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learning for differentiating 
lung squamous cell carcinoma 
and adenocarcinoma 
using T1-enhanced MRI 
of brain metastases 
Xueming Xia1†, Qiaoyue Tan2†, Wei Du3 and Qiheng Gou1* 

1Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, 
Sichuan University, Chengdu, China, 2Radiotherapy Physics and Technology Center, Cancer Center, 
West China Hospital, Sichuan University, Chengdu, China, 3Department of Targeting Therapy & 
Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China 
Objective: This study aims to develop and evaluate a radiomics-based machine 
learning model using T1-enhanced magnetic resonance imaging (MRI) features 
to differentiate between lung squamous cell carcinoma (SCC) and 
adenocarcinoma (AC) in patients with brain metastases (BMs). While prior 
studies have largely focused on primary lung tumors, our work uniquely targets 
metas ta t i c  bra in  l e s ions ,  which  pose  d i s t inc t  d iagnos t i c  and  
therapeutic challenges. 

Methods: In this retrospective study, 173 patients with BMs from lung cancer 
were included, consisting of 88 with AC and 85 with SCC. MRI images were 
acquired using a standardized protocol, and 833 radiomic features were 
identified from the segmented lesions utilizing the PyRadiomics package. 
Feature selection was performed using a combination of univariate analysis, 
correlation analysis, and the least absolute shrinkage and selection operator 
(LASSO) regression. Ten machine learning classifiers were trained and validated 
utilizing the selected features. The performance of the classifier models was 
assessed through receiver operating characteristic (ROC) curves, and the area 
under the curve (AUC) was examined for analysis. 

Results: Ten classifier models were built on the basis of features derived from MRI. 
Among the ten classifier models, the LightGBM model performed the best. In the 
training dataset, the LightGBM classifier achieved an accuracy of 0.814, with a 
sensitivity of 0.726 and specificity of 0.896. The classifier’s efficiency was validated 
on an independent testing dataset, where it maintained an accuracy of 0.779, with 
a sensitivity of 0.725 and specificity of 0.857. The AUC was 0.858 for the training 
dataset and 0.857 for the testing dataset. The model effectively distinguished 
between SCC and AC based on radiomic features, highlighting its potential for 
noninvasive non-small cell lung cancer (NSCLC) subtype classification. 
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Conclusion: This research demonstrates the efficacy of a radiomics-based 
machine learning model in accurately classifying NSCLC subtypes from BMs, 
providing a valuable noninvasive tool for guiding personalized treatment 
strategies. Further validation on larger, multi-center datasets is crucial to verify 
these findings. 
KEYWORDS 

radiomics,  magnetic  resonance  imaging,  lung  cancer,  brain  metastases,  
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Introduction 

Lung cancer remains the leading cause of death among cancer 
patients around the world, constituting approximately 23% of all 
cancer-related fatalities (1). Non-small cell lung cancer (NSCLC) 
accounts for approximately 85% of all lung cancer cases, with 
adenocarcinoma (AC) and squamous cell carcinoma (SCC) 
representing the predominant histological subtypes (2). These 
subtypes exhibit marked differences in biological behavior, 
therapeutic response, and clinical prognosis. AC is more 
frequently observed in non-smokers and tends to metastasize at 
an earlier stage, whereas SCC is closely associated with smoking and 
typically presents as a more localized disease (3). Brain metastases 
(BMs) are a common and severe complication of advanced lung 
cancer, particularly NSCLC, significantly impacting prognosis and 
treatment strategies (4). While primary lung tumors are well-
studied, there is a distinct lack of research focused on BMs 
derived from lung cancer. The presence of BMs represents a 
different clinical and biological scenario compared to primary 
lung tumors, necessitating dedicated research into the unique 
imaging characteristics of these secondary lesions. BMs exhibit 
distinct imaging features due to their interaction with the brain 
microenvironment, treatment history, and the challenges of blood-
brain barrier penetration. The radiomic signatures of metastatic 
lesions often differ from those of primary tumors, and the 
characteristics of these lesions are influenced by factors such as 
edema, necrosis, and vascularity within the brain. Accurate 
differentiation between SCC and AC subtypes in BMs is crucial 
for optimizing treatment strategies, given their distinct responses to 
various treatment modalities (5). In addition, the two histological 
subtypes harbor unique genetic mutations profiles, underscoring 
the critical importance of accurate subtype identification for the 
effective application of targeted therapies and immunotherapies (6, 
7). Current clinical practice relies heavily on invasive biopsy and 
histopathological examination for subtype classification, which can 
be time-consuming and painful for patients (8). Biopsies are 
associated with notable risks, including bleeding and organ injury, 
02 
which are particularly concerning in patients with BMs and can 
impose considerable physical burdens (9). Moreover, spatial and 
temporal tumor heterogeneity may result in sampling bias, 
complicating accurate diagnosis. In light of these challenges, there 
is an urgent need for noninvasive, rapid, and reliable methods to 
accurately classify lung cancer subtypes, particularly in the context 
of BMs. 

