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CLGB-Net: fusion network for 
identifying local and global 
information of lesions in digital 
mammography images 
Ningxuan Hu1, Zhizhen Gao2*, Zongyu Xie2* and Lei Li1 

1School of Medical Imaging, Bengbu Medical University, Anhui, China, 2Department of Radiology, The 
First Affiliated Hospital of Bengbu Medical University, Anhui, China 
Worldwide, breast cancer ranks among the cancers with the highest incidence 
rate. Early diagnosis is crucial to improve the survival rate of patients. Digital 
Mammography (DM) is widely used for breast cancer diagnosis. The disadvantage 
is that DM relies too much on the doctor’s experience, which can easily lead to 
missed diagnosis and misdiagnosis. In order to address the shortcomings of 
traditional methods, a CLGB-Net deep learning model integrating local and 
global information is proposed for the early screening of breast cancer. Four 
network architectures are integrated into the CLGB-Net model: ResNet-50, Swin 
Transformer, Feature Pyramid Network (FPN), and Class Activation Mapping 
(CAM). ResNet-50 is used to extract local features. The Swin Transformer is 
utilized to capture global contextual information and extract global features. FPN 
achieves efficient fusion of multi-scale features. CAM generates a class activation 
weight matrix to weight the feature map, thereby enhancing the sensitivity and 
classification performance of the model to key regions. In breast cancer early 
screening, the CLGB-Net demonstrates the following performance metrics: a 
precision of 0.900, recall of 0.935, F1-score of 0.900, and final accuracy of 
0.904. Experimental data from 3,552 samples, including normal, benign, and 
malignant cases, support these results. The precision of this model was improved 
by 0.182, 0.038, 0.023, and 0.021 compared to ResNet-50, ResNet-101, Vit 
Transformer, and Swin Transformer, respectively. The CLGB-Net model is 
capable of capturing both local and global information, particularly in terms of 
sensitivity to subtle details. It significantly improves the accuracy and robustness 
of identifying lesions in mammography images and reduces the risk of missed 
diagnosis and misdiagnosis. 
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1 Introduction 

Breast cancer is one of the most common cancers in the world. 
According to the World Cancer Report 2020 issued by the 
International Agency for Research on Cancer (IARC), the 
prevalence of breast cancer exceeded that of lung cancer, ranking 
first in the world (1). By 2020, more than 2.3 million women 
worldwide have been diagnosed with breast cancer. According to 
the study, among the 2.3 million patients in the same year, 700000 
cases died as a result (2). The Report of the breast cancer Committee 
of the Lancet estimates that by 2040, there will be more than 3 
million new cases of breast cancer every year, and it is estimated that 
there will be more than 1 million new deaths (3). In view of the high 
incidence rate and mortality of breast cancer, early detection and 
diagnosis are particularly important. Breast cancer has no obvious 
symptoms in the early stage, but most patients are in the late stage 
when diagnosed, which leads to a high mortality rate. The American 
Cancer Society pointed out that the five-year relative survival rate of 
patients with early breast cancer is as high as 99%. Therefore, early 
detection, diagnosis and treatment of breast cancer are crucial to 
improve the survival rate of patients (4). 

At present, the early detection of breast cancer mainly depends 
on imaging examinations, such as digital mammography (DM), 
digital breast tomography (DBT), magnetic resonance imaging 
(MRI), ultrasound (US), nuclear magnetic resonance technology 
and their combination technologies (2). Because of the high 
resolution, simple operation, repeatability and non-invasive 
characteristics of DM, DM is widely used in breast cancer 
screening. However, when using DM for breast cancer diagnosis, 
the results depend heavily on imaging physicians’ experience. This 
can affect diagnostic accuracy. It may even lead to unnecessary 
irradiation and invasive examinations for further diagnosis (5, 6). In 
order to address these challenge, computer-aided diagnosis (CAD) 
systems have gradually become a research hotspot (7, 8). In DM, 
CAD can assist radiologists in image interpretation and diagnosis 
with the help of computer algorithms, especially for marking and 
distinguishing benign and malignant lesions. CAD can not only 
improve the efficiency and accuracy of detection and diagnosis of 
breast cancer, but also play an important role in improving image 
quality, histological classification and predicting patient prognosis 
(2, 5). By applying artificial intelligence (AI) for DM image analysis, 
the application of CAD systems can avoid adverse reactions caused 
by additional irradiation in patients, and reduce unnecessary 
invasive examinations such as biopsies. In recent years, CAD has 
been gradually applied to the early screening of breast cancer (4, 9, 
10). Among many methods, deep learning (DL) has been widely 
used in the early screening of breast cancer. Deep learning 
algorithms can automatically extract information from data, 
autonomously select the best features of images, and are quickly 
applied to DM based auxiliary diagnosis due to their characteristics 
(4). Deep learning technology has received extensive attention in 
the CAD system of medical image analysis. Significant research 
achievements have been made in image detection of various 
diseases, such as breast cancer detection (11, 12), neoadjuvant 
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chemotherapy response and axillary lymph node metastasis 
prediction of breast cancer (13), colorectal polyp detection (14), 
skin cancer detection (15), brain tumor classification (16), etc. 

There are still some shortcomings in the comprehensive 
analysis of DM image diagnosis. These shortcomings include high 
requirements for the experience level of radiologists, risks of 
misdiagnosis and missed diagnosis, and additional exposure and 
invasive examinations. In response to the above issues, this study 
proposes a new breast lesion recognition model: CLGB-Net deep 
learning network. This model efficiently integrates local and global 
features, comprehensively captures subtle information, and has the 
ability to accurately locate key areas, demonstrating significant 
advantages in clinical diagnosis of DM images. The advantage of 
the CLGB-Net deep learning network model is that it focuses on 
local ROI regions, increases the weight of effective information, and 
thus improves the accuracy of early screening. The proposal of this 
model not only overcomes the shortcomings of traditional methods 
that overly rely on doctors’ clinical experience, but also 
demonstrates advantages in early disease screening. 
2 Related work 

With the rapid development of medical imaging technology and 
its widespread application in clinical diagnosis, especially the 
introduction of computer technology and artificial intelligence, 
significant breakthroughs have been made in the field of medical 
image processing and analysis. In the field of image recognition, 
manual fine annotation of data images provides an important basis 
for the application of deep learning, especially in breast cancer 
detection and treatment planning. High quality manual annotation 
significantly improves the accuracy and reliability of the model, 
enabling it to learn disease features more accurately, thus playing a 
key role in early detection and precise treatment planning. 
2.1 Recent research based on manually 
annotated data 

Manual annotation not only enhances the learning ability of 
algorithms, but also provides valuable auxiliary tools for medical 
professionals. Sigrun et al. (17) used a DL segmentation model. The 
model was based on 3D CNN U-net. It automatically segmented 
target areas and risk organs (OARs). This was applied to the local 
area of breast cancer radiotherapy. This study used the CT image 
data of 200 patients with left breast cancer in two Norwegian 
hospitals. Three clinical oncologists and three radiation therapists 
manually delineated the geometric similarity indicators of seven 
clinical target areas (CTVs) and eleven organs at risk (OARs). The 
results showed that for most structures, the 3D CNN U-net model 
performed significantly better than inter observer variability (IOV). 
In clinical evaluation, 85% of CTVs and 98% of OARs do not 
require or only require minor modifications. In addition, the model 
significantly reduces manual sketching time from about 1 hour to 
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15 minutes. Therefore, this model can not only significantly 
improve work efficiency, but also maintain high-quality 
segmentation accuracy. 

