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Machine learning-based
radiomics for differentiating lung
cancer subtypes in brain
metastases using CE-T1WI
Xueming Xia1†, Wei Du2† and Qiheng Gou1*

1Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital,
Sichuan University, Chengdu, China, 2Department of Targeting Therapy & Immunology, Cancer
Center, West China Hospital, Sichuan University, Chengdu, China
Objectives: The purpose of this research was to create and validate radiomic

models based on machine learning that can effectively discriminate between

primary non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) in

individuals with brain metastases (BMs) by utilizing high-dimensional radiomic

characteristics derived from contrast-enhanced T1-weighted imaging

(CE-T1WI).

Methods: A cohort of 260 individuals were chosen as participants. Among them,

173 individuals had NSCLC with 228 BMs, while 87 patients were diagnosed with

SCLC with 142 BMs. Patients were allocated to a training dataset with a total of

259 BMs and an independent test dataset with a total of 111 BMs. Tumor tissues in

axial CE-T1WI were manually outlined to delineate regions of interest (ROIs).

Radiomic features were obtained from the ROIs using PyRadiomics, which were

then chosen through a multistep selection process, including least absolute

shrinkage and selection operator (LASSO) regression. Ten machine learning

models, including Light Gradient Boosting Machine (LightGBM), RandomForest,

and eXtreme Gradient Boosting (XGBoost), were built using selected features.

The models’ performance was evaluated using receiver operating characteristic

(ROC) analysis and area under the curve (AUC) calculations, complemented by

additional metrics such as accuracy, specificity, sensitivity, positive predictive

value (PPV), and negative predictive value (NPV).

Results: A total of 833 radiomic features were extracted from the ROIs. Through

a multistep selection process, a refined subset of 15 optimal radiomic features

was identified for model training. Ten classifier models were built based on

features extracted from CE-T1WI. In the training dataset, the top-performing

classifiers were the XGBoost, LightGBM, support vector machine (SVM) and

random forest models, which achieved AUC of 0.963, 0.881, 0.876 and 0.855,

respectively, with 5-fold cross-validation. Among the ten models tested, the

LightGBM algorithm exhibited superior performance, with an AUC of 0.853 in the

test cohort. This performance was superior to that of other models, such as

RandomForest (AUC 0.843) and ExtraTrees (AUC 0.835). Radiomic features

significantly contributed to the differentiation between NSCLC and SCLC.
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Conclusion: Machine learning-based radiomics using CE-T1WI data is highly

effective in distinguishing between NSCLC and SCLC in patients with BMs. The

LightGBM model showed the best performance, suggesting that this approach

shows promise as a supportive, non-invasive diagnostic tool, pending further

validation in prospective clinical settings.
KEYWORDS

radiomics, magnetic resonance imaging, lung cancer, brain metastases,
machine learning
Introduction

Brain metastases (BMs) are the most common form of

malignant neoplasms affecting the brain, representing a

significant complication in cancer progression and management

(1). Nearly 40% of cancer patients are estimated to develop BMs

during the course of their illness, which markedly increases

mortality rates and severely compromises quality of life (2). The

growing incidence of BMs in recent years is largely attributable to

advances in systemic anticancer therapies that prolong patient

survival, the unique immunological microenvironment of the

brain, and enhanced detection capabilities through magnetic

resonance imaging (MRI) (3). Among all primary tumors,

advanced lung cancer (LC)—comprising non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC)—accounts for

approximately 50% of all BM cases (4). Notably, about 25% to 50%

of NSCLC patients and nearly half of SCLC patients develop BMs

during the disease course (5). In particular, NSCLC patients with

specific genetic mutations or elevated programmed cell death ligand

1 (PD-L1) expression benefit significantly from targeted therapy

and immunotherapy, which have enhanced overall survival in

recent years (6, 7). Consequently, early and accurate

differentiation between NSCLC and SCLC patients with BMs is

essential for tailoring appropriate treatment strategies and

improving clinical outcomes.

