:E3806–15. doi: 10.1073/pnas.1619416114

209. Razumilava N, Shiota J, Mohamad Zaki NH, Ocadiz-Ruiz R, Cieslak CM,
Zakharia K, et al. Hedgehog signaling modulates interleukin-33-dependent
extrahepatic bile duct cell proliferation in mice. Hepatol Commun. (2019) 3:277–92.
doi: 10.1002/hep4.1295

210. Asim S, Hayhurst E, Callaghan R, Rizwan M. Ultra-low content physio-
chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture. Int J
Biol Macromol. (2024) 264:130657. doi: 10.1016/j.ijbiomac.2024.130657

211. van Tienderen GS, Conboy J, Muntz I, Willemse J, Tieleman J, Monfils K, et al.
Tumor decellularization reveals proteomic and mechanical characteristics of the
extracellular matrix of primary liver cancer. Biomater Adv. (2023) 146:213289.
doi: 10.1016/j.bioadv.2023.213289

212. Lidsky ME, Wang Z, Lu M, Liu A, Hsu SD, McCall SJ, et al. Leveraging patient
derived models of FGFR2 fusion positive intrahepatic cholangiocarcinoma to identify
synergistic therapies. NPJ Precis Oncol. (2022) 6:75. doi: 10.1038/s41698-022-00320-5

213. van Tienderen GS, Willemse J, van Loo B, van Hengel EV, Jonge J, van der Laan
LJ, et al. Scalable production of size-controlled cholangiocyte and cholangiocarcinoma
organoids within liver extracellular matrix-containing microcapsules. Cells. (2022) 11.
doi: 10.3390/cells11223657

214. Wang Z, Yu Y,Wu P, Ye Q, Guo Y, Zhang X, et al. Lactate promotes the growth
of patient-derived organoids from hepatopancreatobiliary cancers via ENO1/HIF1a
pathway and does not affect their drug sensitivities. Cell Death Discov. (2022) 8:214.
doi: 10.1038/s41420-022-01014-4

215. Roalsø MT, Alexeeva M, Oanæs C, Watson M, Lea D, Zaharia C, et al. Patient-
derived organoids from pancreatic cancer after pancreatectomy: Feasibility and
organoid take rate in treatment-naïve periampullary tumors. Pancreatology. (2025)
25:367–76. doi: 10.1016/j.pan.2024.12.018

216. Kinoshita K, Tsukamoto Y, Hirashita Y, Fuchino T, Kurogi S, Uchida T, et al.
Efficient establishment of bile-derived organoids from biliary cancer patients. Lab
Invest. (2023) 103:100105. doi: 10.1016/j.labinv.2023.100105

217. Inoue H, Aimono E, Kasuga A, Tanaka H, Iwasaki A, Saya H, et al. Pixel-level
clustering of hematoxylin-eosin-stained sections of mouse and human biliary tract
cancer. Biomedicines. (2022) 10. doi: 10.3390/biomedicines10123133

218. Chen K, Ma Y, Zhong X, Lan J, Long D, Tian X, et al. Single-cell transcriptome
profiling of primary tumors and paired organoids of pancreatobiliary cancer. Cancer
Lett. (2024) 582:216586. doi: 10.1016/j.canlet.2023.216586

219. Hof L, Moreth T, Koch M, Liebisch T, Kurtz M, Tarnick J, et al. Long-term live
imaging and multiscale analysis identify heterogeneity and core principles of epithelial
organoid morphogenesis. BMC Biol. (2021) 19:37. doi: 10.1186/s12915-021-00958-w

220. Piansaddhayanon C, Koracharkornradt C, Laosaengpha N, Tao Q,
Ingrungruanglert P, Israsena N, et al. Label-free tumor cells classification using deep
learning and high-content imaging. Sci Data. (2023) 10:570. doi: 10.1038/s41597-023-
02482-8

221. Asante EC, Pallegar NK, Viloria-Petit AM, Christian SL. Three-dimensional
co-culture method for studying interactions between adipocytes, extracellular matrix,
and cancer cells.Methods Mol Biol. (2022) 2508:69–77. doi: 10.1007/978-1-0716-2376-
3_7

222. Vis MA, Ito K, Hofmann S. Impact of Culture Medium on Cellular Interactions
in in vitro Co-culture Systems. Front Bioeng Biotechnol. (2020) 8:911. doi: 10.3389/
fbioe.2020.00911

223. Okabe H, Beppu T, Hayashi H, Ishiko T, Masuda T, Otao R, et al. Hepatic
stellate cells accelerate the Malignant behavior of cholangiocarcinoma cells. Ann Surg
Oncol. (2011) 18:1175–84. doi: 10.1245/s10434-010-1391-7

224. Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, Alvaro D, et al.
Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating
associated macrophages. J Hepatol. (2017) 66:102–15. doi: 10.1016/j.jhep.2016.08.012

225. Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour
microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med. (2019)
23:59–69. doi: 10.1111/jcmm.13953

226. Yau JN, Adriani G. Three-dimensional heterotypic colorectal cancer spheroid
models for evaluation of drug response. Front Oncol. (2023) 13:1148930. doi: 10.3389/
fonc.2023.1148930

227. Sueca-Comes M, Rusu EC, Ashworth JC, Collier P, Probert C, Ritchie A, et al.
The role of mesenchymal cells in cholangiocarcinoma. Dis Model Mech. (2024) 17.
doi: 10.1242/dmm.050716
frontiersin.org

https://doi.org/10.1186/s12951-024-02459-8
https://doi.org/10.1186/s12964-024-01500-5
https://doi.org/10.1186/s12964-024-01500-5
https://doi.org/10.1016/j.stem.2019.04.017
https://doi.org/10.1111/cas.14703
https://doi.org/10.1111/cas.14703
https://doi.org/10.1002/advs.202409173
https://doi.org/10.1002/advs.202409173
https://doi.org/10.1016/j.jhep.2022.09.014
https://doi.org/10.1016/j.jhep.2022.09.014
https://doi.org/10.1016/j.isci.2024.109853
https://doi.org/10.1038/s41419-024-06775-7
https://doi.org/10.1038/s41419-024-06775-7
https://doi.org/10.1111/liv.14692
https://doi.org/10.3390/cells9010121
https://doi.org/10.1016/j.canlet.2025.217770
https://doi.org/10.1016/j.canlet.2025.217770
https://doi.org/10.1016/j.jhep.2025.03.028
https://doi.org/10.1016/j.suronc.2020.10.011
https://doi.org/10.1016/j.suronc.2020.10.011
https://doi.org/10.1038/s41556-019-0359-5
https://doi.org/10.1002/hep4.1312
https://doi.org/10.1016/j.ajpath.2017.11.013
https://doi.org/10.1016/j.ajpath.2017.11.013
https://doi.org/10.1097/HEP.0000000000001085
https://doi.org/10.1186/s12885-025-13876-9
https://doi.org/10.1186/s12885-025-13876-9
https://doi.org/10.1053/j.gastro.2023.02.045
https://doi.org/10.1053/j.gastro.2023.02.045
https://doi.org/10.1007/s12072-023-10556-3
https://doi.org/10.1097/HC9.0000000000000360
https://doi.org/10.1002/ijc.34350
https://doi.org/10.3390/biomedicines13051083
https://doi.org/10.1002/advs.202306174
https://doi.org/10.1371/journal.pone.0283737
https://doi.org/10.1371/journal.pone.0283737
https://doi.org/10.1073/pnas.1619416114
https://doi.org/10.1002/hep4.1295
https://doi.org/10.1016/j.ijbiomac.2024.130657
https://doi.org/10.1016/j.bioadv.2023.213289
https://doi.org/10.1038/s41698-022-00320-5
https://doi.org/10.3390/cells11223657
https://doi.org/10.1038/s41420-022-01014-4
https://doi.org/10.1016/j.pan.2024.12.018
https://doi.org/10.1016/j.labinv.2023.100105
https://doi.org/10.3390/biomedicines10123133
https://doi.org/10.1016/j.canlet.2023.216586
https://doi.org/10.1186/s12915-021-00958-w
https://doi.org/10.1038/s41597-023-02482-8
https://doi.org/10.1038/s41597-023-02482-8
https://doi.org/10.1007/978-1-0716-2376-3_7
https://doi.org/10.1007/978-1-0716-2376-3_7
https://doi.org/10.3389/fbioe.2020.00911
https://doi.org/10.3389/fbioe.2020.00911
https://doi.org/10.1245/s10434-010-1391-7
https://doi.org/10.1016/j.jhep.2016.08.012
https://doi.org/10.1111/jcmm.13953
https://doi.org/10.3389/fonc.2023.1148930
https://doi.org/10.3389/fonc.2023.1148930
https://doi.org/10.1242/dmm.050716
https://doi.org/10.3389/fonc.2025.1598552
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Montagner et al. 10.3389/fonc.2025.1598552
228. Gondaliya P, Sayyed AA, Yan IK, Driscoll J, Ziemer A, Patel T. Targeting PD-
L1 in cholangiocarcinoma using nanovesicle-based immunotherapy. Mol Ther. (2024)
32:2762–77. doi: 10.1016/j.ymthe.2024.06.006

229. Tian C, Li L, Pan Q, Xu B, Li Y, Fan L, et al. Spatiotemporal regulation of
cholangiocarcinoma growth and dissemination by peritumoral myofibroblasts in a
Vcam1-dependent manner. Oncogene. (2023) 42:1196–208. doi: 10.1038/s41388-023-
02639-0
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