Magnetic resonance imaging (MRI) offers superior contrast for 
soft tissues and detailed anatomical insights into BMs, with T1­
enhanced MRI being particularly significant for detecting these 
lesions (10, 11). However, MRI alone is insufficient for 
distinguishing the various pathological subgroups of BMs. 
Radiomics has emerged as a powerful technique for tumor 
differentiation, particularly by leveraging advanced imaging 
modalities (12). By extracting multidimensional numerical 
characteristics from medical images, radiomics enables 
noninvasive characterization of tumor heterogeneity, which is 
critical for distinguishing between these histological subtypes (13– 
16). Currently, various studies are exploring the use of features 
extracted from MRI, combined with artificial intelligence (AI) 
methods to determine the origin of BMs. Several studies have 
demonstrated the potential of radiomics in this context, showing 
that radiomic features extracted from medical images have the 
potential to effectively differentiate AC from SCC, thereby aiding in 
more accurate diagnosis and treatment planning (17–21). The 
research carried out by Fuxing Deng et al. demonstrated that a 
radiomics approach integrating features fromT1-enhanced MRI, 
combined with the Xgboost algorithm, achieved high classification 
accuracy for BMs subtypes in NSCLC, with an area under the curve 
(AUC) of 0.85 within internal verification and 0.80 in external 
validation (17). In the research by Fan Song et al., the authors 
showed that the Bagging-AdaBoost-SVM model exhibited superior 
generalizability among 130 radiomics models, with an average AUC 
of 0.815 across three independent test sets, highlighting its potential 
for noninvasive prediction of histopathological subtypes in NSCLC 
(20). In addition, Baoyu Liang et al. found that their integrated 
model combining radiomics features with 3D convolutional neural 
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network (CNN) features realized an accuracy of 0.88 and an AUC of 
0.89 in classifying histological subtypes of NSCLC, highlighting the 
complementary effects of combining deep learning and radiomics 
for this task (21). Despite these advancements, there are still 
significant challenges that need to be addressed. One of the 
primary issues is the variability in imaging protocols and data 
acquisition across different centers, which can affect the 
generalizability of radiomic models. Most studies to date have 
relied on datasets with relatively small sample sizes, which 
restricts the robustness and clinical applicability of the findings in 
broader clinical settings. Moreover, some radiomic models 
exhibited low AUC and relatively poor diagnostic performance. 
While radiomics exhibits considerable potential for the differential 
diagnosis of lung cancer subtypes, further research is required to 
overcome these limitations and fully translate its potential into 
clinical practice. Therefore, this study aims to develop and validate a 
radiomics-machine learning model to distinguish lung SCC from 
AC via T1-enhanced MRI in BMs. 
Materials and methods 

Patient and MRI protocol 

This retrospective research enrolled patients who were 
diagnosed with BMs originating from lung AC or lung SCC at 
our institution from January 2021 to December 2023. An overall 
number of 173 patients were retrospectively analyzed, including 88 
cases of lung AC and 85 cases of lung SCC. The research was carried 
out following the principles of the Declaration of Helsinki. The 
institutional research ethics committee reviewed this study and 
formal approval was waived, as it involved only retrospective data 
or nonidentifiable patient information. The requirements for 
inclusion included: (1) histopathologically confirmed primary 
lung AC or SCC, (2) at least one brain metastasis detected on T1­
enhanced MRI, and (3) no pre-MRI treatment for BMs, including 
surgery, radiotherapy, or systemic chemotherapy. Exclusion criteria 
included patients with other primary malignancies, poor image 
quality due to motion artifacts, and BMs with a diameter of less than 
one centimeter. 

