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Purpose: Radiation dermatitis (RD) is a common and debilitating side effect of

radiotherapy in nasopharyngeal carcinoma (NPC) patients. Traditional predictive

models lack sufficient accuracy for assessing acute radiation dermatitis (ARD)

after tomotherapy treatment. This study aims to integrate clinical, dosimetric,

and radiomic features to enhance the accuracy and robustness of predictions,

thereby promoting a more personalized risk assessment for NPC patients

undergoing tomotherapy.

Methods: A cohort of 161 NPC patients who underwent Tomotherapy was

retrospectively analyzed. Clinical, dosimetric, and radiomic features were

extracted for the purpose of model development. Feature selection was

conducted using statistical tests and Least Absolute Shrinkage and Selection

Operator(LASSO) regression. Several machine learning algorithms were then

employed to construct the predictive models, including Logistic Regression,

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest,

Extra Trees, XGBoost, Light Gradient Boosting Machine (LightGBM), and

Multilayer Perceptron (MLP). These models were built based on clinical,

radiomic, dosiomic, and combined feature sets. Model performance was

assessed by evaluating the area under the receiver operating characteristic

curve (AUC), sensitivity, and specificity. To ensure fairness in comparisons, five-

fold cross-validation was applied during the training of all models in the

training cohort.

Results: The combined model, integrating clinical, radiomic, and dosiomic

features, demonstrated the highest predictive accuracy, achieving an AUC of

0.916 (95% CI: 0.866–0.967) in the training cohort and 0.797 (95% CI: 0.616–

0.978) in the validation cohort. In comparison, the clinical model (AUC=0.704),

radiomic model (AUC=0.865), and dosiomic model (AUC=0.640) had lower

predictive performance. SVM method demonstrated superior overall
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performance across various model constructions. The combined model based

on the SVMmethod exhibited optimal predictive performance, achieving the best

results in both the test and validation cohorts.

Conclusions: The developed combined prediction system achieves superior

performance in anticipating severe ARD in NPC undergoing tomotherapy

cases. This tool facilitates pre-therapeutic risk stratification, dosimetric

parameter refinement, and evidence-based scheduling of preventive skin

management protocols, offering a paradigm-shifting approach to

individualized cutaneous protection strategies.
KEYWORDS

acute radiation-induced dermatitis, predictive modeling, nasopharyngeal carcinoma,
tomotherapy, machine learning
Introduction

Radiotherapy (RT) is used as a standard treatment modality for

nasopharyngeal carcinoma (NPC). To ensure treatment efficacy and

minimize damage to normal tissues, RT continues to evolve and

develop through the efforts of radiation oncologists (1). In the early

21st century, intensity-modulated radiotherapy(IMRT), using

dynamic multi-leaf collimators and inverse planning algorithms,

achieved precise dose sculpting for complex tumor shapes (2), upon

which tomotherapy emerged as a more advanced form of conformal

RT. It combines continuous helical IMRT delivery with high-

precision Image guided radiotherapy(IGRT) through integrated

computer tomography(CT) scanning (3). Particularly in the

treatment field of NPC, tomotherapy minimizes the risk of

damage to normal tissues during the treatment process of NPC

patients, ensuring patient safety and treatment efficacy.

Nevertheless, due to inherent limitations in radiation dose

distribution, adjacent healthy tissues inevitably receive radiation

exposure, causing complications such as dermatitis, xerostomia,

and dysphagia. However, during the radiotherapy process for NPC,

various normal organs inevitably receive radiation exposure,

resulting in numerous adverse reactions, such as dermatitis,

xerostomia, dysphagia, hypopituitarism, and lower cranial nerve

complications. Among these, acute radiation dermatitis (ARD) is

common, with incidences of grade ≥3 dermatitis ranging from 0%

to 44% among patients receiving tomotherapy, depending on

treatment and patient-specific risk factors (4–7). Radiation

dermatitis (RD) are classified into acute and chronic types,

including acute reactions characterized by erythema, dry and

moist desquamation, pruritus, bleeding, ulceration, and skin

infections, as well as chronic changes such as chronic atrophy

and fibrosis. Moreover, severe radiation dermatitis may require

radiation dose limitation or even treatment discontinuation (8).

Therefore, the prevention and management of RD remains

a challenge.
02
Analyzing and predicting RD for early intervention through

data analysis and modeling is one of the directions pursued by

clinicians. However, current research primarily focuses on

prediction using dose parameters from Dose and Volume

Histogram(DVH) and clinical factors (5, 6), with limited accuracy

of these methods. For example, Lee et al (9). reported an AUC of

just 0.62 for a machine-learning model that used clinical and DVH

variables in a breast-cancer cohort, and Bonomo et al (10). showed

similarly limited predictive performance when DVH-based skin-

dose metrics were applied to head-and-neck squamous-cell

carcinoma. Meanwhile, there is also a lack of prediction models

suitable for patients receiving tomo radiotherapy. In recent years,

emerging radiomics and dosomics have provided new directions for

the diagnosis and prediction of tumors and complications.

