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prediction of endometrial cancer 
using multimodal ultrasound 
imaging: a multicenter study 
Cuiyan Lin1†, Wanming Chen1†, Jichuang Lai1, Jieyi Huang2, 

3*Xiaolu Ye3, Sijia Chen1, Xinmin Guo1* and Yichun Yang 
1Department of Ultrasound, Guangzhou Red Cross Hospital, Guangzhou, Guangdong, China, 
2Department of Ultrasound, The First Clinical Medical College of Guangzhou University of Chinese 
Medicine, Guangzhou, Guangdong, China, 3The First Clinical Medical College of Guangzhou 
University of Chinese Medicine, Guangzhou, China 
Background: Endometrial cancer (EC) is one of the most prevalent malignancies 
affecting the female reproductive system. It poses significant health risks to 
women and imposes a substantial economic burden on healthcare systems. Early 
and accurate diagnosis is critical for improving patient outcomes. While 
traditional diagnostic methods rely on clinical evaluation and imaging, there is 
growing interest in leveraging artificial intelligence, particularly deep learning 
(DL), to enhance diagnostic accuracy. 

Methods: This study developed a DL-based predictive model integrating 
multimodal ultrasound features and clinical risk factors to improve early EC 
diagnosis. A retrospective, multicenter analysis was conducted using 1,443 
multimodal ultrasound images—including two-dimensional (2D) and color 
Doppler images—from 611 patients, of whom 132 were diagnosed with EC and 
479 were non-EC cases. Clinical risk factors such as body mass index (BMI), 
menopausal status, irregular vaginal bleeding, and hypertension were identified 
as significant predictors (P < 0.05) and incorporated into a clinical model. 
Separate DL models were trained on 2D and color Doppler ultrasound images, 
and their performance was evaluated individually and in combination with the 
clinical model. 

Results: The area under the receiver operating characteristic curve (AUC) for the 
clinical model was 0.772 (95% CI: 0.690–0.854). The 2D and color Doppler DL 
models achieved AUCs of 0.792 (95% CI: 0.719–0.864) and 0.813 (95% CI: 
0.745–0.881), respectively. When combined with the clinical model, the 
merged model demonstrated superior predictive performance. In the external 
validation cohort, the merged model achieved an AUC of 0.892 (95% CI: 0.846– 
0.938), indicating high diagnostic accuracy. 
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Conclusions: The integration of multimodal ultrasound imaging and clinical risk 
factors using DL significantly enhances the accuracy of endometrial cancer 
diagnosis. The merged model demonstrated strong generalizability in external 
validation, underscoring its potential clinical utility. Future studies should focus 
on larger, prospective multicenter trials to further validate these findings and 
explore the implementation of this approach in personalized patient care. 
KEYWORDS 

endometrial cancer, predictive model, ultrasound imaging, clinical risk factors, 
deep learning 
Introduction 

Endometrial cancer (EC) is the sixth most common cancer 
among women, with an estimated 420,242 new cases diagnosed 
globally in 2022 (1). The incidence of EC is increasing annually, 
with approximately 142,000 new cases reported each year 
worldwide (2), and a growing trend toward younger onset. EC 
often develops insidiously, and by the time clinical symptoms 
manifest, the disease has often progressed to an advanced stage, 
leading to poorer prognoses. In particular, the serous subtype of EC 
accounts for nearly 40% of EC-related deaths, highlighting the 
urgent need for improved early detection strategies (3). 