All patients underwent scanning on a 3.0T MRI system 
(Siemens Trio scanners) at the institution’s radiology department. 
The imaging protocol included axial, coronal, and sagittal sequences 
to cover the entire brain, focusing on detecting BMs. Gadopentetate 
dimeglumine (0.1 mmol/kg), a gadolinium-based contrast agent, 
was given intravenously with a speed of 2–3 ml/s. Contrast imaging 
was initiated approximately 3–5 minutes after injection. The 
contrast-enhanced images were acquired by using the T1­
weighted sequence to highlight metastatic lesions. The imaging 
parameters for T1-enhanced MRI acquisition were utilized: 
repetition time (TR):200–500 ms, echo time (TE): 2-5ms, flip 
angle = 15°-30°, axial field of view (FOV) = 240 x 240 mm², 
matrix size = 256 × 256, thickness of the slice = 1mm, gap: 1mm, 
and number of slices: 20-30. CE-T1WI were acquired in 
multidirectional mode within a 90–250 second interval. 
Frontiers in Oncology 03 
Data preprocessing and image 
segmentation 

All T1-enhanced MRI were first subjected to a rigorous quality 
assessment to ensure that only high-quality scans were included in 
the analysis. The images were reviewed for artifacts, including 
motion, distortion, and signal dropouts. Any scans exhibiting 
significant artifacts were excluded from further analysis. Medical 
imaging volumes often exhibit heterogeneous voxel spacing due to 
variations in scanner types or acquisition protocols. Voxel spacing 
refers to the physical distance between adjacent pixels within an 
image. To mitigate the impact of these variations, spatial 
normalization techniques are commonly applied. In this study, 
the fixed-resolution resampling method was utilized to address 
the issue of voxel spacing heterogeneity. All images were resampled 
to a uniform voxel size of 1x1x1 mm to standardize voxel spacing 
across the dataset. Finally, the data underwent z-score 
standardization (zero-mean normalization) to ensure consistent 
scaling of features. A bias field correction algorithm, such as 
N4ITK, was employed to correct for intensity non-uniformities 
caused by inhomogeneities in the magnetic field. This preprocessing 
step was essential to mitigate artificial intensity gradients within the 
images, ensuring that the radiomic features extracted were not 
biased by such inhomogeneities. The application of bias field 
correction was critical to maintain the accuracy and reliability of 
the subsequent feature extraction process. 

For the image segmentation process, BMs were manually 
delineated on T1-enhanced MRI by experienced radiologists 
utilizing 3D Slicer freely available software. The partitioning 
focused on accurately identifying and isolating the metastatic 
lesions from the surrounding brain tissue, encompassing necrotic 
areas and vascular structures in the tumor while excluding the 
surrounding edema. Each lesion was carefully segmented to create 
regions of interest (ROI) that would be used for subsequent 
radiomics feature extraction. To ensure consistency and 
reproducibility, the segmentation process followed a standardized 
protocol, with each ROI being reviewed and validated by a senior 
radiologist. Conflicts were settled through discussion until a 
consensus was reached. This manual segmentation approach was 
chosen to maximize the accuracy of lesion identification, which is 
critical for the reliable extraction of radiomic features. Since the 
segmentation process involved a single set of delineations 
confirmed by expert consensus, inter- and intra-observer 
variability metrics, including Dice similarity coefficients and 
intraclass correlation coefficients (ICC), were not assessed. This 
methodology is consistent with standard practices in radiomics 
studies when independent multiple-reader segmentation is not 
available, aiming to minimize variability through rigorous 
expert validation. 
Radiomic feature extraction and selection 

Extraction of radiomic characteristics was carried out on the 
segmented ROI. An extensive array of quantitative features was 
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derived from each ROI using PyRadiomics software package (22). 
These features encompassed multiple categories, including first-
order metrics (e.g., mean, median), shape descriptors (e.g., volume, 
surface area, sphericity), and textural characteristics (e.g., gray-level 
co-occurrence matrix, gray-level run-length matrix). The extraction 
process was standardized to ensure reproducibility across all 
images, with parameters such as bin width for intensity 
discretization being uniformly applied. The resulting radiomic 
features provided a rich dataset for subsequent machine learning 
analysis aimed at distinguishing between lung SCC and lung AC 
based on their distinct radiomic signatures. 