Biopsy, while an effective traditional diagnostic method, often

requires invasive procedures and carries the risk of severe

complications, especially when involving brain lesions. Moreover,

brain lesion biopsies have limited ability to accurately differentiate

between the two subtypes of LC (8). This challenge is particularly

evident in patients who present with both a lung mass and brain

metastases at initial diagnosis and are in poor general condition,

making them unsuitable candidates for biopsy. In such cases, a non-

invasive diagnostic approach is critically important. MRI, with its

exceptional soft-tissue contrast and detailed anatomical

information, is a cornerstone for evaluating BMs, and contrast-

enhanced T1-weighted imaging (CE-T1WI) is crucial for detecting

them (9). BMs from NSCLC and SCLC exhibit distinct, though

occasionally overlapping, MRI features (10). NSCLC-related BMs
02
typically present as solitary or fewer, larger lesions with well-defined

margins, marked contrast enhancement, and significant

peritumoral edema (11). Certain NSCLC subtypes, such as

adenocarcinoma, may exhibit distinctive imaging features, though

considerable variability exists. In contrast, SCLC-related BMs

usually appear as multiple small, densely clustered lesions with

intense enhancement and surrounding edema, often with poorly

defined boundaries due to rapid tumor growth (12). However,

overlapping features—particularly in enhancement patterns and

edema—can make it challenging to reliably distinguish between

NSCLC and SCLC metastases based solely on MRI.

Recently, advancements in radiomics and machine learning

(ML) have shown promise in overcoming this limitation.

Radiomics, which involves deriving quantitative features from

imaging data, has gained significant attention for its ability to

uncover latent patterns and provide valuable diagnostic and

prognostic insights (13). ML algorithms can analyze these

complex features, enabling the differentiation between SCLC and

NSCLC by identifying subtle image characteristics that may not be

detectable through conventional imaging analysis alone. Currently,

various studies have aimed to develop non-invasive ML or deep

learning (DL) techniques that utilize features extracted fromMRI to

assess the characteristics of BMs and determine their origins. Using

a DL model, Sui L et al. reported an AUC ranging from 0.8024 to

0.8019 for subtype classification of lung cancer patients with BMs

(14). Egashira M et al. found that the AUC of the ML model was

0.744 for NSCLC and 0.861 for SCLC (15). However, previous

studies have encountered several limitations. First, these radiomic

models generally exhibited low AUCs and demonstrated relatively

poor diagnostic performance. Second, although radiomics-based

classification models have shown efficacy in tumor type estimation,

there has been limited focus on predicting the origins of BMs.

This study addresses a critical clinical need by investigating a

non-invasive machine learning-based approach to accurately

differentiate NSCLC from SCLC in patients with BMs. By

enhancing diagnostic precision without the need for traditional

biopsy, this method holds promise as a supportive tool in

facilitating personalized treatment planning and improving

patient outcomes.
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Materials and methods

Patient and MRI protocol

This research involved a group of patients confirmed with BMs

originating from the LC at our institution between January 2021

and December 2023. The research was carried out following the

guidelines of the Declaration of Helsinki. The institutional research

ethics committee reviewed the study and waived the requirement

for formal approval, as it involved retrospective analysis of

anonymized patient data. The requirements for participating in

the study included the following: 1) histopathologically confirmed

diagnosis of LC; 2) diagnosis of BMs by pathology or MRI; and 3)

availability of pretreatment contrast-enhanced MRI scans of the

head. Three factors were excluded: 1) pre-MRI treatment with

antitumor therapy, such as radiotherapy, targeted therapy or

immunotherapy; 2) BMs less than one centimeter in diameter;

and 3) substantial artifacts in the images. A total of 260 patients

were retrospectively identified, with 87 patients with SCLC and 173

patients with NSCLC.

All participants were examined using Siemens Trio scanners (3.0T)

at the institution’s radiology department. Gadopentetate dimeglumine

(0.1 mmol/kg), which was calculated based on weight, was injected

intravenously into patients. The imaging parameters for CE-T1WI

acquisition were as follows: TR/TE/TI = 1900/2.26/900 ms, flip angle =

9°, slice thickness = 1 mm, axial field of view (FOV) = 25.6 × 25.6 cm²,

and data matrix = 256 × 256. CE-T1WI were acquired in

multidirectional mode within a 90–250 second interval.
Data preprocessing and image
segmentation

The dataset was split 7:3 between training and test sets for

model evaluation. BMs from the same patient were not split

between the training and validation cohorts. Each patient’s lesions

were exclusively assigned to either the training or the validation set

to ensure independence between cohorts and to avoid any potential

data leakage that could artificially inflate model performance.

