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Background: Non-invasive preoperative prediction of lymphovascular space 
invasion (LVSI) in cervical cancer (CC) is clinically important for guiding surgical 
planning and adjuvant therapy, while avoiding the risks associated with invasive 
procedures. However, current studies using amide proton transfer-weighted (APTw) 
MRI for LVSI prediction typically analyze only the mean values from a limited number 
of intratumoral regions of interest (ROIs), which fails to fully capture tumor 
heterogeneity. This study investigates the added value of whole-tumor APTw 
habitat radiomics in predicting LVSI and its advantages over conventional 
analysis methods. 

Methods: This prospective study included consecutive adult patients with suspected 
CC who underwent APTw MRI between December 2022 and December 2024; a 
portion of the cohort has been reported previously. APTw values were extracted 
using two methods: (1) the conventional approach, calculating the mean signal from 
three ROIs on a representative slice; and (2) habitat radiomics, involving whole-

tumor segmentation, k-means clustering to identify functional subregions, and 
radiomic feature extraction. Pathological assessment of LVSI from hysterectomy 
specimens served as the reference standard. Multivariable logistic regression 
identified variables associated with LVSI and developed diagnostic models. Model 
robustness was evaluated by 5-fold cross-validation, with AUC and DeLong’s test  
used for performance assessment. 

Results: Among 124 patients (74 LVSI−, 50 LVSI+), the APTw_h3 model achieved a 
higher AUC (0.796 [95% CI: 0.709–0.882]) for predicting LVSI positivity than the 
clinical-radiological model (AUC = 0.733, 95% CI: 0.638–0.817). The combined 
model integrating clinical, radiological, and APTw_h3 features achieved the highest 
AUC (0.903, 95% CI: 0.841–0.952), which was significantly higher than those of both 
the clinical-radiological and APTw_h3 models (both P < 0.001).  Moreover, the

addition of APTw_h3 to the clinical-radiological model improved sensitivity (88% 
vs. 82%) and specificity (83.8% vs. 64.9%) for determining LVSI positivity. 
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Conclusion: Whole-tumor APTw habitat radiomics demonstrates superior 
performance over conventional mean-value APTw analysis for preoperative 
prediction of LVSI in CC. Notably, integrating habitat radiomic features with 
clinical and radiological parameters further improves predictive accuracy, 
demonstrating potential for enhanced individualized patient management. 
 

         
    

KEYWORDS 

habitat radiomics, amide proton transfer-weighted MRI, lymphovascular space invasion, 
cervical cancer, predictive modeling 
 

         
         
           

         
        

      
         

       
          

       
         

       
        

       
       

   
        

     
           

          
         

           
           

        
          

        
        

       
  

      
          

       
       

       
         

        
        
         

Introduction 

Cervical cancer (CC) is a significant public health burden, 

ranking as the fourth most common malignancy in women 

globally, with rising incidence and mortality rates in China (1). In 

the context of precision medicine, early and accurate risk 

stratification is essential for optimizing treatment and improving 

outcomes (2). Among clinicopathological factors, lymphovascular 

space invasion (LVSI) is a critical intermediate-risk marker that 

independently predicts lymph node metastasis, distant recurrence, 

and overall survival (3), and directly informs the indication for 

adjuvant therapies such as chemoradiotherapy (4). Proper 

identification of LVSI status is therefore pivotal for determining 

the intensity of postoperative management, as LVSI-positive 

patients often require more aggressive adjuvant therapies, while 

LVSI-negative patients may avoid unnecessary treatment and 

related complications, ultimately influencing survival and quality 

of life (5). 

Currently, the assessment of LVSI relies exclusively on 

postoperative histopathology—the current gold standard—which 

is invasive and limited to surgical specimens (6). This approach has 

several limitations: (1) it is not available in the pre-treatment 

setting, thereby precluding its use in initial treatment stratification 

(7); (2) it can delay subsequent therapy due to lengthy diagnostic 

processes (8); and (3) it cannot fully assess tumor heterogeneity (9). 

Although  imaging  techniques  l ike  MRI  and  PET offer  

complementary value in staging and planning (10), there is no 

validated imaging biomarker for reliably predicting LVSI before 

surgery. Development of such a non-invasive biomarker would 

greatly enhance individualized risk assessment and therapy 

planning (11). 

Amide proton transfer-weighted (APTw) magnetic resonance 

imaging has recently gained attention as a novel molecular imaging 

approach (12). APTw imaging enables noninvasive, real-time 

quantification of amide proton exchange, indirectly reflecting 

tissue protein concentration and microenvironmental pH, two 

factors that are closely associated with tumor aggressiveness and 

LVSI (13). Some preliminary studies have suggested correlations 

between APTw-based parameters and LVSI status, raising its 

potential as an imaging biomarker (14). However, most studies 
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have used analyses restricted to single manually segmented two-

dimensional regions of interest (ROIs) on the largest tumor slice, 

extracting mean signal values or limited histogram features (15). 