Radiomic feature selection was implemented to optimize the 
performance of the model and prevent overfitting. Initially, the 
univariate statistical testing was carried out to determine the 
importance of each feature in differentiating between lung SCC and 
lung AC, and only characteristics with a p value below the 0.05 
threshold were kept. Secondly, radiomic features experienced a 
correlation analysis by Spearman’s rank correlation coefficient to 
recognize and remove highly correlated features, retaining only one 
feature from each correlated pair. Finally, the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression model was 
applied to construct the radiomics signature (23). LASSO 
regularization shrinks all regression coefficients towards zero, 
effectively eliminating irrelevant features by setting their coefficients 
to exactly zero. To determine the optimal regularization parameter 
(l), 10-fold cross-validation was utilized with the minimum cross-
validation error as the selection criterion. The final l value was 
chosen based on the lowest cross-validation error. Features with non­
zero coefficients were retained for model fitting, and these selected 
features were incorporated into the radiomics signature. 
Subsequently, a radiomics score for each patient was calculated as a 
linear combination of the retained features, weighted by their 
corresponding model coefficients. The LASSO regression analysis 
was performed using the Python scikit-learn package. This multistep 
choosing process ensured that only the most informative and non-
redundant features were incorporated into the model (24). 
 

Radiomic model building 

Radiomic model involved developing a machine learning model 
to distinguish between lung SCC and lung AC on the basis of the 
radiomic characteristics derived from BMs. The selected features 
were used as input variables for the model. Ten machine learning 
algorithms were evaluated to determine the most effective classifier. 
The dataset was split 7:3 between training and testing datasets, with 
cross-validation performed to optimize model parameters and 
assess performance. All instances in the training set were used to 
train the predictive model, while the test set was used to 
independently assess the model’s performance. Hyperparameter 
tuning was conducted using grid search to identify the optimal 
configuration for each algorithm. The final classifier was chosen on 
the basis of its accuracy, sensitivity, specificity, and AUC on the 
validation set, ensuring robust classification performance. Decision 
curve analysis (DCA) was also employed to judge the efficiency of 
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the classifier. The standardized net benefit (sNB) was determined, 
which encompasses a range of values from 0 to 1. 
Statistical analysis 

Statistical analyses were conducted using Python (v0.13.2) with 
appropriate libraries for machine learning and statistical evaluation 
(25). Group differences were measured by employing t tests for 
quantitative metrics and chi–square or Fisher’s exact  tests for

qualitative metrics. The classification accuracy, sensitivity, 
specificity, and AUC were calculated for the validation dataset. 
Additionally, a confusion matrix was generated to provide insight 
into the model’s predictive capabilities. The significance of the 
model’s predictions was assessed using a p-value threshold of 
0.05. To ensure the reliability of the outcomes, bootstrapping 
methods were applied to evaluate confidence intervals for the 
performance metrics. 
Results 

Patient characteristics 

An aggregate of 173 individuals with BMs from lung cancer, 
treated at our hospital from January 2021 to December 2023, were 
chosen for this study based on predefined admission and rejection 
criteria. Figure 1 outlines the procedure for the selection of 
participants. Of these, 88 patients were diagnosed with lung AC, 
contributing 111 BMs, while 85 patients were diagnosed with lung 
SCC, contributing 113 BMs. Patients were categorized into a 
training set comprising 156 BMs and an independent testing 
dataset comprising 68 BMs. A pathologist reviewed the 
pathological data to confirm diagnoses. Table 1 provides a 
comprehensive  overview  of  the  patient  characteristics,  
highlighting that no meaningful clinical differences were detected 
across the training and validation groups. 
Feature selection and model construction 

A total of 833 handcrafted features were extracted, with 33 
features chosen through statistical tests. A total of 17 features were 
then selected based on correlation and a recursive deletion 
strategy.8 optimal radiomic features were selected using the 
LASSO logistic regression. The radiomics signature was 
constructed by retaining features with non-zero coefficients 
selected through LASSO regression, and their respective 
coefficients are presented in Figure 2. The  multistep  selection
process resulted in a final subset of 8 radiomic features, which 
were subsequently used for model training, as shown in Table 2. 
Ten machine learning algorithms were evaluated to determine the 
most effective classifier. These selected features demonstrated a 
strong discriminatory ability between the two lung cancer subtypes 
in the training group as well as the testing group. 
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Performance of the models 