Medical imaging datasets often present heterogeneous voxel

spacing due to differences in scanner models and acquisition

protocols. To address this variability, a fixed-resolution

resampling approach was employed in this study, standardizing

all images to an isotropic voxel size of 1×1×1 mm. This ensured

uniform spatial resolution across the dataset. Subsequently, z-score

normalization (zero-mean, unit-variance) was applied to

harmonize feature scaling. In addition, bias field correction using

the N4ITK algorithm was performed to mitigate intensity

inhomogeneities resulting from magnetic field non-uniformities.

In this research, the 3D Slicer open-source software application

(Version 4.11), accessible at https://download.slicer.org, was

utilized to assist in the three-dimensional manual segmentation of

MRI. Two seasoned radiologists, who were unaware of the

histopathological information, independently performed the

image segmentation. Radiologist A, who has seven years of
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expertise in brain imaging, manually outlined the tumor tissues in

the axial CE-T1WI. The radiologist meticulously outlined each

image layer to precisely identify and segment the tumors

following the software’s designated protocol. The delineation of

regions of interests (ROIs) in each slice was based on the boundaries

of the tumor tissue, encompassing necrotic areas and tumor blood

vessels while excluding peritumoral edema. Radiologist B, who has a

decade of expertise in neuroimaging, thoroughly examined all the

ROIs delineated by Radiologist A to ensure precision and

uniformity. Conflicts were settled through discussion until a

consensus was reached. Since the segmentation was performed

using a single set of delineations validated by expert consensus,

inter- and intra-observer variability metrics—such as the Dice

similarity coefficient and intraclass correlation coefficient (ICC)—

were not evaluated. This approach aligns with common practices in

radiomics studies when multi-reader segmentations are unavailable,

aiming to reduce variability through stringent expert validation.
Radiomic feature extraction and selection

A total of 833 radiomic features were obtained from the ROIs

on the CE-T1WI using PyRadiomics (Version 3.0.1) in Python 3.9

(16). These features can be classified into three groups: geometry,

intensity, and texture, which describe the shape, statistical

distribution, and spatial patterns of the tumor, respectively.

The Mann–Whitney U test and feature screening were carried

out, and only characteristics with a p value below the 0.05 threshold

were retained. Spearman’s rank correlation coefficient was used to

analyze the relationships between characteristics with considerable

reproducibility. Characteristics with a correlation coefficient

exceeding 0.9 between any two features were selected by using a

greedy recursive deletion method. The least absolute shrinkage and

selection operator (LASSO) regression model was employed to

build a signature by shrinking regression coefficients toward zero

and setting many unrelated features to zero with reference to the

regulation weight l (17). The optimal value of l was found through

cross-validation with ten folds, resulting in a radiomic signature

with retained features having nonzero coefficients.
Radiomic model building

The selected features were utilized as input variables for model

development (18). A total of ten machine learning algorithms were

evaluated to identify the most effective classifier. The dataset was

partitioned into training and testing sets in a 7:3 ratio. Cross-

validation was employed during the training phase to optimize

hyperparameters and evaluate model stability. The entire training

set was used to build the predictive models, while the test set served

as an independent dataset to assess model performance.

Hyperparameter tuning was conducted via grid search to

determine the optimal configuration for each algorithm. The final

classifier was selected based on its performance metrics, including

accuracy, sensitivity, specificity, and area under the receiver
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operating characteristic curve (AUC), as evaluated on the validation

set. To further assess clinical utility, decision curve analysis (DCA)

was performed, and the standardized net benefit (sNB)—ranging

from 0 to 1—was calculated.
Statistical analysis

Python (Version 3.9) was used for the statistical analysis (19).

The threshold for significance was established at a p value of less

than 0.05. Group differences were measured by employing t tests

or Mann–Whitney U tests for quantitative metrics and chi–square

or Fisher’s exact tests for qualitative metrics. To compare

the performance of different machine learning models,

DeLong’s test was applied to assess the statistical significance of
Frontiers in Oncology 04
differences between correlated receiver operating characteristic

(ROC) curves.
Results

Patient characteristics

Figure 1 illustrates the flowchart for the choice of BMs for LC

patients. A cohort of 260 individuals who received at our institution

from January 2021 to December 2023 were chosen as participants for

this investigation in accordance with the predefined inclusion and

exclusion criteria. Among them, 173 individuals had NSCLC with 228

BMs, while 87 patients were diagnosed with SCLC with 142 BMs.