Radiomics is an emerging effective method for quantitative

analysis of radiological images (11, 12). By mining high-

dimensional features from imaging data, it not only plays an

important role in risk stratification and differential diagnosis, but

also shows great potential in prognosis prediction, treatment

sensitivity assessment, and early identification of related

complications (13–15). Dosomics, through examination of dose

distribution uniformity and spatial variability, provides a deeper

understanding than DVH.

Therefore, this study aims to develop a robust predictive model

combining clinical parameters, dosimetric information, and CT-

based radiomics features, thereby providing personalized risk

assessment for ARD in NPC patients undergoing tomotherapy.
Materials and methods

Patients

This study included 161 nasopharyngeal carcinoma (NPC)

patients who received complete treatment at Fujian Cancer
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Hospital between January 2023 and January 2024. Patients were

stratified by outcome and then randomly split into a training set

and a validation set in an 8:2 ratio. Eligible patients met all of the

following inclusion criteria : (1) newly diagnosed, pathologically

confirmed nasopharyngeal carcinoma scheduled for radical

tomotherapy; (2) age 18–70 years to minimize age-related

confounding; (3) no pre-existing dermatological conditions likely

to confound radiation-induced skin reactions, including chronic

inflammatory dermatoses (e.g., eczema, psoriasis), connective-

tissue or immune-mediated disorders (e.g., scleroderma), chronic

ulcers or infections within the planned irradiation field, or pre-

existing chronic skin damage; (4) an ECOG performance status of

0–1 indicating fitness for full-dose treatment and none of the

exclusion criteria: (1) prior head-and-neck radiotherapy or neck

surgery, which would distort dose distribution and healing; (2) a

history of other malignancies, whose treatments could influence

skin toxicity; (3) severe cardiovascular or systemic disease likely to

require dose modification or interruption and independently affect

skin reactions; and (4) incomplete follow-up data for radiation-

dermatitis assessment, which would compromise outcome validity.
Treatment and ARD evaluation

All patients were staged according to the 8th edition of the

Union for International Cancer Control(UICC)/American Joint

Commission on Cancer(AJCC) staging system and treatment

plans were determined, with stage I patients receiving radical

rad io therapy , s tage I I pa t i en t s rece iv ing combined

chemoradiotherapy, and stage III-IVB patients receiving

radiotherapy and other combination treatments. According to our

center’s previously reported target - volume delineation criteria,

experienced radiation oncologists with over 5 years of experience

delineated the gross tumor volume(GTV), clinical target volume

(CTV), planning target volume(PTV), and organs at risk(OARs)

regions (16). The prescribed radiotherapy doses were as follows:
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GTV: 70-72.6 Gy/31–33 fractions, CTV1: 62-62.7 Gy/31–33

fractions, CTV2: 54.4-56.2 Gy/31–33 fractions. All patients

received IMRT using the Accuray TomoHD helical tomotherapy

system (Accuray Inc., Madison, Wisconsin). The radiation energy

used was 6 MV, with a dose rate of 850 MU/min, and the dose

calculation algorithm employed was the convolution/superposition

(C/S) algorithm within the treatment planning system. The voxel

spatial resolution for dose calculation was 0.273 × 0.273 × 0.3 cm3.

After treatment initiation, all patients underwent clinical

assessment weekly for ARD by experienced radiation oncologists

according to Radiation Therapy Oncology Group(RTOG) scoring

criteria (17), with grade ≥III considered severe ARD.
Image acquisition and contour delineation

Positional CT scans were performed using a Philips Brilliance

large-bore CT scanner. Patients were immobilized in the supine

position using thermoplastic masks and customized foam. The tube

voltage was set to 120 kV, X-ray tube current was 225 mA, CT slice

thickness was 3mm, and scan resolution was 512 × 512 pixels. To

analyze the dose distribution in the patient’s superficial skin layer,

ring - shaped structures were automatically generated as regions of

interest(ROIs) by subtracting 3 millimeters from the patient’s

surface. The upper and lower boundaries of these ROIs were

consistent with the upper and lower boundaries of the planning

target volume for the lymph nodes (PTV-ND), as shown in the

delineated ROI figure (Figure 1).
Radiomic and dosiomic features extracted

In this study, radiomic and dosiomic features were extracted

from the ROIs using the open-source Pyradiomics package based

on the Python 3.7 platform. The extracted radiomic features were

categorized into three groups: first-order statistical features, shape
FIGURE 1

Regions of interest (ROI) on planning CT images. (A) Axial and (B) coronal views with skin delineated in red.
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features, and texture features. First-order statistical features