Ten classifier models were built on the basis of characteristics 
derived from MRI. The radiomic models demonstrated robust 
performance in distinguishing between lung SCC and lung AC 
based on BMs features. In the training dataset, the top-performing 
LightGBM classifier accomplished an accuracy of 0.814, with a 
sensitivity of 0.726 and specificity of 0.896. The classifier’s 
Frontiers in Oncology 05 
proficiency was validated on an independent testing dataset, 
where the model sustained an accuracy rate of 0.779, while the 
sensitivity was 0.725 and the specificity reached 0.857. The AUC 
was 0.858 for the training dataset and 0.857 for the testing dataset, 
indicating strong discriminatory ability. The confusion matrix 
further confirmed the model’s ability to accurately classify the 
majority of cases, with minimal misclassification observed. The 
ROC contours for these models were displayed in Figure 3, and a 
thorough contrast was presented in Table 3. DCA of LightGBM in 
the training and testing dataset is demonstrated in Figure 4. 
Discussion 

This study created and confirmed a radiomics-based machine 
learning model making use of T1-enhanced MRI to differentiate 
between lung SCC and lung AC based on BMs. Among the ten 
machine learning algorithms evaluated, the LightGBM model 
exhibited the best performance, achieving an accuracy of 81.4% in 
the training dataset and 77.9% in the independent test dataset. The 
model’s discriminatory power was further confirmed by an AUC of 
0.858 within the training dataset and 0.857 within the test dataset, 
indicating strong and consistent performance. These results imply 
that the radiomics approach holds significant potential for 
noninvasive differentiation of lung cancer subtypes, which is 
critical for optimizing treatment strategies in patients with BMs. 

Several studies have applied machine learning and deep 
learning to differentiate lung cancer subtypes, achieving 
promising results. In the study by Bryce Dunn et al., the authors 
demonstrated that the support vector machine model, when 
combined with deep learning-based CT scan radiomic features, 
achieved the highest precision of 92.7% and an AUC of 0.97 in 
classifying histological subtypes of lung cancer (26). In the study by 
Baoyu Liang et al., the authors showed that their proposed 
integrated model, which combines radiomic features with 3D 
convolutional neural network features, realized an accuracy of 
0.88 and an AUC of 0.89 in classifying histological subtypes of 
NSCLC, highlighting the effectiveness of integrating deep learning 
with radiomics for this task (21). In the research conducted by Kun 
Chen et al., the multi-task learning model achieved superior 
performance in classifying histologic subtypes of NSCLC, with an 
=

TABLE 1 Baseline characteristics of individuals with brain metastases (BMs) in the training and validation cohorts. 

Characteristics 
Training cohort (n 156) Validation cohort (n =68) P* 

AC (n=83) SCC(n=73) P AC (n=28) SCC (n=40) P 

Gender (%) 0.404 0.303 0.182 

Male 43 (51.8%) 32 (43.8%) 17 (60.7%) 18 (45.0%) 

Female 40 (48.2%) 41 (56.2%) 11 (39.3%) 22 (55.0%) 

Age, mean ± SD (years) 60.1 ± 7.2 61.3 ± 6.3 0.279 62.3 ± 7.1 61.9 ± 6.9 0.770 0.266 

Median age (years) 60.3 (44-77) 61.5 (43-78) 62.2 (44-79) 62.1 (45-77) 
P values for categorical variables (gender) were obtained using the chi-squared test or Fisher’s exact test where appropriate. P values for continuous variables (age) were calculated using the 
Mann-Whitney U test. P* indicates the comparison between the training and validation cohorts. AC, adenocarcinoma; SCC, squamous cell carcinoma; SD, standard deviation; BMs, 
brain metastases. 
FIGURE 1 

Flowchart of patient enrollment and cohort allocation. A total of 410 
patients with brain metastases (BMs) originating from primary lung 
adenocarcinoma (AC) or squamous cell carcinoma (SCC) between 
January 2021 and December 2023 were initially included. Patients 
were excluded if they had received anti-tumor therapy before MRI 
examination (n=102), had BMs smaller than one centimeter in 
diameter (n=73), or had substantial imaging artifacts (n=11). 
Ultimately, 224 patients were enrolled and randomly divided into a 
training cohort (n=156) and a validation cohort (n=68). 
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AUC of 0.843 on the internal test group and 0.732 on the external 
test group, outperforming traditional radiomics methods and 
single-task networks (27). In another study, the Bagging­
AdaBoost-SVM classifier exhibited the most robust generalization 
capability among 130 radiomics models, with an average AUC of 
0.815 across three independent test sets, highlighting its potential 
for noninvasive prediction of histopathological subtypes in NSCLC 
(20). However, these studies primarily focus on the segmentation of 
primary lung lesions, with relatively few addressing BMs. 