Transvaginal ultrasound (TVUS) is widely used as a first-line 
screening method due to its non-invasive, real-time, rapid, and 
cost-effective nature. In postmenopausal women, an endometrial 
thickness threshold of 5 mm has been shown to provide high 
sensitivity for EC detection. However, its specificity remains low at 
51.5%, necessitating additional diagnostic procedures for most 
women to confirm or rule out EC (4, 5). Furthermore, advanced 
modalities such as three-dimensional (3D) ultrasound, often 
utilizing 3D Doppler indices, have also become integral to routine 
gynecological practice (6, 7). In premenopausal women, 
physiological fluctuations in endometrial thickness further reduce 
specificity, leading to diagnostic challenges. Alternative diagnostic 
methods, such as hysteroscopy, are often limited by their invasive 
nature, associated surgical risks, and can cause significant 
discomfort or severe pain, which may also be accompanied by 
challenges in obtaining adequate or representative tissue samples. 
While magnetic resonance imaging (MRI) is effective for 
preoperative assessment, it is neither cost-effective nor practical 
for routine EC screening. Computed tomography (CT) is primarily 
used for detecting metastases in the chest, abdomen, and pelvis but 
is associated with radiation exposure, making it unsuitable for 
screening purposes (8). These limitations underscore the urgent 
need for a novel, non-invasive screening method that allows for 
accurate early detection of EC (9). 

Recent advances in artificial intelligence (AI), particularly deep 
learning (DL) applications in medical imaging, offer promising 
opportunities to enhance ultrasound-based diagnostics. DL 
02 
algorithms, particularly convolutional neural networks (CNNs), 
leverage multi-layered artificial neural networks to automatically 
extract and learn hierarchical imaging features from large datasets. 
These algorithms excel at detecting subtle morphological and 
vascular patterns in tumor imaging, enabling precise lesion 
characterization. Previous studies have demonstrated that DL-
enhanced ultrasound imaging can outperform conventional 
diagnostic approaches (10). However, the integration of AI-driven 
imaging features with clinical risk factors remains underexplored 
(11–15). 

This study aims to address this gap by employing a multimodal, 
multicenter, retrospective design to integrate AI-driven ultrasound 
imaging with clinical indicators. By leveraging DL architectures, we 
seek to enhance early detection and risk stratification in EC, 
ultimately contributing to improved clinical outcomes. 
Methods 

Study design 

This multicenter, retrospective study was conducted between 
2022 and 2024 at two research centers: Center 1 (The First Affiliated 
Hospital of Guangzhou University of Chinese Medicine) and 
Center 2 (Guangzhou Red Cross Hospital). Center 1 contributed 
a total of 351 patients, including 81 EC cases and 270 non-EC cases, 
which were used as the training set. Center 2 provided a total of 260 
patients for external validation, comprising 51 EC cases and 209 
non-EC cases. Multimodal ultrasound images—including two-
dimensional and color Doppler images—as well as clinical data 
were collected from patients with pathologically confirmed EC. This 
study was conducted in accordance with the Declaration of 
Helsinki, and approved by the institutional review board (IRB). 
The requirement for informed consent was waived due to the 
retrospective nature. 

The inclusion criteria are as follows: (1) Patients who 
underwent endometrial aspiration biopsy, curettage, or 
hysterectomy with pathologically confirmed diagnoses between 
2022 and 2024. (2) Preoperative transvaginal color Doppler 
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ultrasound performed according to standardized protocols. 
Exclusion criteria are as follows: (1) Poor-quality ultrasound 
images or absence of preoperative transvaginal color Doppler 
ultrasound. (2) Incomplete clinical data. (3) History of prior 
radiotherapy, chemotherapy, or multiple endometrial surgeries. 
(4) Use of hormone therapy for endometrial hyperplasia or 
autoimmune diseases. (5) Diagnosis of cervical cancer or other 
malignancies. (6) Presence of intrauterine devices obstructing 
endometrial visualization. Figure 1 presents the flowchart of the 
study population selection. 

In the training set, 81 EC cases were included, with 127 two-
dimensional images and 138 color Doppler images, while 270 non-
EC cases contributed 299 two-dimensional images and 281 color 
Doppler images, resulting in a total of 845 images. For the external 
validation set, 51 EC cases were included, with 56 two-dimensional 
images and 73 color Doppler images, while 209 non-EC cases 
contributed 232 two-dimensional images and 237 color Doppler 
images, amounting to 598 images. Overall, the dataset comprised a 
total of 1,443 ultrasound images. 
 