This method cannot reflect the three-dimensional spatial  

heterogeneity inherent to tumors and may limit predictive 

performance—a limitation highlighted in our previous work on 

parametrial invasion (PMI) (16). 

It is important to note that LVSI and PMI serve fundamentally 

different roles in CC management. While LVSI is critical for 

determining the need for adjuvant systemic therapy due to its strong 

association with metastatic risk, PMI mainly impacts surgical planning 

and eligibility for fertility-sparing procedures, and is less relevant for 

decisions about adjuvant therapy (16). Consequently, there is a need for 

dedicated, LVSI-specific predictive models, rather than extrapolations 

based on other risk factors. 

To address these gaps, habitat imaging radiomics analysis has been 

proposed. This method applies unsupervised clustering to partition the 

entire tumor volume into multiple subregions with distinct APTw 

signal profiles. Advanced radiomic features, including histogram, 

texture, and spatial metrics, can then be extracted from each habitat, 

enabling a detailed assessment of tumor heterogeneity. Proof-of-

concept studies have shown that habitat features from APTw 

imaging can help predict tumor aggressiveness (17). 

Therefore, this study aims to develop and validate an APTw-based 

habitat radiomics model for the noninvasive, preoperative prediction of 

LVSI in CC, providing a potential imaging biomarker to enhance risk 

stratification and guide individualized treatment. While not intended to 

replace standard histopathological assessment, such imaging 

approaches could complement clinical workflows—for example, by 

assisting in high-risk patient identification, therapy planning, and 

recurrence risk stratification—thus supporting more personalized 

and effective clinical management. 
 

 

          
         

Methods 

Patients 

This is a prospective research study that adheres to the 

Declaration of  Helsinki and was approved by the Ethics 
 frontiersin.org 
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Committee of our institution, with approval number No. 2022-230. 

All participants provided written informed consent prior to 

imaging.  From December 2022 to December 2024,  adult  

participants presenting with clinical symptoms suggestive of CC 

underwent MRI and APTw imaging. This cohort partially overlaps 

with that used in our previous publication (10.21037/qims-24-412). 

The inclusion criteria were as follows: (1) surgically and 

pathologically confirmed CC and (2) preoperative pelvic MRI 

examination. The exclusion criteria were as follows: (1) tumor 

with a diameter less than 1 cm or not visible on MRI; (2) poor 

image quality with significant artefacts affecting lesion observation 

and data measurement; (3) incomplete pathological and clinical 

information;  and  (4)  other  preoperative  treatments  or  

interventions. The data and imaging records of 124 CC patients 

were included in this study. The following clinical data were 

collected from a review of the clinical case management system: 

age, body mass index, cancer antigen-125 (CA125) levels, 

menopausal status, and International Federation of Gynecology 

and Obstetrics (FIGO) stage. The methodological framework and 

the screening process are illustrated in Figures 1 and 2, respectively. 
  
  

           
         

          
         

           
           

    

Image acquisition 

All patients were scanned with 3.0T MRI system (Ingenia 3.0 T 

CX; Philips Healthcare, Best, the Netherlands) equipped with an 

abdominal and pelvic phased-array coil. Patients were placed in the 

supine position with the bladder moderately filled. The scanning 

range extended from the umbilicus to the pubic symphysis. If the 

tumor was sufficiently large and involved a wide area, the scanning 

range was appropriately enlarged. 
    Frontiers in Oncology 03 
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The routine MRI sequences included axial T1-weighted 

imaging, axial and sagittal T2-weighted imaging (T2WI), axial 

fat-suppressed T2WI, and dynamic contrast-enhanced MRI. Axial 

diffusion-weighted imaging (DWI) was additionally performed with 

b values of 50 and 800 seconds/mm². Apparent diffusion coefficient 

(ADC) images were automatically generated by the scanner using 

single-exponential fitting of the DWI data. Gadobutrol (trade name: 

Gadovist, produced by Hebei Hengrui) was used as the contrast 

agent and was administered at a dose of 0.1 mmol/kg body weight. 

In APTw imaging, the APT value is obtained by calculating the 

percentage of magnetization transfer asymmetry (MTRasym) at a

frequency offset of +3.5 ppm (16). The specific formula is as follows: 

S−Dw − SDwAPTw% = MTRasym½�Dw = +3:5ppm ð Þ = 100 % % 
S0 

where S-Dw and SDw represent the signals at frequency offsets of 

-Dw and Dw (Dw = +3.5 ppm), respectively; S0 represents the signal 

without radio frequency saturation. After the scan was completed, 

the APTw images were automatically generated on the console. The 

ADC map was generated on the basis of the DW images on the 

scanner console. Detailed information about the MRI and APTw 

imaging parameters is shown in Table 1. 
  