Currently, there are several studies that utilize radiomics 
combined with machine learning or deep learning based on BMs 
to differentiate between lung cancers. In the study by Lianyu Sui 
et al., the authors found that their deep learning classifier on the 
basis of T1-enhanced MRI successfully differentiated between 
small cell lung cancer (SCLC) and NSCLC in individuals with 
Frontiers in Oncology 06
BMs, achieving an AUC of 0.8019 for SCLC and 0.8024 for NSCLC, 
with an accuracy of 0.7515 (13). In Fuxing Deng et al.’s study, a
radiomics model incorporating T1-enhanced MRI features, 
employing the Xgboost algorithm, achieved the superior 
efficiency with an AUC of 0.85 in the internal test group and 
0.80 in the external validation group for classifying BMs subtypes 
from NSCLC (17). In addition, Gökalp Tulum et al. found that 
their proposed model, which included innovative characteristics 
acquired from Laplacian of Gaussian filtered and wavelet-
transformed images, achieved a sensitivity of 94.44% and 
specificity of 95.33%, outperforming deep learning-based models 
in classifying BMs subtypes from lung cancer, particularly in small 
datasets (18). The results of our study align with and expand upon 
previous findings in the area of artificial intelligence for the 
differentiation of lung cancer subtypes. In this study, we 
employed the LightGBM classifier, which demonstrated robust 
performance in distinguishing between two key subtypes of 
NSCLC—AC and SCC—based on MRI-derived radiomic 
features. In the context of subtype classification for NSCLC BMs, 
a higher sensitivity means that the model is better at correctly 
identifying AC cases. AC is more likely to present with diffuse BMs, 
making accurate identification crucial for early intervention and 
more targeted treatment. A sensitivity of 0.726 in the training 
dataset and 0.725 in the testing dataset indicates that the model is 
able to capture a substantial proportion of AC cases, although there 
is still room for improvement in reducing false negatives. On the 
other hand, higher specificity reflects the model’s ability to 
correctly exclude AC and correctly classify SCC. SCC tends to 
have a more localized pattern of metastasis and a different clinical 
course compared to AC. High specificity (0.896 in the training set 
and 0.857 in the testing set) ensures that SCC cases are correctly 
identified, avoiding misclassification and ensuring that patients 
with SCC receive appropriate treatment. In clinical practice, 
TABLE 2 Selected radiomics features from the training cohort using 
LASSO regression analysis. 

NO. Selected Radiomics Features 

1 original_glrlm_ShortRunLowGrayLevelEmphasis 

2 wavelet_HHH_firstorder_Median 

3 wavelet_HHL_glcm_Imc1 

4 wavelet_HLH_firstorder_Mean 

5 wavelet_HLL_glcm_Imc2 

6 wavelet_LHL_glcm_Imc1 

7 wavelet_LLL_firstorder_10Percentile 

8 wavelet_LLL_gldm_LargeDependenceHighGrayLevelEmphasis 
Radiomics features were selected using the least absolute shrinkage and selection operator 
(LASSO) regression model with cross-validation. glcm, gray level co-occurrence matrix; glrlm, 
gray level run length matrix; gldm, gray level dependence matrix. 
FIGURE 2 

Coefficients of the 8 selected radiomic features for the radiomics signature. This bar plot presents the coefficients of the 8 radiomic features 
selected by LASSO regression. These features with non-zero coefficients were incorporated into the final radiomics signature. Positive coefficients 
reflect features positively associated with the outcome, whereas negative coefficients indicate inverse associations. 
 frontiersin.org 

https://doi.org/10.3389/fonc.2025.1599853
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2025.1599853 
maintaining high specificity is important to prevent unnecessary 
treatments or misdirected therapeutic strategies. 

This differentiation is l ikely rooted in the distinct  
histopathological characteristics of these subtypes, which are 
captured through advanced imaging techniques (28). The ability 
of the LightGBM model to achieve high accuracy and AUC in both 
training and validation sets indicates that the selected radiomic 
features are not only robust but also highly representative of the 
underlying biological differences between SCC and AC. The 
potential mechanisms behind these results may involve variations 
in tumor cell morphology, microenvironmental factors, and genetic 
mutations that influence the MRI signal characteristics (29). 
Furthermore, the success of this model underscores the 
importance of feature selection and model optimization in 
capturing the most relevant aspects of tumor heterogeneity. 
Although the XGBoost model achieved excellent performance on 
the training dataset (AUC = 0.972), its performance substantially 
Frontiers in Oncology 07 
decreased on the testing dataset (AUC = 0.732), indicating a 
potential overfitting issue. Overfitting occurs when a model 
captures noise or specific patterns in the training data that do not 
generalize well to unseen data, leading to reduced predictive 
accuracy. In this study, despite employing regularization 
techniques and cross-validation to mitigate overfitting, the 
complexity of the XGBoost model and the limited sample size 
may have contributed to this phenomenon. This observation 
highlights the importance of balancing model complexity and 
generalizability and further supports the selection of models such 
as LightGBM, which demonstrated more stable performance across 
both training and test datasets. 