Patients were allocated to a training dataset with a total of 259 BMs and
FIGURE 1

Flow diagram of the study enrollment BMs (n) with lung cancer. Of 458 patients with pathologically confirmed brain metastases from lung cancer
(Jan 2021–Dec 2023), 88 were excluded. The final cohort (n = 370) was split into a training set (n = 259) and a validation set (n = 111), with
subgroups of NSCLC and SCLC.
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an independent test dataset with a total of 111 BMs. A pathologist

reviewed the pathological data. Table 1 provides a comprehensive

overview of the patient traits. Notably, no meaningful clinical

differences were detected between the training and validation groups.
Feature selection and model construction

A total of 833 handcrafted features were extracted, with 538

features chosen through statistical tests. A total of 117 features were

then selected based on correlation and a recursive deletion strategy.

Fifteen optimal radiomic features were selected using the LASSO

logistic model and regularization parameter l with coefficients and

mean standard errors shown in Figures 2, 3. A Rad signature was

established by utilizing the non-zero coefficients features selected by
Frontiers in Oncology 05
LASSO regression and features coefficients are displayed in Figure 4.

The multistep selection process resulted in a final subset of 15

radiomic features, which were subsequently used for model

training, as shown in Table 2. These selected features

demonstrated a strong discriminatory ability between the two

lung cancer subtypes in the training group as well as the testing

group. Ten machine learning algorithms were evaluated to

determine the most effective classifier.
Performance of the models

Ten classifier models were built based on features extracted

from MRI. The classifiers exhibited robust efficiency in relation to

the AUC and accuracy. In the training dataset, the top-performing
TABLE 1 Characteristics of the included patients with BMs (n).

Characteristics Training cohort (n = 259) Validation cohort (n =111) P*

NSCLC (n=160) SCLC(n=99) P NSCLC (n=68) SCLC (n=43) P

Gender (%) 0.242 0.842 0.791

Male 95 (59.4%) 60 (60.6%) 38 (55.9%) 22 (51.2%)

Female 65 (40.6%) 39 (39.4%) 30 (44.1%) 21 (48.8%)

Age, mean ± SD (years) 61.5 ± 8.8 63.5 ± 8.0 0.70 62.3 ± 7.1 62.5 ± 7.3 0.213 0.802

Median age (years) 61.0 (47-81) 62.4 (46-77) 62.1 (46-79) 62.9 (45-80)
P is obtained from the chi-squared test or Fisher’s exact test comparing patients with NSCLC and SCLC in both the training and validation cohorts, respectively. P* denotes the discrepancy of
every factor between the training and validation cohorts. NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; SD, standard deviation.
FIGURE 2

LASSO coefficient profiles of features generated from 10-fold cross-validation. Each colored line represents the trajectory of a feature’s coefficient
as the regularization parameter lambda changes. The vertical dashed line indicates the optimal lambda value (l = 0.0339), at which the model
achieves the best balance between sparsity and performance.
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classifiers were the XGBoost, LightGBM, SVM and RandomForest

models, which achieved AUCs of 0.963, 0.881, 0.876 and 0.855,

respectively, with 5-fold cross-validation. In addition, these

classifiers also demonstrated favorable performance in the

independent test. In the testing dataset, LightGBM achieved the

highest AUC of 0.853, significantly outperforming random forest

(0.843), extra trees (0.835), and naive Bayes (0.827), with differences

confirmed as statistically significant by DeLong’s test (p < 0.05). The

ROC contours for these models were displayed in Figure 5, and a
Frontiers in Oncology 06
thorough contrast was presented in Table 3. DCA of LightGBM in

the training and test cohorts is shown in Figure 6.
Discussion

This research intended to evaluate the viability and precision of

employing ML techniques to differentiate between NSCLC patients

and SCLC patients with BMs by utilizing high-dimensional
FIGURE 3

Mean squared error (MSE) plot from 10-fold cross-validation used to select the optimal regularization parameter (lambda) in LASSO regression. The
red dots represent the average MSE for each lambda, and the blue bars show ±1 standard error. The vertical dashed line indicates the optimal
lambda value (l = 0.0339), which minimizes the prediction error.
FIGURE 4

Bar plot showing the coefficients of the 15 most predictive radiomic features selected by the LASSO model. Positive coefficients indicate a direct
association with the outcome, while negative coefficients suggest an inverse relationship. Feature names reflect the original or wavelet-transformed
image filters and statistical classes used in radiomic extraction.
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radiomic features derived fromCE-T1WI. Ten distinct machine

learning prediction models were constructed and evaluated.