Acquisition of ultrasound images 

Transvaginal ultrasound (TVU) examinations were performed 
by three experienced physicians using various scanner models, 
including GE Voluson E6, GE Voluson E8, GE Voluson E10, 
Hitachi Avius L, Philips EPIQ 5, and Toshiba Aplio500. All 
systems were equipped with high-frequency (5–14 MHz) 
transvaginal probes. The examining physicians possessed 
extensive experience (>15 years) in obstetric and gynecologic 
ultrasound and strictly adhered to standardized examination and 
measurement techniques as outlined in the IETA consensus 
statement (16). Standard two-dimensional TVU and color 
Frontiers in Oncology 03 
Doppler ultrasound images, specifically showing the uterine 
endometrium and any endometrial lesions, were acquired. 
Model development 

In this study, we developed DL models based on two imaging 
modalities: two-dimensional (2D) ultrasound and color doppler 
ultrasound. The training set included Research Center 1 (n=351; 
images=845), while Research Center 2 (n=260; images=598) was 
designated as the external validation set. We selected four distinct 
and well-established convolutional neural network (CNN) 
architectures: ResNet-50 (17), ResNet-152 (18), EfficientNet-B0 
(19), and DenseNet-201 (20). These architectures are known for 
their strong performance on natural image classification tasks. To 
expedite the training process, we employed transfer learning by 
freezing the pre-trained convolutional layers and only training the 
fully connected layers. Each architecture was trained separately on 
both imaging modalities. The model demonstrating the best 
performance, as validated by an external validation set, was then 
selected as the final DL model. 

Before training, preprocessing techniques such as image 
normalization,  resizing  (to  512×512  pixels),  and  data  
augmentation (including random vertical and horizontal flipping, 
rotation, grayscale transformation, and adjustments to brightness, 
contrast, saturation, and hue) were applied to reduce overfitting and 
enhance training performance. Each model was trained using five­
fold cross-validation, and hyperparameters such as batch size (16), 
learning rate (3e-5), and the number of epochs (200) were 
optimized. The Adam optimizer, with b1 of  0.9,  b2 of  0.999,
epsilon of 1e-8, and weight decay set to 0.01 for L2 regularization, 
was employed to prevent overfitting. Considering the EC-to-non-
EC ratio is significantly imbalanced, we employed a class-weighted 
FIGURE 1 

The flowchart of study population selection. 
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cross-entropy loss function. Specifically, a higher weight was 
assigned to the EC class. By increasing the cost of misclassifying 
an EC case, the loss function effectively forces the model to pay 
more attention to these rare but critical instances, thus improving 
its ability to correctly identify. After training, the model’s 
performance was evaluated on the external validation set using 
key metrics such as the area under the receiver operating 
characteristic curve (AUC), accuracy, sensitivity, specificity, and 
F1 score. The loss and accuracy curves for both imaging modalities 
are presented in Supplementary Figure S1. 
Image-level to patient-level conversion 

Since clinical diagnoses are typically made at the patient level, 
some patients in this study had multiple ultrasound images (ranging 
from 1 to 8 per patient), which could introduce bias. To mitigate 
this, we averaged the image-level risk scores to generate a patient-
level score, thereby reducing potential bias associated with multiple 
images per patient. 
Clinical risk factor screening and model 
development 

In addition to imaging data, we collected baseline clinical 
variables, including age, body mass index (BMI), history of 
gestation, menopausal status, presence of irregular vaginal 
bleeding, and history of hypertension, diabetes, hypothyroidism, 
and polycystic ovary syndrome (PCOS). Univariate logistic 
regression was performed to identify statistically significant 
clinical predictors (P < 0.05), which were then subjected to 
multivariate regression analysis. Variables that remained 
significant in the multivariate analysis were incorporated into the 
final clinical model for EC prediction. 
Combined model 

A combined model was developed by integrating the best-
performing CNNs models from the two-dimensional ultrasound 
and color Doppler modalities with the clinical prediction model. 
This hybrid approach aimed to enhance the accuracy and reliability 
of EC prediction. 
Statistical Analysis 