Besides, Aboutalib et al. (18) analyzed the mammographic 
images of two independent data sets, FFDM (Full Field Digital 
Mammography) and DDSM (Digital Database for Screening 
Mammography), using the deep convolution neural network 
(CNN) model based on the AlexNet structure in response to the 
problem of high false recall rate in breast cancer screening. 14860 
images of 3715 patients in two independent datasets were initially 
manually annotated by experienced radiologists. In the FFDM 
dataset, the AUC range is 0.66-0.81. In the DDSM dataset, the 
AUC range is 0.77-0.90. When fusing FFDM and DDSM datasets, 
the AUC  range is 0.76-0.91. In  addition,  when  applying  the
incremental transfer learning strategy (pre-trained with ImageNet 
and fine-tuned with DDSM dataset) on the FFDM dataset for 
testing, the performance of malignant and recall benign models 
improved from 0.75 to 0.80. The results show that the deep 
convolution neural network (CNN) model based on the AlexNet 
structure can effectively identify subtle imaging features and reduce 
unnecessary recalls, thus improving the efficiency and accuracy of 
breast cancer screening. Nusrat (19) et al. used ensemble deep 
learning models (including DenseNet-121, DenseNet-169, ResNet­
101v2, and ResNet-50) to detect and grade invasive ductal 
carcinoma (IDC). Pathologists manually mark the IDC (invasive 
ductal carcinoma) area in the full section image of breast cancer 
stained by H&E to determine which areas are positive or negative 
for IDC and their corresponding cancer grades. Through 
experiments on  the  Agios  Pavlos and  BreakHis  datasets, the

integrated model, DenseNet-121 and DenseNet-169 combined 
with test time augmentation (TTA), achieved an accuracy of 
94.05%, an F1-score of 95.70%, and a balanced accuracy of 
92.70% in IDC detection tasks. The accuracy of using this model 
improved by 1.58% and 2.62% compared to using DenseNet-121 
and DenseNet-169 separately. In the IDC grading task, the 
integrated models (including DenseNet-121, DenseNet-201, 
ResNet-101v2, and ResNet-50) achieved the highest accuracy of 
69.31% to 79.14% at different magnifications on the Databiox 
dataset, and achieved an overall accuracy of 89.26% on the Agios 
Pavlos dataset, far higher than the results of other benchmark 
models. These data fully demonstrate the significant advantages and 
robustness of the integrated model in improving detection and 
grading accuracy. 

The above research results indicate that the advantage of 
manual annotation lies in providing a high-quality and accurate 
data foundation, which is crucial for training deep learning models. 
High quality manual annotation significantly improves the accuracy 
and reliability of the model, enabling it to learn disease features 
more accurately, thus playing a key role in early detection and 
precise treatment planning. However, in practical applications, 
manual annotation has drawbacks such as long process time, 
significant manpower investment, and difficulty in ensuring 
consistency, and highly relies on the clinical experience of 
experts. This dependency not only increases costs, but may also 
result in uneven labeling quality due to human factors. To overcome 
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the limitations of manual annotation, researchers have begun 
exploring a new method for automated annotation that does not 
rely on manual labor. 
2.2 Recent research based on automatic 
feature search 

The rapid development of methods such as artificial intelligence 
CAD has promoted its application in the field of medical imaging. 
Experts and scholars are increasingly inclined to explore a method 
that combines deep learning and automation technology to 
compensate for the shortcomings of manual labor. Related 
research attempts to gradually use advanced algorithms and 
model structures, such as supervised learning, transfer learning 
and other methods to reduce the dependence on manual 
annotation, and improve the processing ability and adaptability of 
the model in complex scenes. As early as 2021, William (20) and 
others took the lead in the research based on the weakly supervised 
learning framework. The OMI-DB dataset and DDSM dataset were 
used in this study. Image annotation is mainly realized by weak 
supervised learning framework, which reduces the dependence on 
traditional manual fine annotation. Researchers use a small number 
of expert labeled data to generate the initial model, and use this 
model to generate high-quality pseudo tags for large-scale unlabeled 
data. On OMI-DB dataset, the AUC value and sensitivity of this 
method are 0.94 and 89%, while on DDSM dataset, the AUC value 
is 0.92 and the sensitivity is 87%. Compared with the traditional 
manual annotation method, the AUC value of this method is 
increased by 0.03, and the sensitivity is increased by 4%. Üzen 
(21) et al. Used several public breast tumor image datasets, 
including Mini-MIAS (MIAS), Curated Breast Imaging Subset of 
Digital Database for Screening Mammography(CBIS-DDSM) and 
Breast Ultrasound Tumor Dataset (BreaST). Image processing and 
classification mainly rely on automated methods, but still use some 
manually labeled data as the basis to ensure the initial training 
quality and accuracy of the model. Experimental results show that 
the model achieves 97.5% accuracy and 97.0% F1-score on public 
data sets (such as MIAS, CBIS-DDSM and BreaST). Compared with 
ResNet-50 and U-Net, the accuracy of the model was improved by 
3.7% and 4.9% respectively, and the F1-score was improved by 3.8% 
and 5.2% respectively. This research not only improves the 
performance of the model, but also reduces the dependence on a 
large number of manual annotation data. Aiming at the problems of 
breast density estimation and breast cancer risk assessment, Omid 
(22) and others used the Deep-LIBRA method to analyze the multi-

ethnic and multi-agency data sets containing 15661 FFDM images 
(from 4437 women). In this study, deep learning combined with 
radiomics feature analysis was used for automatic image processing, 
including background removal, pectoralis major muscle removal, 
and dense and non-dense tissue segmentation. This method uses 
deep learning technology, especially U-Net convolutional neural 
network architecture, image processing and machine learning 
technology based on radiomics to achieve background removal, 
pectoralis major muscle removal, and segmentation of dense and 
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non-dense tissue regions. The results showed that on the 
independent case-control data set, the estimated breast density 
percentage (PD) generated by deep Libra was highly correlated 
with the results of expert film reading (Spearman correlation 
coefficient=0.90). Moreover, in the breast cancer risk assessment 
model adjusted for age and BMI, the AUC of deep Libra reached 
0.612, which was significantly better than the other four commonly 
used commercial and open source breast density assessment 
methods (AUC range was 0.528 to 0.599). These results clearly 
show that this method not only effectively reduces the dependence 
on massive manual annotation data, but also significantly improves 
the detection accuracy and cross dataset generalization performance 
by optimizing the model architecture and training strategy and 
improving the model performance, which fully demonstrates its 
technical advancement and practical value in the automatic breast 
cancer detection task, and provides a more efficient and reliable 
solution for medical image analysis. 

In response to the shortcomings of the aforementioned research, 
this study proposes a deep learning method based on the deep 
learning method of automatic label generation. This method 
specifically combines advanced technologies such as ResNet-50, 
Swin Transformer, FPN and CAM like to form a new breast 
disease diagnosis system called CLGB-Net. Through multi-scale 
feature extraction and global context information fusion, CLGB-
Net can not only capture local detail features, but also effectively 
integrate global semantic information, which significantly improves 
the classification accuracy and robustness of breast lesion images. 
This method provides a more efficient and accurate solution for DM 
image analysis, while reducing the demand for computing resources 
and processing time. The model automatically generates high-quality 
labels through the iterative training process, replacing the traditional 
manual fine annotation. In each iteration, the model will 
automatically adjust its parameters to optimize the understanding 
and classification ability of the input data, and generate accurate and 
consistent labels. Unlike relying on experts for tedious and time-

consuming manual annotation, this automated method not only 
greatly improves work efficiency and reduces the possibility of human 
error, but also can handle large-scale data sets. In addition, since there 
is no need for human intervention, this method saves researchers a lot 
of time and resources, so that they can focus on the optimization and 
improvement of the model. Therefore, the model significantly 
improves the efficiency and accuracy of DM image analysis 
through automatic label generation and advanced feature extraction 
technology. It not only provides researchers with powerful tools, but 
also brings new possibilities for clinical practice, and helps to promote 
the development of medical image analysis to a higher level. 
3 Materials and methods 

3.1 Data collection 

Data collection was conducted in the Radiology Department of 
the First Affiliated Hospital of a medical university in Anhui 
Province. The data acquisition equipment is the Siemens 
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MAMMAMMAT Inspiration mammography machine from 
Germany. The specific imaging parameters are as follows: tube 
current time is 92.5 mAs, pressure during breast compression is 67 
N, thickness of imaging after breast compression is 44 mm, target/ 
filter combination of tube exposure is W/Rh (tungsten/rhodium), 
incident dose is 3.7 mGy, and glandular dose is 1.27 mGy. 