         
     

        
           

    

Histologic analysis 

According to the 2018 FIGO staging system, all participants 

underwent total hysterectomy, bilateral salpingo-oophorectomy, 

and surgical pathological staging (18, 19). The hysterectomy 

specimen was sliced along the vertical plane of the uterus; the 

depth of myometrial invasion was  estimated during gross
  

     
FIGURE 1 

Schematic of the methodological framework. 
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anatomical assessment and confirmed through microscopic 

evaluation using standard criteria. The uterus was sectioned at 3– 
4 mm intervals for further pathological analysis. Microscopic 

assessment was performed to confirm the tumor histological 

grade (low, 1 or 2; high, 3), parametrial invasion, and LVSI 

status. The presence of LVSI was determined via haematoxylin– 
eosin (H&E) staining; the LVSI status was recorded as positive 

when tumor emboli were observed in spaces lined by endothelium 

in the myometrium and outside the invasive front of the tumor; 

otherwise, the LVSI status was considered negative. All the samples 

were analyzed by a professional pathologist with 12 years of 

experience in urogenital pathology. 
  

          
       

          
        

Image processing 

The T2WI and APTw image sequences of the patients were 

uploaded to the Philips post-processing workstation. Two 

radiologists, with 5 and 15 years of experience in gynecological 

MRI respectively, independently reviewed all images and delineated 
   Frontiers in Oncology 04
         
       
          

          
         

        
           

         
         
         

           
   

the ROIs, blinded to the clinical and pathological information. 

Following the widely adopted International Standard Operating 

Procedures for APTw research (16), three circular ROIs were placed 

within the solid tumor portion on the APTw image slice 

corresponding to the sagittal T2WI slice showing the maximum 

tumor diameter. ROI placement carefully avoided blood vessels, 

necrotic areas, and the tumor stalk. The mean value of the 

measurements from these three ROIs was used for subsequent 

analysis (Figures 3, 4). Additionally, the two radiologists blindly 

assessed the morphological and signal characteristics of the T2W 

images for 124 patients. In cases of disagreement, a consensus was 

reached through discussion. 
  

       
         
             

         

Habitat generation 

To characterize intratumoral spatial heterogeneity, 13 local 

radiomic features were extracted at each voxel within the 

segmented tumor volume using a 3 × 3 × 3 sliding window. All 

voxels were then grouped into functional subregions using the K-
        

        
 

 
 

 
 

 

 
  

         

         

         

        

        

        

TABLE 1 Magnetic resonance imaging instrument scanning parameters. 

Parameter TR (ms) TE (ms) FOV (cm) Matrix 
Layer 
thickness 
(mm) 

Layer 
spacing 
(mm) 

Scanning 
time (s) 

Axial T1WI 500 13.13 30 332×289 4 1 47 

Axial T2WI 2500 110 40 400×400 4 1 92 

Sag T2WI 3500 110 30 300×300 4 1 77 

DWI 4000 56.3 38 128×126 5 2 60 

DCE-MRI 500 1.31 36 300×300 1.2 3 270 

APTw 90 – 8 160×229 2 1 190 
  
                     
           

T1WI, T1 weighted imaging; T2WI, T2 weighted imaging; DWI, diffusion weighted imaging; DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; APTw, amide proton transfer-
weighted; TR, repetition time; TE, echo time; FOV, field of view. 
  

        
FIGURE 2 

Flowchart of patient selection. APTw, amide proton transfer-weighted. 
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FIGURE 4 

A 54-year-old woman with cervical cancer and LVSI, a serum CA125 level of 44.5 U/mL and a largest tumor diameter of 46 mm. (A) Sagittal T2WI. 
(B) APTw and T2W image fusion. (C) tumor region divided into three subregions with unsupervised clustering; red: subregion 1; blue: subregion 2; 
and green: subregion 3. (D) Diffusion-weighted image (b = 800 s/mm2). (E) ADC image. (F) DCE-MR image. The mean APTw and ADC values 
measured by the two radiologists were 4.36% and 0.83×10−3 mm2/sec, respectively. APTw, amide proton transfer-weighted; LVSI, lymphovascular 
space invasion. 
  

                          
                      

                        
                 

   

FIGURE 3 

A 46-year-old woman with cervical cancer without LVSI, with a serum CA125 level of 16.8 U/mL and a largest tumor diameter of 31 mm. (A) Sagittal 
T2WI. (B) APTw image and T2W image fusion. (C) tumor region divided into three subregions via unsupervised clustering; red: subregion 1; blue: 
subregion 2; and green: subregion 3. (D) Diffusion-weighted image (b = 800 s/mm2). (E) ADC image. (F) DCE-MR image. The mean APTw and ADC 
values measured by the two radiologists were 2.31% and 1.74×10−3 mm2/sec, respectively. APTw, amide proton transfer-weighted; LVSI, 
lymphovascular space invasion. 
     Frontiers in Oncology 05 frontiersin.org 
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means clustering algorithm. The optimal number of subregions 

(clusters) was determined for each tumor by systematically 

evaluating solutions with K ranging from 3 to 10, using the 

Calinski–Harabasz index as a selection criterion. For all cases, the 

highest index was consistently observed at K=3, justifying the use of 

three subregions. This approach resulted in three subregions, which 

were consistently color-coded as red (subregion 1), blue (subregion 

2), and green (subregion 3) for visualization and subsequent 

analysis (Figures 3, 4). Further technical details are provided in 

the Supplementary Materials 1. 
  