Statistical analysis was conducted using R software (version 
4.2.2, https://www.r-project.org/). For continuous variables, the 
Shapiro-Wilk test was used for assessing distribution. If the data 
followed a normal distribution, parametric tests were applied; 
otherwise, non-parametric tests were used. Categorical variables 
Frontiers in Oncology 04
were analyzed using the chi-square test or Fisher’s exact test (where 
applicable). Categorical and continuous variables were presented as 
frequencies (percentages), mean ± standard deviation, or median 
(interquartile range) as appropriate. Gradient-weighted Class 
Activation Mapping (Grad-CAM) is utilized for visualizing and 
understanding the decision-making process within DL. The 
SHapley Additive exPlanations (SHAP) method is employed to 
explain the influence and contribution of features on the fused 
model’s output. The construction, training, and validation of the 
deep convolutional neural network model were carried out using 
the PyTorch framework (version 1.13.0, https://pytorch.org/). 
Evaluation methods 

The diagnostic models were evaluated using a range of 
performance metrics, including the area under the AUC with its 
95% confidence interval, accuracy, sensitivity, specificity, and F1 
score. The Delong test was employed to compare the performance 
of different models and assess statistical significance. Model fitness 
was determined using the Hosmer-Lemeshow goodness-of-fit test 
and calibration curves. Additionally, decision curve analysis (DCA) 
was performed to evaluate the net clinical benefit of the predictive 
models. A nomogram was constructed to visualize the combined 
model. Furthermore, several ultrasound specialists were involved in 
assessing the clinical applicability and interpretability of the 
combined model in predicting EC. Figure 2 illustrates the 
workflow of the entire study. 
Results 

This study included 1,443 images obtained from 610 cases 
across two centers. The training set comprised 351 cases (81 cases 
of EC and 270 cases of non-EC), while the external validation set 
consisted of 260 cases (51 cases of EC and 209 cases of non-EC). 
Baseline data, including age, body mass index (BMI), gravidity, 
fertility, menopausal status, irregular vaginal bleeding, 
hypertension, diabetes, hypothyroidism, and polycystic ovary 
syndrome (PCOS) are presented in Table 1. Examples of TVU 
images are presented in Figures 3A, B. 
Clinical model construction 

Univariate and multivariate regression analyses were performed 
to identify statistically significant associations between various 
variables and the presence of EC. Odds ratios (OR) and 
corresponding p-values were calculated to assess the effects of 
these variables. Specifically, age, BMI, menopausal status, 
irregular vaginal bleeding, hypertension, and diabetes were 
statistically significant in the univariate analysis. In the 
multivariate analysis, BMI, menopausal status, irregular vaginal 
 frontiersin.or
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bleeding, and diabetes remained significant. These variables were 
subsequently selected as optimal features for constructing the 
clinical model (Table 2). 
The performance of image-level deep 
learning 

The predictive performance of the DL model was evaluated at 
the image-level using multimodal ultrasound. On the training set, 
the 2D ultrasound model (2D-DLS) achieved an area under the 
curve (AUC) of 0.842 (95% CI, 0.805–0.879), with an accuracy of 
0.751, a sensitivity of 0.689, and a specificity of 0.898. In contrast, 
the color Doppler (Doppler-DLS) model yielded an AUC of 0.990 
(95% CI, 0.983–0.997), an accuracy of 0.959, a sensitivity of 0.957, 
and a specificity of 0.964. On the external validation set, the 2D 
ultrasound model showed an AUC of 0.785 (95% CI, 0.718–0.853), 
an accuracy of 0.688, a sensitivity of 0.651, and a specificity of 0.839, 
while the color Doppler model obtained an AUC of 0.838 (95% CI, 
0.786–0.889), an accuracy of 0.797, a sensitivity of 0.802, and a 
specificity of 0.781 (Figures 3C, D). 
Frontiers in Oncology 05 
Patient-level model performance on 
training and external validation sets 