This study collected 1868 cases of breast mammography 
performed in the radiology department of hospitals from January 
2019 to January 2024, all of whom were female. The study was 
approved by the Ethics Committee of Bengbu Medical University 
([2024] No. 370). All images were anonymized by removing patient 
identifiers (such as name, ID number) and converting DICOM files 
to JPG format using MicroDicom v3.4.7. No personal health 
information was retained during this process. Among them, the 
age range of normal cases is 48.43 ± 9.10, the age range of benign 
cases is 48.18 ± 9.69, and the age range of malignant cases is 55.68 ± 
10.54. A total of 3598 images were collected, including single and 
bilateral CC+MLO images of the same patient. 46 that did not meet 
the requirements were excluded, and 3552 images were finally 
obtained for analysis. All images were divided into three 
categories: normal, benign, and malignant. Among them, the 
control group had 503 normal cases and 1210 images, including 
802 unilateral CC+MLO images and 408 bilateral CC+MLO images. 
There are a total of 547 benign cases with 1014 images, including 80 
unilateral CC or MLO images of 80 cases and 934 unilateral CC 
+MLO images of 467 cases. There were 818 malignant cases with a 
total of 1328 images, including 308 unilateral CC or MLO images of 
308 cases and 1020 unilateral CC+MLO images of 510 cases. 

The collected data includes lesions confirmed by two clinical 
doctors with more than 10 years of diagnostic experience, classified 
as BIRADS grade 3 or below and without malignant tendency 
according to the 2013 version of BIRADS (23) guidelines, as well as 
lesions classified as BIRADS grade 4 or above. The benign and 
malignant classification of all images is based on pathological 
reports as the gold standard. The exclusion criteria are that the 
DM image quality does not meet the standard (such as blurry 
images, insufficient resolution) or the shooting range does not fully 
cover the lesion area, in order to ensure the high quality of the data 
and the reliability of the research results. 
3.2 Image preprocessing and data 
augmentation 

One of the most critical steps before conducting data analysis is 
data preprocessing and data augmentation, which can effectively 
improve model performance and ensure its generalization ability. 
Common data augmentation methods include rotation, scaling, 
horizontal flipping, vertical flipping, transposition, and cropping 
(7, 11). These operations not only help adjust image size to match 
model input requirements, but also simulate more diverse situations 
by introducing changes, thereby increasing the diversity of 
training samples. 

There were 3552 mammogram images collected in this study, 
including training set 2842, test set 355, and validation set 355. For 
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the training set, data augmentation techniques such as image 
scaling, random cropping and random flipping were adopted on 
the basis of image preprocessing. The validation and test sets are 
only preprocessed (scaled, normalized) on a basic basis to ensure 
that the test data is not exposed in an enhanced form during 
training. Data augmentation is dynamically applied in real-time 
during the training process (different augmentation samples are 
generated for each training cycle), while the validation/test set uses a 
fixed preprocessing process and is implemented through code 
isolation to ensure the fairness of model evaluation. Image scaling 
can adjust the image size to meet the input requirements of the 
model, while simulating targets of different scales. Random 
cropping increases sample diversity by cropping different parts of 
the image, enhancing the model’s ability to learn local features. 
Random flipping (including horizontal and vertical flipping) 
generates mirrored images, further enriching the training data 
and improving the model ’s generalization performance. 
Normalization operation unifies the range of image pixel values, 
accelerates the model training process, and improves numerical 
stability. The comprehensive application of these preprocessing 
methods not only significantly improves the diversity and quality 
of data, enhances the recognition and classification performance of 
the model, but also ensures that the model further strengthens its 
ability to capture local features while extracting global information. 
The multi-scale and multi perspective data processing strategy 
enables the model to more accurately identify and analyze local 
details while maintaining understanding of the overall image, 
ultimately achieving better prediction performance and 
higher stability. 

Finally, a batch data loader is built using the DataLoader 
module: the training set adopts the random disruption 
(shuffle=true) strategy to enhance the generalization ability of the 
model to the data distribution, while the validation set and the test 
set adopt the fixed sequence loading (shuffle=false) to ensure the 
certainty of the evaluation process and the reproducibility of the 
results. This design realizes the efficient management of data flow 
through dynamic batch processing mechanism (combined with 
multi-threaded acceleration and memory optimization), and 
finally forms a complete training verification test pipeline 
including data enhancement, batch standardization and 
hierarchical  verification,  which  provides  a  systematic  
experimental framework for model development. 
3.3 Construction of CLGB-Net model 

The CLGB-Net model is a lesion diagnosis system for breast 
DM images that integrates local and global information. It is 
composed of ResNet-50, Swin Transformer, Feature Pyramid 
Network (FPN) and Class Activation Mapping (CAM). The 
following will explain each module separately: 

3.3.1 ResNet-50 
ResNet stands for Residual Network. Increasing the network 

size can lead to gradient vanishing, while ResNet introduces 
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Residual Blocks (7), which directly pass the input of the network 
to the output through Skip Connection (24), thereby solving the 
problems of gradient vanishing and gradient explosion in deep 
networks and achieving faster system training. ResNet comes in 
various forms, including ResNet-18, ResNet-34, ResNet-50, 
ResNet-101, and ResNet-152. ResNet-50 has 50 convolutional 
layers, and its deep structure enables it to learn complex features 
from data, thereby achieving high-precision image classification 
and object detection. It is a deep CNN with powerful feature 
extraction and classification capabilities. 

Considering the size of the dataset in this study, we chose to use 
the ResNet-50 architecture. ResNet-50 is a deep residual network 
consisting of 50 layers, mainly including an initial layer, residual 
block layer, global average pooling layer, and fully connected layer. 
The specific structure is shown in Figure 1. 

x is the input image, Wconv1 is the weight of the convolutional 
layer, bconv1 is the bias term of the convolutional layer, x1 is the 
output after convolution and ReLU activation, and x2 is the output 
after max pooling. The initial convolutional layer is shown in 
Equations 1, 2: 

x1 = ReLU(Wconv1 · x  + bconv1) (1) 

x2 = MaxPool(x1) (2) 

representing the weight matrix of the convolutional layer in the 
residual block; F(xi, Wi) representing the forward propagation 
function in the residual block, typically consisting of multiple 
convolutional layers and activation functions; ReLU(yi) apply an R 
eLU activation function to the output of the yi residual block to 
make it nonlinear; ResBlock represents a residual block composed of 
a series of convolutional layers. The residual block layer is shown in 
Equation 3: 

x3 = ResBlock(x2, Wr ) (3) 

x3 representing the output of the last convolutional layer or 
residual block; xpool represents the output after global average 
pooling. The global average pooling layer is shown in Equation 4: 

xpool = GlobalAvgPool(x3) (4) 

xpool represents the output after global average pooling, Wk 

represents the weight of the fully connected layer, bk represents the 
bias term of the fully connected layer, yk represents the output of the 
fully connected layer. The fully connected layer is shown in 
Equation 5: 

yk = Wk · xpool + bk (5) 

Therefore, the ResNet-50 structure is as shown in Equation 6: 

yk = Wk · GlobalAvgPool(ResBlock(MaxPool(ReLU(Wconv1 · x  

+ bconv1)))) + bk (6) 

The advantage of ResNet-50 is that it effectively solves the 
common problems of gradient vanishing and exploding in deep 
networks by introducing residual blocks and skipping connections, 
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thereby achieving a faster and more stable training process. Its deep 
structure enables it to learn complex features, making it suitable for 
high-precision image classification and object detection tasks. 
ResNet-50 not only improves the performance of the model on 
large-scale datasets, but also enhances its stability and training 
efficiency, making it a powerful feature extraction and classification 
tool. Therefore, this study utilized ResNet-50 to efficiently process 
breast lesion images, significantly improving classification accuracy 
and model generalization ability. 