         
         

          
         

       
         

       
        

Feature extraction 

In this study, we extracted handcrafted radiomic features from 

medical images, categorized into three types: (I) geometric shape, 

(II) first-order intensity, and (III) texture features. For each region 

of interest, 14 geometric shape features were first extracted. 

Following this, 20 different image transformation methods— 
including wavelet and Laplacian of Gaussian—were applied to the 

images. Each transformation produced 18 first-order intensity 

features and 75 texture features for each region. 
  

        
        

          
         

       
          

      
         

Feature selection 

To mitigate the impact of segmentation uncertainty, intra- and 

inter-rater reliability analyses were performed, and only features 

with an intraclass correlation coefficient (ICC) ≥ 0.85 were retained. 

To normalize the feature distribution, Z scores were calculated. 

Features significantly differentiating between groups (t test, 

P < 0.05) were retained to ensure relevance. To eliminate 

redundant features,  Pearson correlation coefficients were 

computed, and a greedy recursive feature elimination strategy was 
   Frontiers in Oncology 06
       
       

        
          
         

         
           

          
        

   

applied. Further dimensionality reduction was performed using 

minimum redundancy maximum relevance (mRMR) followed by 

least absolute shrinkage and selection operator (LASSO) regression 

with tenfold cross-validation to determine the optimal l value and 
select the most predictive features. The resulting features were 

linearly combined to calculate the radiomic score (APTw_h3) for 

each patient (Figure 5). After the final selection of radiomic features, 

we further compared the mean values of each selected feature 

between the LVSI-positive and LVSI-negative groups using the 

independent samples t-test. 
  

         
         
          

        
       

          
         

Observation indicators 

Using the pathological examination results of all 124 CC 

patients as the gold standard, the sensitivity, specificity, and 

accuracy of the APTw features, APTw_h3, and the ADC in 

diagnosing CC LVSI were calculated and statistically compared. 

Receiver operating characteristic (ROC) curve analysis was 

conducted to evaluate the qualitative ability of the APTw features, 

APTw_h3, and the ADC to identify LVSI in CC. 
    

        
        

          
         

      
        

      
        

      

Model development and validation 

To predict LVSI, three logistic regression models were 

established: a clinical–radiological model (based on CA125 and 

tumor size), a habitat radiomics model (based on selected APTw_h3 

features), and a combined model incorporating all above features. 

Model development, including feature selection, normalization, 

training, and hyperparameter tuning, strictly followed a stratified 

5-fold cross-validation framework,  with all  preprocessing 

performed exclusively on training folds to prevent information 

leakage. Hyperparameter optimization was implemented using 
  

                     
 

FIGURE 5 

Histogram of the coefficients of the selected features. Thirteen optimal features were selected from the APTw_habitat 3 region. APTw, amide proton 
transfer-weighted. 
   frontiersin.org 
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nested cross-validation. Model evaluation relied on mean AUC, 

accuracy, and F1-score across validation folds. Full details are 

presented in the Supplementary Materials. 
  

         
         

        
          

        
        

         
        

          
         

        
            
   

Statistical analysis 

All statistical analyses were performed using SPSS 25.0 (IBM) 

and MedCalc 23.1.1. The interobserver agreement for APTw and 

ADC measurements was assessed using the intraclass correlation 

coefficient (ICC), with ICC > 0.85 considered good. The Bland– 
Altman method was used to confirm measurement reproducibility. 

Categorical variables were expressed as frequency and percentage, 

and compared using the c² test; continuous variables were 
compared by the Mann–Whitney U test. Diagnostic performance 

of imaging parameters and final models was further evaluated via 

ROC curve analysis, with sensitivity and specificity determined by 

the maximum Youden index. Comparisons of AUCs were 

performed using the DeLong test. A two-tailed p value < 0.05 was 
considered statistically significant. 
    Frontiers in Oncology 07 
 

 

       
        

            
          

        
        

          
          
          

           
   

        
          

         
         

          

Results 

Participants 

Among the  143 individuals  who underwent  imaging 

examinations, 8 participants excluded because their tumors had 

diameters of less than 1 centimeter or were invisible on MRI; 5 

participants were excluded because of poor image quality and the 

presence of significant artefacts; 6 participants were excluded 

because of incomplete pathological information and clinical data; 

and 4 participants were excluded because they had received other 

treatments or interventions prior to surgery. A total of 124 

participants with CC were included, with about 80% (99 patients) 

used for training and 20% (25 patients) for validation in each 

split (Table 2). 