Notably, the LightGBM algorithm exhibited superior

performance, attaining an AUC of 0.853 in the test cohort.

Consequently, the findings suggest promising prospects for ML

models in predicting tumor pathology types.

Lung cancer subtype classification is critical for determining

treatment strategies, as NSCLC and SCLC have different treatment

protocols and prognoses (20). SCLC is an aggressive disease with a lack

of predictive biomarkers, and treatment primarily involves

chemotherapy and radiotherapy (21). NSCLC can be treated with

surgery combined with radiotherapy and chemotherapy. Additionally,

targeted therapies based on driver genes and immunotherapy with

immune checkpoint inhibitors have significantly improved NSCLC

patient survival (22). Histopathological examination is the best way to

diagnose brain tumors, but brain biopsies are associated with risks such

as bleeding and damage to critical brain tissue (23). This is a concern

for patients who are not suitable for biopsy or those with severe

comorbidities. CE-T1WI is crucial for detecting BMs, but its ability to

differentiate the origin of BMs is limited. Non-invasive diagnostic

methods using radiomics and ML show promise for improving clinical

decision-making and identifying candidates for targeted therapy and

immunotherapy. Pathological transformation between SCLC and

NSCLC during treatment may impact treatment strategies (24). A

study by Thai et al. reviewed the evolving landscape of lung cancer

subtypes and the corresponding imaging and treatment strategies,

reinforcing the necessity of precise subtype differentiation for

optimized therapeutic outcomes (20). Finally, Vogelbaum et al.

provided guidelines for treating BMs, reinforcing the importance of

precise diagnostic tools to guide treatment strategies (25). Some studies
Frontiers in Oncology 07
have demonstrated that theML technique can offer additional dynamic

diagnostic capabilities and valuable diagnostic insights that traditional

imaging might miss (26, 27).

Previous research has extensively investigated the

differentiation of BMs originating from NSCLC and SCLC

utilizing a variety of methodologies, with a primary focus on DL

and ML techniques. Sui et al. employed DL models on CE-T1WI,

achieving AUCs of 0.8024 for NSCLC and 0.8019 for SCLC,

highlighting the possibility of DL within this field (14). Similarly,

Egashira et al. showed an AUC of 0.744 for NSCLC and 0.861 for

SCLC using ML models, emphasizing the significance of radiomics

features in predictive modeling (15). Notably, a related study

indicated that a model using individual radiomic features derived

from CE-T1WI with the Xgboost algorithm achieved optimal

performance, with an AUC of 0.85 in inner testing and 0.80 in

exterior testing (28). In another study, the proposed radiomics-

based classifier achieved a sensitivity of 94.44% and specificity of

95.33%, outperforming DL-based classifiers and demonstrating that

the radiomic approach is a valuable diagnostic tool for

differentiating lung cancer subtypes in BMs with small datasets (29).

Our findings align with the aforementioned research by

demonstrating the efficacy of machine learning-based radiomics on

CE-T1WI in differentiating between NSCLC and SCLC in patients

with BMs. CE-T1WI is capable of providing detailed insights into the

pathological structure of cancers (30, 31). The LightGBM algorithm

in our study achieved an AUC of 0.853 in the validation cohort,

which is similar to or exceeds that of models reported in previous

research (28, 32). This consistency underscores the robustness of ML

approaches in handling high-dimensional radiomic features for

accurate tumor classification. However, our study diverges from

previous research in several key aspects. Unlike Sui et al. and

Egashira et al., who reported lower AUCs, our study achieved

higher predictive accuracy, potentially due to the incorporation of a

larger and more diverse dataset, as well as the use of advanced feature

selection techniques such as LASSO regression. Moreover, our focus

on comprehensive ML model evaluation, including DCA, provided a

further rigorous examination of model capability, highlighting the

clinical utility of our approach.

In the present study, ten distinct ML models were developed

and evaluated, and their performances were assessed using various

metrics. Of these models, LightGBM exhibited the best

performance, achieving an AUC of 0.853 in the validation cohort.