3.3.2 Swin Transformer 
In the field of computer vision, although CNNs have long been 

the dominant architecture, in recent years, Transformer networks 
have shown significant advantages in computer vision and natural 
language processing (NLP) by utilizing self-attention mechanisms 
to extract long-range dependencies (11), more and more research is 
exploring the possibility of applying Transformers to visual tasks. 
Compared to traditional CNNs, Swin Transformer introduces the 
concept of “window” and combines “local attention” and “global 
attention” to capture more local and global feature (25). The 
uniqueness of Swin Transformer lies in its  outstanding
performance in learning attention based hierarchical features. As 
a hierarchical Transformer, Swin Transformer can serve as the 
foundational architecture for various computer vision tasks through 
mobile window computation. Its basic operations include window 
interaction, window interaction update, local window attention, and 
global window attention, establishing associations between 
windows through application window interaction (26). Given the 
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ability of Swin Transformer to extract hierarchical multi-scale 
attention features, it is able to demonstrate top-level performance 
in complex computer vision tasks (14, 27). Its biggest advantage lies 
in the ability to extract multi-level and multi-scale attention features 
(20), which can capture more global information. This not only 
enhances the model’s ability to understand complex scenes, but also 
significantly improves its performance in various visual tasks such 
as image classification and object detection. The specific structure of 
Swin Transformer is shown in Figure 2. 

CLGB-Net first divides the image into multiple patches in the 
Patch Partition module, then flattens the image in the channel 
direction, performs linear transformation on the channel data of 
each pixel through the Linear Partition layer, and then constructs 
feature maps of different sizes through Layers 1-4. Among them, 
only Layer 1 passes through a Linear Partition layer first, while 
Layers 2–4 are down sampled through the Patch Partition layer first. 
Finally, stack Swin Transformer Blocks repeatedly to obtain the 
final output. 

Patch Partition is a non-convolutional down sampling 
technique used in Swin Transformer. As mentioned earlier, in 
Layers 2-4, a Patch Partition layer is first passed through. As 
shown in the figure below, if a 4x4 image is input into Patch 
Merging, the image is divided into 4 2x2 patches, and the pixels of 
the same color in each patch are combined together to obtain 4 
feature maps. Concat and concatenate these four feature maps, pass 
them through a LayerNorm layer, and then perform linear changes 
in the depth direction of the feature map through a fully connected 
layer. Therefore, after passing through Patch Partition, the width 
FIGURE 1 

ResNet-50 structure diagram. 
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and height of the image are reduced to half of their original size, 
while the depth is doubled. 

In summary, Swin Transformer, by introducing a unique 
window shift mechanism, greatly enhances the model’s ability to 
capture long-range dependencies and multi-level information in 
images while maintaining efficiency, making it one of the important 
research directions in the current field of computer vision. This 
method provides a more flexible and powerful tool for future 
visual tasks. 

3.3.3 FPN 
FPN is a fundamental component used in recognition systems 

to detect objects of different scales. It is one of the representative 
detectors in recent years and is a multi-scale feature representation 
method. Its biggest feature is its top-down feature fusion path and 
multi-scale detection paradigm (27). It has been proven to be very 
effective in extracting multi-scale features (28), and has played an 
important role in fields such as object detection, instance 
segmentation, and semantic segmentation (26). With its unique 
top-down feature fusion mechanism and multi-scale detection 
framework, FPN has become an indispensable component of 
modern detection systems and one of the most representative 
architectures in the field of object detection (29). The specific 
structure of FPN is shown in Figure 3. 

This study constructs an image pyramid by generating images 
of different sizes after inputting the original image. Features are 
extracted from each layer of the image pyramid, and different sizes 
of features are extracted for prediction. The prediction results for all 
sizes are then statistically analyzed. Finally, several features are 
fused and several images are upsampled to obtain features of the 
same size. These features are then added together to obtain the 
output of the feature pyramid, which has the same size as the first 
layer. This feature enables FPN to better recognize small targets. 

FPN effectively integrates deep high semantic information with 
shallow high resolution information through a top-down path and 
horizontal connection mechanism, generating multi-scale feature 
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maps and significantly enhancing the model’s detection ability for 
targets of different sizes. It is particularly suitable for identifying 
small lesion areas in breast lesion images. In this study, by 
combining FPN with ResNet-50, the aim is to further improve 
the model’s ability to extract multi-scale image features, solve the 
problems of multi-scale lesion detection and small object 
recognition, enhance the stability and generalization ability of the 
model, and thus improve the accuracy and reliability of breast 
lesion classification. 

3.3.4 CAM 
CAM is a technique that utilizes the output results of a model to 

activate important features in specific regions of the original image 
(30), It generates results by weighting and summing the last 
activated image of each category in the network using the weights 
of fully connected layers. CAM can generate heat maps that can 
locate the approximate location of lesion areas (31), demonstrating 
significant effectiveness, especially in image label based target 
localization work (29). CAM can identify and highlight 
discriminative regions in the input image, and predict category 
scores through visualization, emphasizing the key regions detected 
by CNN. This method enables CNNs trained for classification to 
learn and perform object localization without the need for bounding 
box annotation (32). The specific structure of CAM is shown 
in Figure 4. 

The heatmap generated by CAM is a visual representation of the 
same size as the original image, with each pixel having a value range 
between 0 and 1, and is typically displayed through a grayscale map 
(0 to 255 gray levels). This heatmap is generated by weighted 
summation of feature maps extracted from the ResNet-50 
network to determine which regions contribute significantly to 
the final classification task. Specifically, CAM utilizes the weights 
of fully connected layers to weight and sum the feature maps of the 
last convolutional layer, thereby generating a heatmap to highlight 
key regions in the input image. The identification of these key 
regions helps the model gradually optimize during the training 
FIGURE 2 

Swin Transformer structure diagram. 
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process, enabling it to focus more accurately on local features that 
are crucial for classification tasks. Through this approach, CAM not 
only enhances the interpretability of the model, but also improves 
its performance for object detection tasks. It enables CNN trained 
through classification to learn and perform object localization 
without the need for bounding box annotation. This method 
enables CNN to effectively identify and locate discriminative 
regions in images, thereby improving overall classification 
accuracy and reliability. Therefore, CAM has demonstrated its 
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powerful application potential in multiple fields such as medical 
image analysis and object recognition. 

W1 to Wn represent the weight of the target category (breast 
lesions in this study) between each feature map of the last 
convolutional layer and the classifier. Since the feature vector 
output by GAP comes directly from the feature map, this weight 
can be regarded as the contribution of the feature map to the target 
category score. Weighted summation can be used to obtain CAM. 
fk(x, y) is the value of the (x, y) location of the last convolutional 
FIGURE 4 

CAM structure diagram. 
FIGURE 3 

FPN structure diagram. 
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feature map, wk
c representing the k weights corresponding to the c 

class in the fully connected output layer. CAM formula such as 
Equation 7: 

Pc(x, y) =  okwk
c fk(x, y) (7) 

Due to its simplicity and intuitive visualization effect, CAM 
performs well in interpreting localization and classification tasks. 
CAM based algorithms have been widely applied in various studies 
due to their simplicity and intuitive visualization characteristics, in 
order to learn and recognize useful feature information in datasets 
more effectively and perform classification tasks (33). In summary, 
CAM not only simplifies the model training process, but also 
enhances the understanding of model behavior, making it an 
indispensable part of modern computer vision research. As a 
simple yet powerful tool, it provides higher interpretability and 
practicality for deep learning models, promoting their widespread 
application in multiple fields. In this study, after continuous 
training and updating of feature weights, the model can be 
created into a heatmap by CAM to demonstrate the effectiveness 
of the prediction results. 

3.3.5 CLGB-Net construction 
CLGB-Net is based on the PyTorch framework and fully utilizes 

the deep feature extraction capability of ResNet-50, the global 
context modeling capability of Swin Transformer, the multi-scale 
feature fusion capability of FPN, and the interpretability of CAM to 
achieve accurate diagnosis of breast lesion images. Figure 5 
illustrates the technical circuit diagram of CLGB-Net. 