The interval between the MRI examinations and treatment 

ranged from 5 to 23 days. All participants underwent surgical 

treatment. Among the 124 participants, 74 (60%) were LVSI 

negative, whereas 50 (40%) were LVSI positive. The APTw_h3 

value was significantly greater in the LVSI-positive group than in 
         

     
 

    

             

            

             

            

   

       

       

   

       

       

   

       

       

   

          

        

   

       

       

TABLE 2 Characteristics between the LVSI and Non-LVSI groups. 

Variables Total (N=124) Non-LVSI group 
(N=74) 

LVSI group (N=50) p 

Body mass index* 25.00 (22.61, 26.67) 24.96 (22.37, 26.53) 25.27 (23.29, 27.83) 0.261† 

Age (years)* 50.00 (41.00, 55.00) 47.00 (41.00, 55.00) 51.00 (42.00, 58.00) 0.178† 

Tumor size (mm)* 33.00 (31.00, 45.75) 31.00 (30.25, 36.25) 42.50 (31.00, 54.25) <0.001† 

CA125 (U/mL)* 22.50 (16.55, 44.50) 22.50 (14.80, 23.65) 44.45 (17.48, 48.33) 0.009† 

FIGO stage 0.304# 

≤II 112 (90.3%) 69 (93.2%) 43 (86.0%) 

>II 12 (9.7%) 5 (6.8%) 7 (14.0%) 

Menopausal status 0.268# 

No 67 (54.0%) 43 (58.1%) 24 (48.0%) 

Yes 57 (46.0%) 31 (41.9%) 26 (52.0%) 

Myometrial Invasion 0.428# 

<1/2 108 (87.1%) 63 (85.1%) 45 (90.0%) 

≥1/2 16 (12.9%) 11 (14.9%) 5 (10.0%) 

Pathological grade 0.273# 

Low (1 or 2) 109 (87.9%) 67 (90.5%) 42 (84.0%) 

High (3) 15 (12.1%) 7 (9.5%) 8 (16.0%) 

Parametrial invasion 0.160# 

No 88 (71.0%) 56 (75.7%) 32 (64.0%) 

Yes 36 (29.0%) 18 (24.3%) 18 (36.0%) 
                          
              

CA125, cancer antigen 125; FIGO, International Federation of Gynecology and Obstetrics; Body mass index was calculated as participant weight in kilograms divided by participant height in 
meters squared; *Data are medians, with IQRs in parentheses; †Mann-Whitney U test; #c2 test. 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1599522
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


    Li et al. 10.3389/fonc.2025.1599522 
          
           

            
          
         

        
          

the LVSI-negative group (median of 0.33 [IQR, 0.28–0.41] vs. 0.67 

[IQR, 0.44–0.78]; P < 0.001). Additionally, the levels of CA125 and 
the size of the tumor were both greater in the LVSI-positive group 

than in the LVSI-negative group (median values of 44.45 U/mL 

[IQR, 17.48–48.33 U/mL] and 31.00 mm [IQR, 30.25–36.25 mm], 

respectively, versus 22.50 U/mL [IQR, 14.80–23.65 U/mL] and 

42.50 mm [IQR, 31.00–54.25 mm], respectively; both P < 0.001). 
  

         
             

      
        

    

Interobserver agreement 

The intraclass correlation coefficients for the APTw features and 

ADC were 0.95 (95% CI: 0.92, 0.98) and 0.83 (95% CI: 0.80, 0.90), 

respectively.  The Bland–Altman analysis  indicated good 

reproducibility of the imaging parameters between the two 

radiologists (Supplementary Figure S2). 
    
 

          
        

           
       

       
         

         
         

           
          

        

Feature dimensionality and overfitting 
control 

A total of 1,834 radiomic features were extracted from each 

tumor subregion (APTw_h1, APTw_h2, and APTw_h3), resulting in 

a combined total of 5,502 features. (Supplementary Figure S3). After a 

rigorous multi-step feature selection process (including intra- and 

interobserver ICC filtering, t-test, Pearson correlation analysis, 

mRMR, and LASSO regularization), only 13 optimal features, all 

from the APTw_h3 subregion, were retained for model construction. 

Features from APTw_h1 and APTw_h2 were completely excluded at 

the LASSO step, with all coefficients shrunk to zero. Therefore, the 

final predictive model utilized only 13 radiomic features in total 

(Supplementary Table S1). Pearson correlation heatmap of the 
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selected features is shown in Supplementary Figure S4. Notably, the 

final feature-to-sample ratio (13 features for 124 patients) adheres to 

commonly accepted standards in radiomics modeling. Furthermore, 

the majority of the selected features demonstrated statistically 

significant differences between the LVSI-positive and LVSI-negative 

groups (all P < 0.05; Supplementary Figure S5), highlighting their 

strong discriminatory capacity. 
       