This was followed by the random forest, extra trees, and naive Bayes

models, which achieved AUCs of 0.843, 0.835, and 0.827,

respectively. Table 3 and Figure 5 show the performances of the

models, highlighting the superior diagnostic capabilities of the

LightGBM model on both the training and test datasets. The

efficiency of the LightGBM model in dealing with extensive data

and multidimensional features contributes to its strong

performance. The algorithm effectively prevents overfitting with

techniques such as gradient-based one-sided sampling (GOSS) and

exclusive feature bundling (EFB), ensuring high accuracy and

robustness in predictions. Advanced feature selection methods

such as LASSO regression focus on relevant features, improving
TABLE 2 Radiomics features obtained by LASSO regression analysis.

Sequence Radiomics features

1 original_ngtdm_Contrast

2 wavelet_HHH_firstorder_Skewness

3 wavelet_HHH_glszm_SizeZoneNonUniformityNormalized

4 wavelet_HHL_firstorder_Skewness

5 wavelet_HLL_glcm_Idn

6 wavelet_LHH_firstorder_Skewness

7 wavelet_LHH_glcm_Imc2

8 wavelet_LHH_glcm_InverseVariance

9 wavelet_LHL_gldm_DependenceEntropy

10 wavelet_LHL_glszm_GrayLevelNonUniformityNormalized

11 wavelet_LLH_gldm_DependenceNonUniformity

12 wavelet_LLL_firstorder_10Percentile

13 wavelet_LLL_glcm_MaximumProbability

14 wavelet_LLL_glszm_GrayLevelNonUniformity

15 wavelet_LLL_glszm_SizeZoneNonUniformity
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the model’s ability to differentiate between SCLC and NSCLC. The

observed discrepancy between the XGBoost model’s AUC of 0.963

in the training dataset and 0.816 in the validation dataset suggests

potential overfitting. This significant drop in performance indicates

that while XGBoost effectively captures patterns in the training data,

its generalizability to unseen data is limited. Overfitting may arise

due to the model’s complexity or insufficient regularization, causing

it to memorize training data rather than learn generalizable features.

This highlights that advanced techniques like GOSS and EFB used

by LightGBM help mitigate overfitting, suggesting that similar

strategies might improve XGBoost’s performance. Additionally,

the absence of precision-recall curves in the study could obscure

the model’s performance on imbalanced datasets, which may

contribute to the observed AUC drop in the validation set. To

address this, future work could incorporate regularization

techniques, automated feature selection like LASSO regression, or
Frontiers in Oncology 08
cross-validation adjustments to enhance XGBoost’s robustness

and generalizability.

We extracted 833 radiomic features from axial CE-T1WI using the

PyRadiomics package (33) and identified 15 key features that effectively

differentiated SCLC from NSCLC. These included intensity, texture,

and geometric descriptors such as original_ngtdm_Contrast,

wavelet_HHH_firstorder_Skewness, and wavelet_LLL_glcm_

MaximumProbability. These features have biological relevance (34,

35). For example, original_ngtdm_Contrast reflects tumor

heterogeneity, which is typically higher in SCLC due to its rapid

proliferation, necrosis, and disorganized cellular architecture. The

wavelet_HHH_firstorder_Skewness captures asymmetrical intensity

distributions, potentially linked to irregular tumor growth in SCLC.

In contrast, NSCLC often exhibits more structured, homogeneous

patterns. Geometric features provide insight into tumor shape and

invasive potential. SCLC frequently presents with irregular, infiltrative
(a) (b)

(c)
FIGURE 5

Receiver operating characteristic (ROC) curves for ten machine learning models in the (a) training and (b) testing datasets. (c) ROC curves for the
LightGBM model, which achieved the highest performance, with an AUC of 0.881 (95% CI: 0.841–0.922) in the training set and 0.853 (95% CI:
0.781–0.924) in the testing set.
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TABLE 3 Performance of ten machine learning models in the training and validation sets.