The training process of CLGB-Net is divided into three 
sequential stages. The first stage is local feature extraction and 
CAM weight generation. Input processing: Mammography images 
are fed into ResNet-50 to extract hierarchical local features. CAM 
Activation: A CAM weight matrix is generated from the last 
convolutional layer of ResNet-50 to highlight areas of the image 
that are critical for classification. The second stage is FPN-based 
multi-scale feature fusion. The local features extracted by ResNet-50 
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will generate a multi-scale feature map through the FPN. These 
feature maps encode lesion details at different resolutions, enabling 
simultaneous detection of small lesions and large lesion areas. The 
third stage is global-local feature alignment and optimization. In 
order to solve the problem of alignment between FPN multi-scale 
features and Transformer feature maps, three optimization methods 
were constructed for CLGB-Net. 

The first method is multi-scale resolution matching, which 
performs bilinear interpolation on the pyramid features output by 
FPN to achieve the same resolution as the high-level features of 
Swin Transformer, with the aim of eliminating scale differences. 
The second method is attention screening and dynamic fusion, 
using channel attention module (SE Block) to screen key scale 
information, dynamically allocating fusion weights of FPN and 
Transformer features through learnable parameters, and optimizing 
feature contributions at different lesion scales. The third method is 
the degree balancing strategy, which applies weak gradient weights 
to the shallow high-resolution features of FPN, suppresses local 
noise interference, and enhances the learning of deep semantic 
features. The above strategy effectively solves the representation 
differences and computational conflicts between multimodal 
architectures through feature adaptation, dynamic fusion, and 
computational optimization, achieving efficient collaborative 
modeling of local-global features. 

Secondly, after global average pooling, the features are weighted 
with the weights calculated by CAM, and upsampling is used to 
make the feature maps consistent in size. Then, the weighted feature 
map is convolved by 1 × 1 to adjust the number of channels, and 
input into Swin Transformer to extract global contextual 
information. In order to better integrate the sequence feature 
processing of ResNet-50 with Swin Transformer’s block based 
self-attention mechanism in the CLGB-Net model, feature 
dimension alignment, block-based feature recombination, and 
cross modal attention guidance have been added for processing. 
Among them, the number of channels output by ResNet-50 is 
adjusted through a 1 × 1 convolutional layer to align with the 
FIGURE 5 

CLGB-Net technology roadmap. 
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embedding dimension of Swin Transformer, achieving dimension 
alignment. Subsequently, the 2D feature map of ResNet-50 was 
divided into non overlapping windows and transformed into 
serialized block features through linear projection as input to 
Swin Transformer, achieving a smooth connection between 
convolutional features and self-attention mechanism. Finally, 
residual connections are introduced in Swin Transformer to 
preserve local details, and cross attention mechanism is utilized to 
dynamically fuse global context and local features, enhancing their 
collaborative expression ability. Finally, the extracted local features, 
pyramid features, and global features are concatenated together to 
form a comprehensive feature vector for classifying benign, 
malignant, and normal lesions. 

This study proposes a CLGB-Net architecture based on multi 
model fusion for the task of identifying breast lesions. A systematic 
strategy is adopted to address the issue of overfitting that may occur 
in the model. Firstly, at the model design level, CLGB-Net integrates 
ResNet-50, Swin Transformer, FPN, and CAM modules to 
construct a joint framework for multi-scale feature extraction and 
interpretability modeling. FPN achieves progressive fusion of cross 
level features, while CAM highlights key areas by generating heat 
maps, and the two work together to reduce redundant parameters 
and enhance the ability to distinguish subtle lesions. Secondly, at the 
training strategy level, the Cross Entropy Loss function is used to 
quantify the difference between the predicted and true labels, and 
combined with the stochastic gradient descent (SGD) optimizer for 
parameter updates. Hyperparameters refer to the parameters that 
need to be set before model training, which can control the process 
and structure of model training. Choosing the optimal 
hyperparameters plays an important role in improving the 
segmentation and classification efficiency of the model. 

In order to achieve efficient collaborative modeling of local and 
global features and improve model generalization ability, this study 
sets the initial learning rate of the model to 0.001, ensuring the 
stability of parameter updates through a low initial learning rate, 
while using a periodic restart mechanism to avoid local minima. 
And dynamically adjust the learning rate through a cosine 
annealing learning rate scheduler to balance convergence speed 
and stability. The batch size is set to 64, which follows the 
theoretical framework of Mini batch stochastic gradient descent 
(Mini-batch SGD) and optimizes by balancing gradient noise 
suppression and memory utilization efficiency. Larger batches can 
reduce parameter update variance to stabilize convergence 
trajectories and avoid hardware memory overload caused by 
extreme batches. In addition, by combining the cross-entropy loss 
function with weight decay (L2 regularization), the parameter space 
is constrained to be complex. Finally, the necessity of each module 
was verified through ablation experiments, and the results showed 
that the fusion strategy significantly improved the classification 
accuracy and generalization performance of the model. The entire 
training process is implemented based on the PyTorch framework, 
ensuring efficiency and scalability. Through comparison, it was 
found that the CLGB-Net model, due to the introduction of Swin 
Transformer and FPN, compensates for the shortcomings of 
ResNet-50 in global context modeling and multi-scale feature 
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fusion, and improves the model’s ability to capture complex 
lesion features. CLGB-Net combines ResNet-50’s local feature 
extraction with FPN’s multi-scale feature fusion, enhancing the 
model’s sensitivity to detailed information. By integrating ResNet­
50 and Swin Transformer, the collaborative expression of local and 
global features has been further optimized. In summary, the CLGB-
Net proposed in this study not only retains the interpretability 
guided by CAM heat maps, but also significantly improves 
classification accuracy and robustness through multi module 
fusion, making it more practical in the diagnosis of breast lesions. 

4 Results and analysis 

4.1 Evaluating indicator 

This experiment studied the confusion matrix of three 
categories and four performance indicators for each category to 
evaluate the performance of CLGB-Net, including accuracy, 
precision, recall, and F1-score. True Positive (TP) represents the 
number of samples correctly predicted as positive by the model, 
True Negative (TN) represents the number of samples correctly 
predicted as negative by the model, False Positive (FP) refers to the 
number of samples incorrectly predicted as positive by the model, 
and False Negative (FN) represents the number of samples 
incorrectly predicted as negative by the model. This study used 
the confusion matrix metrics in Figure 6. Overall, although the 
model can accurately distinguish these three categories in most 
cases, there is still room for improvement to reduce misjudgment 
rates and improve the overall recognition accuracy of the model. 

t is the predicted category, and the performance indicators of 
Accuracy, Precision, Recall, and F1-score are defined in the 
Equations 8–11: 

Acct ¼ ðTPt þ TNt Þ = ðTPt þ FPt þ TNt + FNt Þ (8) 

Pret = TPt =(TPt + FPt ) (9) 

Rect = TPt =(TPt + FNt ) (10) 

F1 − scoret = 2  � (Pret + Rect )=(Pret � Rect ) (11) 

The accuracy of the CLGB-Net model in this study is 0.904, the 
precision is 0.900, the recall is 0.935, and the F1-score is 0.900 
(Figures 7, 8). 
4.2 Receiver operating characteristic 
analysis 

In order to further evaluate the discriminative capacity of 
CLGB-Net across different lesion categories, a multi-class ROC 
analysis was performed, as illustrated in Figure 9, the macro-average 
AUC (Area Under the Curve) reached 0.92, demonstrating the 
model’s robust ability to distinguish between normal, benign, and 
malignant cases at varying classification thresholds. Class-specific 
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analysis revealed distinct AUC values: 0.98 for malignant lesions 
(Class 2), 0.91 for benign lesions (Class 1), and 0.87 for normal cases 
(Class 0). 

The exceptionally high AUC for malignant lesions (0.98) 
underscores the model’s precision in identifying critical 
pathological features such as spiculated margins and clustered 
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microcalcifications, which are strongly associated with 
malignancy. The relatively lower AUC for normal cases (0.87) 
may stem from inherent challenges in distinguishing subtle 
anatomical variations from early-stage abnormalities, particularly 
in dense breast tissue. Notably, the hierarchical performance 
(malignant  > benign > normal)  reflects the model’s clinical
FIGURE 7 

Accuracy of CLGB-Net model. 
FIGURE 6 

Confusion Matrix. 
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prioritization of minimizing false negatives in high-risk categories 
—a critical requirement for early cancer screening systems. 