     

             
          

           
          

             
   

Comparison of the metrics for the APTw 
features, APTw_h3, and the ADC 

Figures 3 and 4 show the MRI scans of two CC patients without 

and with LVSI, respectively. The AUCs for the APTw features, 

APTw_h3, and the ADC in diagnosing LVSI in CC were 0.704, 

0.796, and 0.609, respectively. The AUC for APTw_h3 was greater 

than that for the APTw and DWI features, as shown in Figure 6A 

and Table 3. 
     

         
             
            
            

            
          
              
            
           
    

Risk factors for LVSI positivity 

Univariable analysis revealed that the CA125 level (odds ratio 

[OR], 1.03 [95% CI: 1.01, 1.06]; P = 0.001), tumor size (OR, 1.05 

[95% CI: 1.02, 1.09]; P = 0.001), and APTw_h3 values (OR, 7.99 
[95% CI: 7.61, 9.78]; P < 0.001) were associated with LVSI positivity 
(Table 4). After variables with P < 0.05 in the univariable analysis 
were included in the multivariate analysis, the CA125 level (OR, 

1.09 [95% CI: 1.04, 1.14]; P < 0.001), tumor size (OR, 1.06 [95% CI: 

1.03, 1.10]; P < 0.001), and APTw_h3 values (OR, 9.40 [95% CI: 
7.98, 12.26]; P < 0.001) were retained as independent predictors of 
LVSI positivity (Table 4). 
  

                        
                    
                      
    

FIGURE 6 

(A) ROC curves of the APTw_h3, APTw, and ADC values were used to predict lymphovascular space invasion positivity. The areas under the curve for 
these models were 0.796, 0.704, and 0.609, respectively. (B) ROC curves of the combined model, APTw_h3 model, and clinical-radiological model 
were used to predict positive lymphovascular space invasion. The areas under the curve for these models were 0.903, 0.796, and 0.733, respectively. 
ROC, Receiver operating characteristic. 
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Assessment of risk models 

The clinical-radiological model predicted LVSI positivity with 

an AUC of 0.733 (95% CI: 0.638, 0.817), which is comparable to the 

AUC of the model that included only the APTw_h3 values (0.796 

[95% CI: 0.709, 0.882]; cut-off value, 0.46; P = 0.39). The combined 

model for predicting LVSI positivity had an AUC of 0.903 (95% CI: 

0.841, 0.952), which was greater than that of the clinical-radiological 

model (P < 0.001) and the APTw_h3 model (P < 0.001). 
Furthermore, the addition of APTw_h3 data to the clinical-

radiological model resulted in higher sensitivity (88% vs. 82%) 

and specificity (83.8% vs. 64.9%) in determining LVSI positivity 

than did the use of the clinical-radiological model alone (Tables 5, 6, 

Figure 6B). Detailed performance metrics obtained from 5-fold 

cross-validation are shown in Supplementary Table S2. 
 

        
           

         
         

Discussion 

This study innovatively applied habitat radiomics analysis based 

on APTw MRI to predict LVSI in patients with CC, achieving 

valuable outcomes. To better demonstrate the superiority of this 

novel approach, we compared it with several existing methods 
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commonly used in the field, solidifying its position as a more 

effective and reliable prediction tool. 

Previous research (20–23) has indicated that tumors with LVSI 

generally display stronger invasiveness, a greater number of 

microvessels, and higher cellular metabolic activity, which can 

cause a substantial increase in APT signals.  Nevertheless,  

conventional APTw signal measurement only centers on the 

maximum cross - section of the tumor, capturing information 

from a single plane and neglecting the internal heterogeneity of 

the tumor. Moreover, the widely - used ADC analysis method also 

has its drawbacks. The study by Cheng et al. (24) on the correlation 

between LVSI and ADC values differs from our findings. We believe 

this inconsistency may be attributed to the complex and uncertain 

impact of tumor stromal components on ADC values. Some tumors 

generate more fibrotic stroma (25), which may affect osmotic 

pressure, restrict water diffusion, and result in reduced ADC 

values, thereby masking the differences in LVSI status. 

In contrast, habitat analysis divides the tumor into diverse sub -

regions, enabling a more precise reflection of the biological 

characteristics of different areas within the tumor. In this study, 

we discovered that the features extracted from sub - region 3 

(APTw_h3), which exhibits relatively high signal intensity on 

APTw imaging, have excellent predictive performance for LVSI. 

In contrast, the features from sub - regions 1 and 2 show no 

significant differences between the LVSI and non - LVSI groups. 

This might be because sub - region 3 is enriched with tumor cell sub 

- populations possessing higher invasive and metastatic potential. 