Model name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Task

LR 0.718 0.769 0.7116- 0.8262 0.706 0.737 0.813 0.608 label-train

LR 0.757 0.779 0.6879 - 0.8695 0.853 0.605 0.773 0.722 label-test

NaiveBayes 0.714 0.748 0.6869 - 0.8083 0.712 0.717 0.803 0.607 label-train

NaiveBayes 0.802 0.827 0.7472 - 0.9060 0.824 0.767 0.848 0.733 label-test

SVM 0.792 0.876 0.8316 - 0.9200 0.750 0.859 0.896 0.680 label-train

SVM 0.703 0.790 0.7063 - 0.8737 0.662 0.767 0.818 0.589 label-test

KNN 0.695 0.835 0.7868 - 0.8822 0.587 0.869 0.879 0.566 label-train

KNN 0.667 0.747 0.6550 - 0.8382 0.574 0.814 0.830 0.547 label-test

RandomForest 0.764 0.855 0.8090 - 0.9016 0.744 0.798 0.856 0.658 label-train

RandomForest 0.757 0.843 0.7707 - 0.9150 0.706 0.837 0.873 0.643 label-test

ExtraTrees 0.687 0.796 0.7417 - 0.8511 0.569 0.879 0.883 0.558 label-train

ExtraTrees 0.775 0.835 0.7589 - 0.9121 0.750 0.814 0.864 0.673 label-test

XGBoost 0.888 0.963 0.9443 - 0.9816 0.881 0.899 0.934 0.824 label-train

XGBoost 0.757 0.816 0.7361 - 0.8966 0.721 0.814 0.860 0.648 label-test

LightGBM 0.788 0.881 0.8410 - 0.9216 0.725 0.889 0.913 0.667 label-train

LightGBM 0.793 0.853 0.7809 - 0.9243 0.809 0.767 0.846 0.717 label-test

AdaBoost 0.776 0.854 0.8075 - 0.9007 0.694 0.909 0.925 0.647 label-train

AdaBoost 0.640 0.685 0.5790 - 0.7917 0.588 0.721 0.769 0.525 label-test

MLP 0.757 0.809 0.7560 - 0.8622 0.775 0.727 0.821 0.667 label-train

MLP 0.748 0.821 0.7416 - 0.9007 0.735 0.767 0.833 0.647 label-test
F
rontiers in Oncolog
y
 09
LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbors; XgBoost, eXtrema gradient boosting; LGBM, light gradient boosting machine; AdaBoost, adaptive boosting;
MLP, multilayer perceptron; PPV, positive predictive value; NPV, negative predictive value.
(a) (b)
FIGURE 6

Decision curve analysis (DCA) of the LightGBM model in the training (a) and test cohorts (b). The x-axis represents the threshold probability, and the
y-axis indicates the net benefit. The LightGBM model demonstrates a higher standardized net benefit (sNB) across a range of clinically relevant
threshold probabilities, indicating superior clinical utility.
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borders, while NSCLC tends to show more defined and organized

structures. These differences in morphology and biological behavior are

well represented by the selected radiomic features and enhance the

model’s ability to distinguish between subtypes (36). These features are

crucial for accurate classification and, when combined with advanced

ML algorithms, improve the ability to differentiate between LC

subtypes for better diagnosis and treatment planning (37).

This study has several limitations that should be acknowledged.

First, the retrospective design and limited sample size may affect the

generalizability of our findings. Future multicenter prospective studies

incorporating deep learning techniques could enhance the model’s

robustness and clinical applicability. Second, our analysis relied solely

on CE-T1WI sequences; incorporating additional sequences (e.g., T2-

FLAIR) might improve discriminatory performance. Third, although

SHAP (SHapley Additive exPlanations) analysis was not performed in

this study, we acknowledge its value in improving model transparency.

SHAP could help visualize the impact of each feature on model

predictions, offering deeper insights into the decision-making process

(38, 39). We consider this an important direction for future work to

enhance interpretability and clinical trust. Fourth, class imbalance in

the training dataset and the absence of precision-recall curves may

obscure the model’s true performance on minority classes. These

curves are essential for evaluating imbalanced datasets and should be

included in future work. Fifth, manual tumor segmentation may

introduce inter-observer variability; automated or semi-automated

methods could improve reproducibility. Finally, while our top-

performing models demonstrated strong AUCs, clinical translation

would further require validating the model across diverse, real-world

datasets to ensure practical utility.
Conclusion

Our research illustrates that the application of machine

learning-based radiomics, utilizing high-dimensional features

extracted from CE-T1WI, is a highly effective method for

distinguishing between primary NSCLC and SCLC in patients

with BMs. The LightGBM model displayed superior capability

with an AUC of 0.853 in the test cohort, suggesting considerable

promise for enhancing diagnostic precision and facilitating the

refinement of customized protocol. This machine learning

approach shows promise as a supportive, non-invasive diagnostic

tool, pending further validation in prospective clinical settings.
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