The ROC curves exhibit steep ascents in the low false-positive 
rate region (<0.2), indicating strong specificity at clinically relevant 
thresholds. This property ensures reduced unnecessary recalls while 
maintaining high sensitivity. These results corroborate the ablation 
experiments and statistical analyses, collectively affirming CLGB-
Net’s superiority in balancing sensitivity and specificity across 
heterogeneous lesion types. 
4.3 Statistical analysis and hypothesis 
testing 

To rigorously evaluate the robustness and validity of the CLGB-
Net model, a comprehensive statistical analysis was conducted. The 
Shapiro-Wilk test was first applied to assess the normality of data 
distributions across all groups. Results indicated that the p-values 
for all groups exceeded 0.05 (p>0.05), confirming the assumption of 
normality. Subsequently, the Levene test was employed to examine 
homogeneity of variances among groups. The analysis revealed 
significant heterogeneity in variances (F=4.32, p=0.012), suggesting 
the necessity of non-parametric methods for further comparisons. 

Given the non-normality and heteroscedasticity observed, the 
Kruskal-Wallis H test, a non-parametric alternative to one-way 
ANOVA, was utilized for multi-group comparisons. A statistically 
significant difference was detected among the groups (H=36.72, 
p<0.001). Post-hoc Dunn’s tests with Bonferroni adjustment were 
then performed to identify specific pairwise differences. The results 
demonstrated significant distinctions between the proposed CLGB-
Net and baseline models: CLGB-Net vs. ResNet-50+ CAM: Z=5.12, 
p<0.001; CLGB-Net vs. ResNet-50+ FPN: Z=4.89, p<0.001; CLGB-
Net vs. ResNet-50+ CAM+ FPN: Z=4.05, p<0.001. 
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To quantify the magnitude of these differences, Cohen’s d effect 
sizes were calculated, revealing large effects across all comparisons: 
CLGB-Net vs. ResNet-50+ CAM: d=20.8; CLGB-Net vs. ResNet-50 
+ FPN: d=18.9; CLGB-Net vs. ResNet-50+ CAM+ FPN: d=12.7. 

These results underscore the superior discriminative power of 
CLGB-Net compared to existing architectures, with both statistical 
significance (p<0.001) and substantial practical relevance (large 
effect sizes). The integration of ResNet-50, Swin Transformer, 
FPN, and CAM not only enhances feature representation but also 
ensures robustness against data variability, as evidenced by the 
rigorous hypothesis testing framework. This statistical validation 
aligns with the model’s empirical performance metrics, reinforcing 
its clinical applicability in breast cancer diagnosis. 
4.4 Ablation experiment 

This study validated the synergistic effect of each module in 
CLGB-Net and its contribution to model performance through 
systematic ablation experiments (Table 1; Figure 10). The 
experiment used ResNet-50 as the baseline architecture, gradually 
introducing CAM, FPN, and Swin Transformer, and combined with 
quantitative analysis to reveal the functional characteristics of 
different modules. 

Firstly, ResNet-50 serves as a fundamental feature extraction 
network that captures local detailed features of breast lesions 
through residual structures, such as the microstructure of 
calcifications and the texture of tumor edges. When combined 
with the CAM module, its accuracy reaches 77.32%, indicating that 
refined extraction of local features plays a decisive role in 
classification tasks. However, relying solely on local features is 
susceptible to interference from lesion morphological variations 
and lacks perception of multi-scale contextual information, such as 
FIGURE 8 

Evaluation indicators for different detection algorithms. 
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the hierarchical association between small calcification clusters and 
surrounding tissues, resulting in insufficient sensitivity to complex 
lesions. This deficiency is partially alleviated through the multi-scale 
feature fusion of FPN, but the lack of global spatial modeling still 
limits performance. Comprehensive optimization can be achieved 
by adding Swin Transformer’s global attention mechanism. 

Secondly, after the fusion of ResNet-50 and FPN module, the 
model enhances the sensitivity of detecting small lesions by cross level 
fusion of high-resolution shallow features and deep semantic features, 
with an accuracy increase of 1.94% to 79.26%, verifying the 
effectiveness of multi-scale feature fusion for complex lesion detection. 

Subsequently, adding CAM and FPN simultaneously to ResNet­
50 further improved accuracy by 3.17%, achieving an accuracy of 
82.43%. Although this combination achieves collaborative 
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optimization of local regional features through the lesion focusing 
ability of CAM and the multi-scale perception advantage of FPN, its 
feature interaction is still limited to the local receptive field of 
convolution operation, which cannot effectively capture the 
symmetrical features of bilateral mammary glands and the cross 
regional distribution pattern of diffuse calcification clusters. This 
limitation was eventually overcome by introducing Swin 
Transformer’s long-range dependency modeling. 

Finally, the introduction of Swin Transformer further achieved 
complementary modeling of global and local features: after 
constructing a complete CLGB-Net architecture based on ResNet­
50+CAM+FPN, the accuracy of the model increased by 7.97%, 
jumping to 90.4%. Its hierarchical window self-attention 
mechanism effectively captures the distribution patterns of diffuse 
lesions and bilateral breast symmetry features by establishing long-
range dependencies. 

The experimental results show that CLGB-Net integrates the 
local representation ability of ResNet-50 with the global modeling 
advantage of Swin Transformer through heterogeneous 
architecture, combined with the multi-scale adaptive detection 
ability of FPN and the lesion localization enhancement effect of 
CAM, ultimately achieving an accuracy of 90.4% on the test set, 
verifying the effectiveness of CLGB-Net in mammography 
image analysis. 
TABLE 1 Evaluation of recognition accuracy by different modules of 
CLGB-Net. 

Model Accuracy (%) 

ResNet-50+CAM 77.32 

ResNet-50+FPN 79.26 

ResNet-50+CAM+FPN 82.43 

CLGB-Net 90.4 
FIGURE 9 

Multi-class ROC curves for CLGB-Net. 
frontiersin.org 

https://doi.org/10.3389/fonc.2025.1600057
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2025.1600057 
4.5 Comparative experiment 

In order to further explore the superiority of the CLGB-Net 
model, this study compared its performance in breast mass 
classification with several advanced object detection algorithms, 
including ResNet-50 (12), ResNet-101 (34), Vit Transformer (35) 
and Swin Transformer (11), through comparative experiments. The 
experimental results (Table 2, Figure 8) show that CLGB-Net 
performs well in the three key evaluation indicators of precision, 
recall, and F1-score, which are 0.900, 0.935, and 0.900, respectively, 
significantly better than other benchmark models. The three 
indicators of ResNet-50 are 0.718, 0.700, and 0.709, respectively. 
Even Swin Transformer, which has similar performance, only has 
three indicators of 0.879, 0.862, and 0.870. 

In addition, we compared the results of this experiment with 
experiments that utilized other public datasets. Based on the BUSI 
breast ultrasound image dataset (780 images, including 133 normal, 
437 malignant and 210 benign images), Ben (36) et al. proposed an 
improved ResNet-50 model combining transfer learning and data 
augmentation to achieve accurate classification of breast cancer. 
The experimental results show that the model achieves an accuracy 
of 93.65%, a specificity of 97.22% under the cross-entropy loss 
function, and an AUC value of 0.905. Compared with CLGB-Net, 
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the improved ResNet-50 model achieved higher accuracy (93.65%), 
but its sensitivity (83.33%) was low, and the AUC value (0.905) was 
also slightly low. Although the improved ResNet-50 model 
performed well in specificity (97.22%), CLGB-Net had more 
prominent  advantages  in  comprehensive  classification  
performance (AUC), especially in the stability of large-scale 
clinical data, which was more in line with the actual screening 
needs. Ahmed (37) et al. used a publicly available breast ultrasound 
dataset B (containing 163 images, 53 malignant and 110 benign 
images) to propose two hybrid U-Net models: VGG-Unet and MB-

Unet, to optimize the semantic segmentation of breast ultrasound 
images through transfer learning. The experimental results show 
that VGG-Unet is better than traditional U-Net and other deep 
learning models (such as ResNet-50 and DenseNet-161) in terms of 
accuracy (0.9384) and recall rate (0.7751), and the quantitative 
indicators are more than 80%, indicating its high effectiveness in 
distinguishing normal breast tissue from tumor area. Although MB-

Unet has slightly lower performance, it is more suitable for 
resource-constrained scenarios due to its lightweight design. The 
CLGB-Net proposed in this paper achieves an accuracy of 90.4% in 
the classification task, and the recall rate of the classification task 
(0.935) is significantly higher than that of the VGG-Unet 
segmentation task (0.7751). 