We extracted and analyzed 833 radiomic features from T1­
enhanced MRI utilizing the PyRadiomics (30). The outcome of this 
research underscores the important aspects that specific radiomic 
features play in differentiating between lung SCC and AC in BMs. 
The selected features, particularly those related to texture and 
FIGURE 3 

Receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) of ten models in the training (a) and testing (b) datasets, and 
LightGBM model performance in both cohorts (c). The ROC curves and corresponding AUC values of ten machine learning models are illustrated for 
the training dataset (a) and testing dataset (b). Each model’s classification performance is compared based on the AUC values and confidence 
intervals. The LightGBM model, which demonstrated the best performance, is separately presented in panel (c), showing its ROC curves for both the 
training and testing cohorts, with an AUC of 0.858 (95% CI: 0.798–0.918) and 0.857 (95% CI: 0.769–0.946), respectively. 
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TABLE 3 Performance of ten machine learning classifiers on the training and testing datasets. 

Model name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Task 

LR 0.667 0.675 0.5902 - 0.7605 0.452 0.855 0.733 0.640 label-train 

LR 0.662 0.700 0.5724 - 0.8276 0.575 0.786 0.793 0.564 label-test 

NaiveBayes 0.603 0.644 0.5581 - 0.7302 0.753 0.470 0.556 0.684 label-train 

NaiveBayes 0.618 0.662 0.5270 - 0.7980 0.475 0.821 0.792 0.523 label-test 

SVM 0.724 0.791 0.7196 - 0.8622 0.795 0.663 0.674 0.786 label-train 

SVM 0.662 0.741 0.6225 - 0.8597 0.500 0.893 0.870 0.556 label-test 

KNN 0.622 0.784 0.7158 - 0.8514 0.274 0.928 0.769 0.592 label-train 

KNN 0.426 0.537 0.4058 - 0.6683 0.025 1.000 1.000 0.418 label-test 

RandomForest 0.776 0.862 0.8065 - 0.9174 0.671 0.867 0.817 0.750 label-train 

RandomForest 0.588 0.652 0.5227 - 0.7817 0.325 0.964 0.929 0.500 label-test 

ExtraTrees 0.667 0.732 0.6545 - 0.8103 0.712 0.627 0.627 0.712 label-train 

ExtraTrees 0.721 0.772 0.6593 - 0.8844 0.675 0.786 0.818 0.629 label-test 

XGBoost 0.910 0.972 0.9513 - 0.9933 0.890 0.928 0.915 0.906 label-train 

XGBoost 0.647 0.732 0.6137 - 0.8506 0.400 1.000 1.000 0.538 label-test 

LightGBM 0.814 0.858 0.7978 - 0.9185 0.726 0.892 0.855 0.787 label-train 

LightGBM 0.779 0.857 0.7687 - 0.9456 0.725 0.857 0.879 0.686 label-test 

AdaBoost 0.769 0.844 0.7842 - 0.9033 0.685 0.843 0.794 0.753 label-train 

AdaBoost 0.721 0.766 0.6484 - 0.8828 0.700 0.750 0.800 0.636 label-test 

MLP 0.615 0.664 0.5795 - 0.7488 0.671 0.566 0.576 0.662 label-train 

MLP 0.735 0.766 0.6463 - 0.8858 0.775 0.679 0.775 0.679 label-test 
F
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LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors; Naive Bayes, naive Bayes classifier; Random Forest, random forest classifier; Extra Trees, extremely randomized 
trees; XGBoost, extreme gradient boosting; LGBM, light gradient boosting machine; AdaBoost, adaptive boosting; MLP, multilayer perceptron; Accuracy, AUC (area under the curve), 95% CI 
(confidence interval), sensitivity, specificity, PPV (positive predictive value), and NPV (negative predictive value) were evaluated to assess model performance. 
FIGURE 4 