The performance of the patient-level models on the training set 
and external validation set was as follows: On the training set, the 
clinical model achieved an AUC of 0.820 (0.765, 0.874) with 
sensitivity of 0.580 and specificity of 0.937, the 2D ultrasound 
model had an AUC of 0.863 (0.825, 0.902) with sensitivity of 0.951 
and specificity of 0.693, and the color doppler model showed an 
AUC of 0.988 (0.978, 0.997) with sensitivity of 0.963 and specificity 
of 0.963. The combined model performed the best with an AUC of 
0.993 (0.986, 0.999), sensitivity of 0.988, and specificity of 0.959. On 
the external validation set, the clinical model had an AUC of 0.772 
(0.690, 0.854) with sensitivity of 0.667 and specificity of 0.823, the 
2D ultrasound model achieved an AUC of 0.792 (0.719, 0.864) with 
sensitivity of 0.824 and specificity of 0.694, and the color doppler 
model showed an AUC of 0.813 (0.745, 0.881) with sensitivity of 
0.784 and specificity of 0.789. The merged model exhibited superior 
performance, achieving an AUC of 0.892 (95% CI: 0.846–0.938), a 
sensitivity of 0.784, and a specificity of 0.842. It outperformed the 
individual models across all evaluated metrics, demonstrating the 
FIGURE 2 

Overall study workflow. This figure illustrates the work analysis flow of the entire study. Endometrial cancer prediction was achieved by integrating 
transvaginal ultrasound images with clinical data using deep learning (DL) techniques. Initially, two types of ultrasound images, two-dimensional 
grayscale and color Doppler, were processed through a DL model to generate DL signatures. Simultaneously, clinical data were analyzed using 
logistic regression to create a clinical signature. These signatures were subsequently combined to construct a merged prediction model. The 
model’s performance was validated using the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve 
analysis, and the resulting predictive model was visualized as a nomogram. 
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effectiveness of integrating clinical data with multimodal ultrasound 
imaging (Table 3; Figure 4). To assess the robustness of the model, 
we conducted subgroup analyses stratified by menopausal status, 
age groups (>50 years vs. ≤50 years), and BMI categories (>24 kg/ 
m² vs. ≤24 kg/m²). Detailed results are presented in Supplementary 
Figure S2. 
Frontiers in Oncology 06
Model fitting verification 

Calibration curves were employed to assess the agreement 
between the predicted and actual outcomes, and the merged 
model demonstrated excellent calibration ability. The predicted 
probabilities closely aligned with the actual occurrence 
TABLE 1 Baseline data. 

Variables 
Training set (351) External validation set (260) 

EC (81) nEC (270) EC (51) nEC (209) 

Age 51.94 ± 11.12 42.94 ± 9.33 60.04 ± 9.95 45.63 ± 12.89 

BMI 25.52 ± 4.79 23.22 ± 3.70 25.75 ± 3.76 23.45 ± 3.57 

gravidity 

No 11 (13.6%) 29 (10.7%) 3 (5.9%) 59 (28.2%) 

Yes 70 (86.4%) 241 (89.3%) 48 (94.1%) 150 (71.8%) 

Fertility 

No 13 (16.0%) 43 (15.9%) 9 (17.6%) 63 (30.1%) 

Yes 68 (84.0%) 227 (84.1%) 42 (82.4%) 146 (69.9%) 

Menopausestatus 

No 36 (44.4%) 237 (87.8%) 14 (27.5%) 154 (73.7%) 

Yes 45 (55.6%) 34 (12.2%) 37 (72.5%) 55 (26.3%) 

Irregular vaginal bleeding 

No 16 (19.8%) 168 (62.2%) 2 (3.9%) 101 (48.3%) 

Yes 65 (80.2%) 102 (37.8%) 49 (96.1%) 108 (51.7%) 

Hypertension 

No 55 (67.9%) 244 (90.4%) 26 (51.0%) 174 (83.3%) 

Yes 26 (32.1%) 26 (9.6%) 25 (49.0%) 35 (16.7%) 

Diabetes 

No 64 (70.0%) 263 (97.4%) 35 (68.6%) 198 (94.7%) 

Yes 17 (21.0%) 2.6 (29.2%) 16 (31.4%) 11 (5.3%) 

Hypothyroidism 

No 80 (98.8%) 266 (98.5%) 49 (96.1%) 204 (97.6%) 

Yes 1 (1.2%) 4 (1.5%) 2 (3.9%) 5 (2.4%) 

PCOS 

No 79 (97.5%) 266 (98.5%) 51 (100%) 208 (99.5%) 