The excellent performance of CLGB-Net is attributed to its 
fusion of ResNet-50 and Swin Transformer, which can better 
capture local details and global contextual information, thereby 
extracting richer classification features and greatly improving 
recognition accuracy. However, Figure 6 also reveals limitations 
of CLGB-Net in certain specific situations, particularly in the 
boundary region between benign and malignant lesions where 
classification errors may occur. Nevertheless, the overall 
performance of CLGB-Net still demonstrates significant 
advantages in breast lesion classification tasks and provides a 
solid foundation for further optimization. Future research can 
focus on improving the performance of models in complex 
TABLE 2 Evaluation indicators for different detection algorithms. 

Model Precision Recall F1-score 

ResNet-50 0.718 0.700 0.709 

ResNet-101 0.862 0.817 0.867 

Vit Transformer 0.877 0.858 0.867 

Swin 
Transformer 

0.879 0.862 0.870 

CLGB-Net 0.900 0.935 0.900 
FIGURE 10 

Evaluation of recognition accuracy by different modules of CLGB-Net. 
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boundary cases to further enhance their overall performance 
and reliability. 
5 Discussion 

Breast cancer is a serious threat to women’s health. Without 
early diagnosis and intervention, breast cancer can rapidly progress 
and metastasize, significantly increasing the complexity and 
difficulty of treatment, and seriously affecting the survival rate 
and quality of life of patients. With the advancement of digital 
technology, mammography has transformed from traditional 
analog film systems to fully digital imaging systems, and CAD 
technology has also emerged (7). For all that, the diagnostic results 
of DM imaging still largely depend on the experience level of 
radiologists, which not only increases the possibility of missed 
diagnosis and misdiagnosis, but also may lead to unnecessary 
biopsies or additional imaging examinations for patients, thereby 
increasing their economic burden and psychological pressure. In 
order to overcome the above problems, this study proposes a new 
breast X-ray image lesion diagnosis method —CLGB-Net. This 
recognition model combines ResNet-50 and Swin Transformer 
networks and adds FPN and CAM modules, aiming to predict 
benign, malignant, and normal lesions in mammography images. 

Previous studies have shown that methods such as ResNet-50, 
Swin Transformer, CAM, and FPN perform well in medical image 
analysis. Alavikunhu (24) et al. achieved an accuracy of 96.2% and 
an F1-score of 95.8% on a publicly available dataset of skin diseases 
using the concatenated model of ResNet-50 and Xception, 
Concatenated Xception-ResNet-50. In contrast, a single Xception 
model has an accuracy of 93.5% and an F1-score of 93.1%, while the 
ResNet-50 model has an accuracy of 92.8% and an F1-score of 
92.4%. These results show that the hybrid model is significantly 
better than the single model, and effectively improves the accuracy 
and reliability of skin cancer prediction. This combination method 
combines the advantages of ResNet-50 and Xception, fully 
leveraging ResNet-50’s ability to capture deep features and 
understand complex patterns, as well as Xception’s expertise in 
extracting subtle features and analyzing skin lesions in detail. 
Concatenated Xception-ResNet-50 is therefore able to recognize a 
wider range of feature information and learn at multiple levels of 
abstraction, significantly improving the overall performance and 
robustness of the model. It is of great significance for improving the 
success rate of early detection of skin cancer and reducing 
misdiagnosis. Enhanced the learning ability of lesion features, 
thereby improving the accuracy of diagnosis. Ahmed (11) et al. 
used multimodal breast cancer image data and the Swin 
Transformer based BTS-ST network to achieve 97.2% accuracy 
and 96.8% F1-score on the public dataset. The accuracy of BTS-ST 
is 2.7% and 4% higher than U-Net and ResNet-50, respectively, and 
its F1-score is 2.9% and 4.1% higher than U-Net and ResNet-50, 
respectively. This study utilizes multimodal data such as ultrasound, 
MRI, and mammography to improve the segmentation and 
classification accuracy of lesion areas by integrating unique 
information from multiple imaging modalities. The combination 
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of BTS-ST network and Swin Transformer’s multi-scale feature 
extraction capability overcomes the limitations of traditional single-
mode models in expressing complex lesion features, enhances the 
robustness and generalization performance of the model, 
significantly improves accuracy and F1-score, and reduces the risk 
of misdiagnosis and missed diagnosis. Therefore, this research 
provides a new idea for the combination of Swin Transformer 
and ResNet-50 models in this study, by integrating the advantages 
of Swin Transformer’s global context modeling ability and ResNet­
50’s deep feature extraction ability, to achieve higher accuracy and 
stronger generalization ability. This combination not only makes up 
for the shortcomings of the single model in feature expression, but 
also enhances the model’s ability to capture the features of complex 
lesions, improving the overall performance. 

Lei (38) et al. proposed a method that combines Soft Activation 
Mapping (SAM) and High-level Enhancement Soft Activation 
Mapping (HESAM) for lung nodule classification in lung CT 
images on the LIDC-IDRI dataset. The research results showed 
that the AUC of HESAM method in pulmonary nodule 
classification task reached 0.94, significantly higher than Mask-

RCNN’s 0.88, demonstrating its significant advantage in improving 
the accuracy of pulmonary nodule classification. Especially when 
dealing with small-sized and boundary blurred nodules, it performs 
better, demonstrating its high efficiency and superior performance 
in low-dose CT image lung nodule classification. The advantage of 
utilizing CAM in this study is to enhance the interpretability of the 
model and improve classification accuracy by generating heatmap 
visualization models that focus on the image regions. Especially in 
low-dose CT images, CAM can accurately locate and identify key 
features of lung nodules, such as shape and edges, thereby more 
accurately distinguishing malignant nodules, improving the 
transparency of the model and the reliability of clinical applications. 

In addition, Blanca (39) et al. used SOLOv2 method in 
combination with ResNet-50 and FPN to accurately classify 23 
immunohistochemical (IHC) whole section images (WSI) of breast 
cancer surgical specimens. In membrane marker segmentation 
tasks, the performance of Mask RCNN lags behind that of 
SOLOv2, especially when mAPIoU=0.75. SOLOv2 achieves an 
accuracy of 0.26, while Mask-RCNN only achieves 0.14, showing 
a significant performance gap. These results indicate that although 
Mask-RCNN performs well in certain low threshold situations, 
overall SOLOv2 has significant advantages in cell segmentation 
tasks in complex image data. The advantage of combining ResNet­
50 and FPN is that FPN provides multi-scale feature extraction, 
enhancing the detection ability of targets of different sizes, while 
ResNet-50 strengthens basic feature extraction, improving the 
accuracy of capturing subtle structures. The above combination 
performs well in complex image data, especially maintaining high 
accuracy under high IoU thresholds, significantly improving the 
accuracy and reliability of cell instance segmentation tasks. 