Decision curve analysis (DCA) for the LightGBM model in the training and testing datasets. Decision curve analysis (DCA) was performed to evaluate 
the clinical utility of the LightGBM model in the training and testing cohorts. The DCA curves demonstrate the net benefit of using the model across 
a range of threshold probabilities, compared to the default strategies of treating all patients or none. The LightGBM model provided a higher net 
benefit across a wide range of thresholds, indicating good clinical applicability. 
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intensity, likely capture the underlying histopathological differences 
between these two subtypes (31). For instance, features associated 
with gray-level co-occurrence matrices and run-length matrices 
reflect variations in tissue heterogeneity and texture, which are 
indicative of the distinct morphological and cellular characteristics 
of SCC and AC (32). The high performance of the LightGBM model 
suggests that these radiomic features are not only robust but also 
highly discriminative, allowing for accurate classification. This 
finding supports the hypothesis that tumor heterogeneity, as 
quantified by radiomic features, is a key factor in distinguishing 
between different lung cancer subtypes. Furthermore, the successful 
implementation of machine learning techniques to these features 
underscores the potential of radiomics in enhancing the precision of 
noninvasive diagnostic tools, paving the way for more personalized 
treatment strategies in patients with BMs from lung cancer (33). 

In our study, we chose to exclude peritumoral edema from the 
ROIs, focusing on the necrotic and vascular structures within the 
enhancing tumor core. This decision was based on the specific 
strengths of T1-enhanced MRI scans, which provides clear 
delineation of the tumor’s core, particularly the vascular and 
necrotic areas, while edema is less effectively captured in this 
modality. However, we recognize the importance of peritumoral 
regions in brain tumor radiomics. Several studies have 
demonstrated that these regions, particularly the edema zone, are 
critical imaging biomarkers, as they provide valuable insights into 
tumor infiltration patterns, microenvironmental changes, and 
potential treatment responses (34–37). The exclusion of 
peritumoral edema in our analysis may indeed overlook important 
discriminative features. In future work, we plan to incorporate 
additional imaging modalities such as T2-weighted (T2WI) and 
Fluid-attenuated inversion recovery (FLAIR) sequences, which are 
known to offer superior contrast for visualizing edema. By integrating 
these modalities, we aim to capture a more comprehensive range of 
radiomic features, enhancing our ability to assess tumor 
microenvironment and infiltration, and ultimately improving the 
accuracy and clinical relevance of our radiomics models. We 
acknowledge that including peritumoral edema could provide 
further insight into tumor behavior and contribute to more precise 
prognostic models. Thus, the integration of these additional imaging 
sequences will be a critical step in the evolution of our analysis and 
will be explored in the next phase of this research. 

Several limitations should be acknowledged. First, the 
retrospective characteristic of the research may introduce non­
random sampling bias. Second, the manual segmentation of BMs, 
although performed with high precision, is subject to inter-observer 
variability, which may affect the reproducibility of the radiomic 
features. Finally, the model was trained and validated on a single 
dataset, and its performance should be further tested on 
independent, multi-center datasets to ensure broader applicability 
in clinical settings. Future research should focus on several key 
areas. Firstly, expanding the dataset to include more diverse 
populations and imaging protocols from multiple centers will be 
crucial for improving the generalizability and robustness of the 
models. Additionally, integrating radiomic features with genomic 
Frontiers in Oncology 09
and proteomic data could provide deeper insights into the biological 
mechanisms underlying tumor heterogeneity and lead to more 
precise subtype classification (38, 39). Another promising 
direction is the development of automated segmentation tools 
using deep learning techniques to reduce inter-observer variability 
and enhance the reproducibility of radiomic features. Moreover, 
future studies should explore the potential of combining radiomics 
with functional imaging modalities to capture additional 
dimensions of tumor biology. Lastly, clinical validation of these 
models through prospective studies will be essential to establish 
their utility in real-world settings, ultimately shaping individualized 
therapeutic approaches for patients with lung cancer BMs. 
Conclusion 

This research demonstrates the potential of using radiomic 
characteristics extracted from T1-enhanced MRI scans, integrated 
with machine learning models, to effectively discriminate lung SCC 
from AC among patients with BMs. The LightGBM model, in 
particular, showed strong discriminatory power and consistent 
achievement for both the training and test datasets. These 
findings underscore the value of integrating advanced radiomics 
with machine learning techniques to develop noninvasive 
diagnostic tools, which can significantly enhance the precision of 
subtype classification and ultimately guide personalized treatment 
strategies for lung cancer patients. 
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