Yes 2 (2.5%) 4 (1.5%) 0 (0) 1 (0.5) 

FIGO Stage (2009) 

I 61 (75.3%) – 37 (72.5%) – 

II 6 (7.4%) – 4 (7.8%) – 

III 12 (14.8%) – 9 (17.6%) – 

IV 2 (2.5%) – 1 (2.1%) – 
 

Data were presented as No. (%) and mean ± SD. 
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FIGURE 3 

The examples of transvaginal ultrasound images for non-endometrial cancer (A) and endometrial cancer (B). Comparison predictive performance for 
image-level deep learning model. The area under the receiver operating characteristic curve for two-dimensional ultrasound (C) and color Doppler 
(D) models on the image-level. 
TABLE 2 Results of univariate and multivariate regression analysis of clinical information. 

Variables Univariate logistic regression Multivariate logistic regression 

OR(CI) P Value OR(CI) P Value 

Age 1.09(1.06,1.12) <0.001 1.03(0.99,1.07) 0.156 

BMI 1.15(1.08,1.22) <0.001 1.10(1.02,1.19) 0.011 

Gravidity 0.77(0.36,1.61) 0.482 

Fertility 0.99(0.50,1.95) 0.979 

Menopause status 8.98(5.08,15.87) <0.001 3.71(1.59,8.61) 0.002 

Irregular Vaginal bleeding 6.69(3.67,12.19) <0.001 4.93(2.53,9.60) <0.001 

Hypertension 4.44(2.39,8.22) <0.001 1.41(0.64,3.11) 0.397 

Diabetes 9.98(3.97,25.08) <0.001 3.97(1.18,13.30) 0.026 

Hypothyroidism 0.83(0.09,7.54) 0.870 

PCOS 1.68(0.30,9.36) 0.552 
F
rontiers in Oncology 
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PCOS, polycystic ovary syndrome. 
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probabilities, approaching an ideal calibration, which indicates that 
the model’s predictions are both reliable and generalizable 
(Figure 5A). We explored the merged model’s predictive

capability in distinguishing between non-EC and different cancer 
stages. Specifically, we conducted separate binary classification 
analyses to calculate the AUC for the merged model in 
distinguishing non-EC from each of the subsequent stages (1-4). 
The results indicate good performance, showing an AUC range of 
0.87–0.97 (Supplementary Figure S3). 

Decision curve analysis (DCA) further demonstrated the clinical 
utility of the models. The DCA showed that the net benefit of the  
clinical model (red line) decreased as the high-risk threshold 
increased, although it remained relatively stable across most of the 
range. The 2D DL system (green line) provided a higher net benefit 
than the clinical model within the moderate-risk threshold range 
(0.2–0.4), despite a slight performance decline at higher thresholds. 
Frontiers in Oncology 08
The Doppler DL system (yellow line) performed well in the low-risk 
threshold range; however, its net benefit diminished at higher 
thresholds, eventually falling behind the merged model. The 
merged model (orange line) outperformed the other models, 
particularly in the low-to-moderate risk thresholds, by providing a 
higher standardized net benefit and demonstrating more substantial 
decision-making advantages across various thresholds. The “All” 
(gray) and “None” (black) lines represent the decision baselines for 
scenarios in which either all patients are considered high-risk or none 
are. Overall, the merged model provided the highest net benefit across  
most thresholds, underscoring its strong clinical utility for risk 
prediction in this population (Figure 5B). Finally, a nomogram was 
constructed based on the risk scores derived from the three models to 
facilitate visual assessment by clinicians (Figure 6). 