In summary, the CLGB-Net model used in this study integrates 
ResNet-50, Swin Transformer, CAM, and FPN modules, which has 
the advantage of capturing subtle features and understanding global 
contextual information. This combination not only enhances the 
expressive power of the model, but also increases its potential for 
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application in complex medical image analysis. The synergies of 
multi-module integration are as follows: The convergence of 
ResNet-50 and Swin Transformer solves the limitations of stand­
alone models. The local feature extraction of ResNet-50 
compensates for the insensitivity of the Swin Transformer to fine 
textures such as microcalcifications. Swin Transformer’s global 
context modeling mitigates ResNet-50’s blindness to long-
distance dependencies (such as bilateral lesion symmetry). The 
robustness of FPN and CAM is further enhanced by adaptively 
fusing multi-scale features and highlighting critical areas of the 
lesion, respectively. This collaborative design is key to achieving 
high accuracy (90.4%) while reducing false positives. In addition, in 
order to increase the diversity of training samples and reduce the 
risk of overfitting, this study implemented systematic data 
augmentation and preprocessing steps. These measures 
significantly increase the effective sample size of the training set, 
ensuring stability and robustness during the model training process. 
The optimized hyperparameter settings and efficient optimization 
algorithms such as stochastic gradient descent and cosine annealing 
learning rate scheduler further ensure the efficiency and stability of 
the model training process. Although CLGB-Net currently focuses 
on early screening for breast cancer, its modular design (such as the 
multi-scale feature fusion capabilities of Swin Transformer and 
FPN) provides a theoretical basis for expansion to other cancers, 
like lung cancer and gastric cancer. For instance, the global context 
modeling ability of Swin Transformer and the multi-scale feature 
extraction of FPN have shown advantages in various visual tasks. 
However, specific imaging features for different cancers (such as 
lung nodules or gastric ulcers in CT images) require adaptive 
training and parameter adjustment of the model. Future research 
will explore the feasibility of the CLGB-Net framework in cross-
disease applications and validate its performance in lung and gastric 
cancer screening. 

In the rapidly developing field of medical image analysis, the 
application of deep learning models has shown great potential. 
Especially in the early screening and diagnosis of breast cancer, 
accurate automated tools can significantly improve the efficiency 
and accuracy of diagnosis. However, many existing methods still face 
problems such as data scarcity, high model complexity, and 
insufficient generalization ability. Therefore, it is particularly 
important to develop a model that can be efficiently trained, 
validated, and tested on large-scale datasets. Looking ahead to the 
future, this research field presents enormous potential and 
opportunities. The current research has not only achieved 
significant achievements, but also pointed out the direction for 
future development. In order to further improve the performance 
and generalization ability of the model, future explorations will focus 
on training, validating, and testing on larger datasets, which will help 
to more comprehensively evaluate the robustness of the model and 
promote its expansion in application scope. In addition, in response 
to the high complexity of existing methods, future research and 
development efforts will focus on simplifying the model structure to 
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shorten training time and reduce computational costs, thereby 
enhancing the practical clinical application value of the model. For 
example, optimizing the design of advanced architectures such as 
CLGB-Net while maintaining performance to make them more 
efficient and easier to deploy. 

Although CLGB-Net demonstrates a high overall accuracy in 
mammography image classification, this study still faces the 
potential risk of data bias, and the misclassification between 
benign and malignant lesions remains a significant challenge for 
the model. Firstly, the data source has limitations. The dataset 
comes solely from a medical institution in Anhui Province, China, 
predominantly consisting of samples from the Asian population, 
which may introduce bias in racial distribution and affect the 
model’s generalization ability to other populations. Additionally, 
the average  age of  malignant  cases (55.68 ± 10.54 years)  is
significantly higher than that of the benign group (48.18 ± 9.69 
years), and this age difference could lead to biases in biological 
features or imaging performance. For instance, older patients may 
have denser breast tissue and lower visibility of lesions, while early 
malignant lesions in younger patients may resemble benign lesions, 
increasing the difficulty of recognition by the model. Secondly, the 
complexity of image features further exacerbates classification 
difficulties. For example, microcalcifications in benign lesions may 
have a morphological and distribution density highly similar to 
malignant calcifications; unclear-bordered lesions (such as cysts or 
poorly differentiated tumors) are also likely to be misclassified in 
low-resolution or inadequately compressed images. Moreover, the 
model structure itself has certain limitations. Although CLGB-Net 
integrates the local feature extraction capabilities of ResNet-50 and 
the global contextual modeling advantages of the Swin 
Transformer, it struggles to effectively consolidate long-range 
dependencies in complex boundary areas (such as bilaterally 
symmetric  lesions or diffuse  calcification clusters) due to the 
window attention mechanism of the Swin Transformer, resulting 
in the loss of local detail information that affects the final judgment. 

In order to address these issues, future research should take a 
multi-faceted approach to systematically enhance model 
performance and clinical applicability. On one hand, it is 
necessary to introduce multi-center and multi-ethnic data 
resources to improve the model’s fairness and generalization 
ability by expanding sample size and enhancing data diversity, 
and to evaluate performance differences in various demographic 
subgroups through stratified analysis, ensuring the universality of 
medical CAD systems across different populations. On the other 
hand, at the model architecture level, exploring more efficient 
hybrid network structures, such as deeply integrating the Swin 
Transformer with attention mechanisms to enhance modeling 
capability for context dependence in ambiguous regions, could be 
beneficial. Furthermore, optimizing the existing structure to 
improve detection sensitivity in complex scenarios such as low 
contrast and small lesions is also necessary. In summary, there 
remains vast room for improvement and endless potential to be 
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explored in areas such as model complexity, generalization ability, 
and clinical application potential. 
6 Conclusion 

The CLGB-Net model proposed in this study introduces a novel 
heterogeneous deep learning architecture. This architecture integrates 
the local feature extraction capability of ResNet-50 with the global 
context modeling advantages of Swin Transformer, so as to overcome 
the problem of low sensitivity of traditional methods to 
microcalcifications and diffuse lesions in mammography analysis. 
Through the integration of FPN and CAM, the dynamic fusion of 
multi-scale features and the enhancement of target attention to key 
areas are realized. In addition, CLGB-Net abandons the dependence 
on traditional manual annotation, and reduces the computational cost 
while ensuring performance through pseudo-label iterative training 
and dynamic gradient equalization strategy, which provides feasibility 
for large-scale clinical deployment. By employing a two-step 
integration strategy (AI-based initial screening by radiologists), the 
model is embedded in the existing DM process in the form of a parallel 
CAD system. This strategy automatically generates structured reports 
within 5–10 seconds of mammogram acquisition, helping radiologists 
prioritize high-risk cases while reducing duplication of reviews of low-
risk cases without compromising diagnostic accuracy. 

Experimental results show that the accuracy of the model on the 
test set reaches 90.4%, and it has excellent specific classification ability 
(with a precision of 0.900), which significantly reduces the probability 
of misdiagnosis of benign cases as malignant tumors, effectively avoids 
repeated radiation exposure, and provides a reliable automated CAD 
solution with high precision and low misdiagnosis rate for breast 
cancer diagnosis. The high specificity of this model directly addresses 
the challenge of clinical overdiagnosis. With the help of the heat map 
generated by CAM, CLGB-Net can distinguish subtle features more 
accurately than existing methods, and its F1-score is 0.191 higher than 
that of ResNet-50 and 0.030 higher than that of Swin Transformer, 
thereby significantly reducing the false positive rate. In simulated 
clinical scenarios, the model can reduce unnecessary biopsies by 20– 
30% compared to traditional CAD systems, significantly improving 
patient outcomes and medical resource efficiency. 

It is worth mentioning that at the technical level, the lightweight 
design of CLGB-Net ensures that it is suitable for use in primary 
care settings. Combined with the “Internet Healthcare” cloud-based 
AI screening platform, the model can realize real-time collaboration 
between grassroots doctors and tertiary hospitals, and optimize the 
triage and follow-up process. This collaborative deployment model 
of edge computing and cloud platform not only improves 
accessibility, but also meets the clinical needs of decentralized and 
low-cost diagnostic solutions. This model of “AI pre-screening­
manual review” is conducive to the sinking of high-quality medical 
resources and effectively promotes the implementation of 
hierarchical diagnosis and treatment. In the future, prospective 
clinical trials are planned to evaluate the performance of the system 
in a real-world clinical setting, including its impact on physician 
productivity and integration with existing healthcare systems. 
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Future research will further optimize the lightweight design of 
the model, explore the joint diagnostic system of multimodal data 
(such as ultrasound, MRI), and verify its broad applicability 
through prospective clinical trials covering multiple countries and 
ethnicities. CLGB-Net not only provides a high-precision and low-
cost solution for breast cancer computer-aided diagnosis system, 
but also opens up a new technical path for intelligent analysis of 
medical images, which has important practical significance for the 
optimization of the global breast cancer early screening system. 
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