These cell sub - populations may exhibit special biological 

behaviors, such as enhanced motility and elevated angiogenesis 

ability, making it easier for them to penetrate the lymphovascular 

space and trigger LVSI. The biological link between tumor 

heterogeneity and LVSI is well - established. Tumor cells with 

distinct genetic and phenotypic profiles within different sub -

-regions lead to varying levels of invasiveness. The high - risk sub 

- populations in APTw_h3 are more likely to break through the 

barriers and enter the lymphovascular system, which is why our 

habitat radiomics analysis can effectively predict LVSI by capturing 

these heterogeneities. In contrast, simple APTw imaging and ADC 

analysis find it difficult to capture these internal heterogeneous 

differences within the tumor, thus failing to accurately predict LVSI. 

Taking the features we selected as an illustration, such as 

wavelet_LLL_firstorder_10Percentile_h3 and wavelet_HHL_firstorder 

Skewness_h3, these features may mirror certain biological 

characteristics of tumor cells. Features with positive coefficients may 
             

         

    

     

      

       

     

TABLE 4 Univariable and multivariable logistic regression analyses in predicting lymphovascular space invasion. 

Characteristics Univariable Analysis P Value Multivariable Analysis P Value 

Age (y) 1.02(0.98,1.06) 0.17 

Body mass index 1.08(0.98,1.17) 0.08 

CA125 (U/mL) 1.03(1.01,1.06) 0.001 1.09(1.04,1.14) <0.001 

Tumor size (mm) 1.05(1.02,1.09) 0.001 1.06(1.03,1.10) <0.001 

APTw_h3 7.99(7.61,9.78) <0.001 9.40(7.98,12.26) <0.001 
  
        CA125, cancer antigen 125; APTw, amide proton transfer-weighted. 
        
   

    

    

    

    

    

    

    

    

    

    

    

    

TABLE 3 Performance of imaging parameters in predicting 
lymphovascular space invasion. 

Mertics APTw Aptw_h3 ADC 

threshold 2.795 0.460 1.035 

specificity 0.676 0.878 0.743 

sensitivity 0.820 0.740 0.580 

accuracy 0.734 0.823 0.677 

npv 0.847 0.833 0.724 

ppv 0.631 0.804 0.604 

precision 0.631 0.804 0.604 

recall 0.820 0.740 0.580 

youden 0.496 0.618 0.323 

z 4.607 6.768 2.276 

p <0.001 <0.001 0.023 
        npv, negative predictive value; ppv, positive predictive value. 
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be associated with biological processes that promote tumor cell 

invasion and metastasis. For example, a high 10th percentile may 

imply the existence of a subset of cells with high metabolic activity or 

proliferation ability within the tumor, which are more prone 

to breaking through the basement membrane and entering 

the lymphovascular space. Features with negative coefficients, 

like log_sigma_2_0_mm_3D_ngtdm_Busyness_h3, may be related 

to factors that inhibit tumor invasion and metastasis. For 

instance, this feature may reflect certain components in the tumor 

microenvironment that suppress cell motility or angiogenesis. These 

detailed feature information are challenging to be reflected in simple 

APTw imaging and ADC analysis, and habitat radiomics analysis can 

uncover this valuable information, offering a more comprehensive 

foundation for LVSI prediction. 

Through a rigorous feature selection method, this study 

ultimately determined the APTw_h3 - related features for 

constructing the prediction model.  Multivariate  analysis  

demonstrated that tumor size, CA125 level, and APTw_h3 value 

were significantly correlated with LVSI positivity (odds ratio, 1.09 -

9.40; all P < 0.001). The combined model (AUC = 0.903) performed 

significantly better than the clinical - radiological model (AUC = 
    Frontiers in Oncology 10 
           
         

       
         

          
         

            
         
       

         
        

         
     

        
           

            
          

             
          

           
            

             
         

          
          

         
  

         
        

        
          

        
         

         
        

          
       

          
          

        
     

       
        

       
        

0.733) and the APTw_h3 model (AUC = 0.796) in predicting LVSI. 

This indicates that integrating APTw_h3 - related features into the 

clinical - radiological model can significantly enhance the 

prediction accuracy of LVSI. Biologically, tumor size reflects the 

growth extent of the tumor. Larger tumors may harbor more 

invasive cell sub - populations, thereby increasing the risk of 

LVSI. CA125 is a tumor marker, and an elevated level may be 

linked to tumor cell proliferation, invasion, and metastasis. The 

habitat features represented by APTw_h3 more comprehensively 

reflect the heterogeneity and biological characteristics of the tumor, 

capturing information that traditional indicators cannot, and thus 

can provide more accurate LVSI prediction when combined with 

tumor size and CA125 level. 