Grad-CAM visualized the DL model’s decision-making process 
as heatmaps, where hot areas indicated the model’s attention 
FIGURE 4 

Displays the receiver operating characteristic (ROC) curve performance of different models on the training set (A), where the clinical model (red) has 
an area under the ROC curve (AUC) of 0.820, indicating good predictive ability but falling short compared to other models. The 2D-DLS model 
(blue) shows improved performance with an AUC of 0.863. The Doppler-DLS model (light blue) exhibits significantly superior performance, achieving 
an AUC of 0.988. The Merged model (black) reaches an AUC of 0.993, nearly approaching perfect classification, indicating it has the strongest 
predictive capability in the training set. Corresponds to the ROC curve for the external validation set (B). Where the clinical model (red) has an AUC 
of 0.772, indicating good predictive ability but falling short compared to other models. The 2D-DLS model (blue) shows improved performance with 
an AUC of 0.792. The Doppler-DLS model (light blue) exhibits significantly superior performance, achieving an AUC of 0.813. The Merged model 
(black) reaches an AUC of 0.892. 
TABLE 3 Performance results on the training set and external validation set. 

Model Training set External validation set 

AUC(CI) ACC SEN SPE F1 AUC(CI) ACC Sen Spe F1 

Clinical 0.820 
(0.765, 0.874) 

0.855 0.58 0.937 0.648 0.772 
(0.690, 0.854) 

0.792 0.667 0.823 0.557 

2D-DLS 0.863 
(0.825, 0.902) 

0.752 0.951 0.693 0.639 0.792 
(0.719, 0.864) 

0.719 0.824 0.694 0.535 

Doppler-DLS 0.988 
(0.978, 0.997) 

0.963 0.963 0.963 0.923 0.813 
(0.745, 0.881) 

0.788 0.784 0.789 0.593 

Merged 0.993 
(0.986, 0.999) 

0.966 0.988 0.959 0.93 0.892 
(0.846, 0.938) 

0.831 0.784 0.842 0.645 
 
fro
AUC, the area under the receiver operating characteristic curve; Acc, accuracy, Acc = True Positives + True Negatives)/(True Positives + True Negatives + False Positives + False Negatives); Sen, 
sensitivity, Sen = True Positives/(True Positives+ False Negatives); Spe, specificity, Spe = True Negatives/(True Negatives + False Positives); F1 Score = 2 * (Precision * Recall)/(Precision + Recall); 
CI, confidence interval. 
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regions (Figures 7A-D). SHAP explained the ranked contributions 
of features to the fused model (Figure 7E) and relationship among 
their own feature value impact on the model’s output (Figure 7F). 
Discussion 

EC is recognized as the most prevalent malignancy of the female 
reproductive system, imposing significant health risks and 
considerable socioeconomic burdens (21). The disease is 
particularly concerning due to its insidious nature and frequent 
diagnosis at advanced stages, which complicates treatment and 
adversely affects prognosis. In light of these challenges, we 
employed a multicenter, retrospective approach using advanced 
Frontiers in Oncology 09
DL techniques to analyze ultrasound images in combination with 
clinical data, with the goal of constructing a robust predictive model 
for early disease identification. 

In this study, we demonstrate the feasibility of using DL 
techniques to analyze ultrasound images and predict EC at both 
the image and patient levels. At the image level, the AUC of the 2D 
ultrasound DL model on the external validation set reached 0.785 
(95% CI, 0.718–0.853), while the color Doppler DL model 
performed better with an AUC of 0.838 (95% CI, 0.786–0.889). 
Similarly, at the patient level, the 2D ultrasound DL model achieved 
an AUC of 0.792 (95% CI, 0.719–0.864), and the color Doppler DL 
model reached an AUC of 0.813 (95% CI, 0.745–0.881). Notably, 
the models based on DL analysis outperformed those based solely 
on clinical data. More importantly, integrating multimodal data 
FIGURE 6 

The nomogram based on risk scores of the from the clinical, 2D ultrasound, and Doppler ultrasound models. 
FIGURE 5 

Calibration and decision curve analysis (DCA) for the merged model. The calibration curves for the merged model which indicate the goodness-of­
fit of the model (A). DCA for four models predicting endometrial cancer (B). 
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markedly enhanced model performance, with the fusion model 
achieving an AUC of 0.892 (95% CI, 0.846–0.938). The Delong test 
confirmed that the AUC of the fusion model was significantly 
superior to those of the single-mode models (p < 0.05). These 
findings indicate that this multifaceted approach not only improves 
diagnostic precision but also lays the groundwork for personalized 
patient management strategies, ultimately leading to better clinical 
outcomes for those at risk of developing EC (22). 