The analysis of clinicopathological features revealed that the 

tumor size and CA125 level in the LVSI - negative group were 

significantly lower than those in the LVSI - positive group (both P = 

0.001). These results are consistent with those of previous reports 

(26, 27). A previous study by Chen et al. (28) compared tumor sizes 

between LVSI - positive and LVSI - negative groups in 315 women 

with CC and reported that the maximum tumor diameter in LVSI -

negative CC was lower than that in LVSI - positive CC. Recently, Xu 

et al. (29) analyzed the data of 40 CC patients (72.5% LVSI - positive 

and 27.50% LVSI - negative). Their results revealed that CA125 

levels in the LVSI - negative group were significantly lower than 

those in the LVSI - positive group and that elevated preoperative 

CA125 levels  were  associated with an increased risk  of  

LVSI positivity. 

Currently, the diagnosis of LVSI mainly relies on postoperative 

histopathological analysis, which is invasive and has certain 

limitations. The prediction model based on APTw habitat 

radiomics analysis proposed in this study can offer doctors a 

more accurate preoperative risk assessment of LVSI, facilitating 

the formulation of personalized treatment plans. For example, for 

patients predicted to be LVSI - positive, more aggressive treatment 

strategies, such as extended surgical resection and adjuvant 

chemotherapy, can be adopted; for patients predicted to be LVSI 

- negative, overtreatment can be avoided, reducing patients’ 
suffering and the waste of medical resources. In contrast, simple 

APTw imaging and ADC analysis have a weaker ability in 

preoperative LVSI prediction and cannot provide such precise 

information for clinical decision - making. 

Although this study yielded encouraging results, several 

limitations should be acknowledged. First, the current workflow 

involves  multiple  manual  preprocessing  steps  and ROI  

segmentation, which limits automation and poses challenges for 
         
  

  
 

 
  

 

    

    

    

    

    

    

    

    

    

    

    

TABLE 6 Comparison of model metrics in predicting lymphovascular 
space invasion. 

Mertics Combined 
model 

Aptw_h3 
model 

Clinical-
radiological 
model 

threshold 0.357 0.460 0.325 

specificity 0.838 0.878 0.649 

sensitivity 0.880 0.740 0.820 

accuracy 0.855 0.823 0.718 

npv 0.912 0.833 0.842 

ppv 0.786 0.804 0.612 

precision 0.786 0.804 0.612 

recall 0.880 0.740 0.820 

youden 0.718 0.618 0.469 

z 14.964 6.768 5.344 

p <0.001 <0.001 <0.001 
            
    

         
          

npv, negative predictive value; ppv, positive predictive value; CA125, cancer antigen 125; 
APTw, amide proton transfer-weighted. 
Clinical-radiologic model was based on CA125 and tumor size. 
Combined model was based on CA125, tumor size, and APTw_h3. 
            

      

             

             

             

TABLE 5 Comparison of the model AUCs in predicting lymphovascular space invasion. 

Comparisons AUC1 AUC2 Diff z p 

Combined model vs Aptw_h3 model 0.90 (0.84,0.95) 0.80 (0.71,0.88) 0.09 (0.02,0.16) 2.64 <0.001 

Combined model vs Clinical-radiological model 0.90 (0.84,0.95) 0.73 (0.64,0.82) 0.16 (0.06,0.25) 3.40 <0.001 

Aptw_h3 model vs Clinical-radiological model 0.81 (0.72,0.90) 0.73 (0.64,0.82) 0.06 (-0.08,0.20) 0.85 0.39 
        
         

          

CA125, cancer antigen 125; APTw, amide proton transfer-weighted. 
Clinical-radiologic model was based on CA125 and tumor size. 
Combined model was based on CA125, tumor size, and APTw_h3. 
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large-scale clinical application. Second, the extraction of radiomic 

features is sensitive to imaging parameters and acquisition 

protocols,  underscoring the  need for  standardizing and 

optimizing the analysis pipeline to improve adaptability across 

different equipment and conditions. In addition, as this study was 

conducted at a single center with a limited and relatively 

homogeneous sample, the generalizability of the model has yet to 

be fully validated. Therefore, our findings should be considered 

exploratory, and further validation in larger, independent external 

cohorts is required to establish the robustness and clinical value of 

the models. Furthermore, practical deployment of machine learning 

models must take into account risks such as data bias, overfitting, 

and relevant ethical or legal challenges. Finally, while the 

proposed non-invasive method shows promise as an adjunct, it 

cannot replace biopsy, which remains the gold standard for 

diagnostic accuracy. 

In conclusion, this study demonstrates that the habitat 

radiomics feature (APTw_h3) derived from APTw imaging serves 

as an independent predictor of LVSI positivity in cervical cancer 

patients.  By  integrating habitat  radiomics  features  with 

conventional clinicoradiological factors, our model achieved 

improved predictive accuracy for LVSI, providing significant 

support for preoperative risk stratification and individualized 

clinical decision-making. These results highlight the potential 

value of habitat-based radiomics analysis in enhancing non-

invasive tumor characterization. Future work will focus on further 

automating the workflow, establishing standardized imaging and 

feature extraction protocols, and performing external validation in 

large, diverse cohorts to facilitate clinical translation and wide 

adoption of this approach. 
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