Our findings reveal significant differences in the complex, often 
subtle, sonographic imaging patterns captured by CNNs between 
patients with EC and those without. This underscores the utility of 
ultrasound imaging combined with advanced analytical techniques, 
such as radiomics, as a non-invasive diagnostic tool for clinicians. 
Previous research has highlighted that specific ultrasound features, 
such as vascular patterns and tissue texture, are closely associated 
with malignant transformations in gynecological cancers, including 
endometrial carcinoma (23). By integrating these imaging 
biomarkers with clinical data, our approach significantly enhances 
the capabilities for early diagnosis, which may lead to better patient 
outcomes through timely interventions and management strategies 
(24). Moreover, various DL architectures (e.g., ResNet and 
EfficientNet)  have  been  shown  to  influence  predictive  
performance, with some architectures demonstrating a superior 
ability to generalize from training data to unseen validation datasets 
(25). These results align with previous studies where DL approaches 
have been successfully applied to diverse medical imaging tasks, 
Frontiers in Oncology 10 
highlighting the transformative potential of artificial intelligence in 
oncology diagnostics (26–28). 

Additionally, the identification of clinical risk factors—such as 
BMI, menopausal status, and irregular vaginal bleeding—as 
significant predictors of EC adds another important dimension to 
our predictive framework (29, 30). These findings are consistent 
with existing literature that has reported similar associations 
between these factors and an increased risk of cancer (31). A 
deeper understanding of the interplay between these clinical risk 
factors and imaging characteristics can further refine predictive 
models while enhancing our knowledge of EC epidemiology. Future 
studies should explore the biological mechanisms underlying these 
associations, as this could lead to the discovery of novel preventive 
strategies or therapeutic targets for high-risk populations (32). 

Distinguishing EC from benign conditions in ultrasound 
imaging is challenging, as the manifestations on 2D and Doppler 
imaging can be overlapping. The integration of DL technology 
offers a promising solution by addressing the critical need for 
improved diagnostic methods amidst the rising incidence of EC. 
Building upon previous AI research in gynecologic cancers, our 
study advances this field by utilizing a larger dataset and more 
sophisticated DL models, thereby enhancing the robustness of our 
findings compared to earlier studies. This collaborative approach is 
imperative for advancing the field of medical imaging and 
improving outcomes for patients with EC and other malignancies 
(33–35). 
FIGURE 7 

The explainable AI plots. Gradient-weighted Class Activation Mapping visualizes the model’s attention zones as heatmaps for non-endometrial 
cancer (A) and endometrial cancer (B) in 2D ultrasound, and for non-endometrial cancer (C) and endometrial cancer (D) in color Doppler ultrasound 
(A–D). The SHapley Additive exPlanations method identified the key feature contributions to the merged model, ranking Doppler-DLS, 2D-DLS, and 
Clinical Score as the top three most important (E). The Beeswarm plot (F) further illustrated that higher feature values positively influenced the 
model’s output. 
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This study presents several limitations that warrant 
consideration. First, the participant pool was derived from only 
two medical centers, and class imbalance was observed in this study 
(with only 132 EC cases). These factors may limit the 
generalizability of our findings to broader populations. Second, 
the study centers were from the same region (Guangzhou, China), 
which might limit the generalizability of our findings to other 
populations or healthcare systems with different ethnic profiles, 
lifestyles, or ultrasound practices. Furthermore, the absence of long-
term follow-up data presents challenges in assessing the sustained 
predictive validity of the developed models. Therefore, further 
validation in larger, more diverse, and multi-ethnic cohorts is 
necessary to enhance both the robustness and clinical relevance of 
our findings (36). 

In conclusion, our research integrates DL-based ultrasound 
imaging features with clinical risk factors to develop a novel 
predictive model for the early diagnosis of EC. The observed 
improvement in predictive accuracy underscores the potential of 
this model to significantly aid in clinical decision-making and 
patient management. Future studies should focus on larger, 
multicenter validations to confirm the model’s applicability across 
varied populations and clinical settings, thereby facilitating its 
integration into routine clinical practice for enhanced 
patient outcomes. 
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