represent variations in symmetry, uniformity, and local intensity

distributions within the measured ROI. Shape features provide a

quantitative description of the three-dimensional size and

morphology of the ROIs. Texture features reflect the spatial

arrangement of the grayscale values within the ROIs. For detailed

descriptions of each feature type, please refer to the official

Pyradiomics documentation (18). To prevent large differences in

the range of variable values, Z-score standardization of features was

u s e d t o imp r o v e mod e l c o n v e r g e n c e s p e e d a n d

coefficient comparability.
Clinical features

A total of 25 clinical features were included, comprising age,

gender, T stage, N stage, overall staging, the season during

treatment, pre-treatment Body Mass Index(BMI), smoking,

alcohol consumption, diabetes, hypertension, thyroid diseases,

cervical lymph nodes, radiotherapy sensitizing drug, induction

chemotherapy, concurrent chemotherapy, concurrent targeted

therapy, immunotherapy, use of hormonal drugs, pre-treatment

total protein, pre-treatment albumin, pre-treatment white blood cell

count, pre-treatment platelet count, pre-treatment hemoglobin, and

pre-treatment neutrophils.
Feature selection and construction of
model

Univariate logistic regression was first performed to identify

clinical variables significantly associated with the outcome. Variables

with p < 0.05 in univariate analysis were subsequently entered into a

multivariate logistic regression model to adjust for potential

confounding factors and to determine independent predictors.

Radiomic and dosiomic features were screened by contrasting

patients who developed ARD with those who did not. The

Kolmogorov–Smirnov test was first applied to assess the

normality of each feature’s distribution. Features with p-values

below 0.05 were considered non-normally distributed, while those

with p-values above this threshold were assumed to follow a normal

distribution. Based on these results, normally distributed features

were compared between groups using Student’s t-test, and non-

normally distributed features were analyzed with the Mann–

Whitney U test. For both tests, the null hypothesis assumed no

significant difference between groups for a given feature. Features

with p-values > 0.05 were considered non-discriminative and, if

appearing in pairs of highly similar features, one was randomly

excluded to reduce redundancy. Additionally, we used the

Spearman rank correlation coefficient to measure the correlation

between highly related features. When the correlation coefficient

between two features exceeded 0.9, a greedy recursive elimination

strategy was adopted to retain only one of these features, discarding
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the feature with the highest average correlation at each iteration.

The Least Absolute Shrinkage and Selection Operator (LASSO)

regression model was applied to the radiomic and dosiomic feature

sets to select relevant variables for constructing the respective

radiomic and dosiomic models. For the combined model, all

candidate clinical variables (without prior filtering), together with

radiomic and dosiomic features, were pooled and subjected to

LASSO regression for feature selection, enabling early fusion of all

feature types before model training.

Finally, the selected features were employed to construct four

types of risk models: clinical, radiomic, dosiomic, and combined,

using a range of machine learning algorithms, including Logistic

Regression, Support Vector Machine, K-Nearest Neighbors,

Random Forest, Extra Trees, XGBoost, LightGBM, and Multilayer

Perceptron. For each model type, the algorithm with the best overall

performance—considering both training and validation results—

was selected as the final predictive model. To ensure fairness in

comparisons, five-fold cross-validation was applied during the

training of all models in the training cohort.
Statistical analysis

To examine the equivalence of patient characteristics across

different cohorts, normally distributed continuous data were

analyzed using independent t-tests, whereas non-normally

distributed data (expressed as medians with interquartile ranges)

were analyzed with Mann-Whitney U tests. Categorical variables

were analyzed using chi-square tests. Furthermore, we evaluated the

predictive performance of the four models using receiver operating

characteristic(ROC) curves, from which we calculated the area

under the ROC curve(AUC) and the balance between sensitivity

and specificity at the maximum Youden index. Additionally, we

assessed the performance of all four models in both the training and

testing cohorts and used decision curve analysis (DCA) to evaluate

the clinical utility of the combined model. Analyses were conducted

using SPSS (version 21.0; IBM Corporation) and the Pytorch 1.8.0-

based “One-Click AI” platform (http://www.medai.icu). A two-

sided p-value of ≤ 0.05 was considered statistically significant.
Result

Patient characteristics

Baseline characteristics of patients in the training and test

cohorts are summarized in Table 1. The mean age of patients in

the training cohort was 45.90 ± 11.31 years, including 125 males

(70.54%) and 50 females (29.46%). The mean age of patients in the

test cohort was 46.38 ± 10.65 years, including 35 males (68.75%)

and 9 females (31.25%). Severe ARD occurred in 44 patients

(34.11%) in the training cohort and 11 patients (34.38%) in the

validation cohort.
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TABLE 1 Baseline characteristics of patients in the training and test cohorts.

Feature

Train cohort Test cohort

[ALL] ARD<III ARD≥III
P-value

[ALL] ARD<III ARD≥III
P-value

N=129 N=85 N=44 N=32 N=21 N=11

Sex 0.069 0.452

Male 91(70.54) 55(64.71) 36(81.82) 22(68.75) 13(61.90) 9(81.82)

Female 38(29.46) 30(35.29) 8(18.18) 10(31.25) 8(38.10) 2(18.18)

Age
45.90 ±
11.31

45.67 ±
11.19

46.34 ±
11.66

0.751
46.38 ±
10.65

45.95 ±
12.62

47.18 ± 5.67 0.762

Age Grade 0.916 0.269

18-44 59(45.74) 40(47.06) 19(43.18) 11(34.38) 8(38.10) 3(27.27)

45-59 56(43.41) 36(42.35) 20(45.45) 18(56.25) 10(47.62) 8(72.73)

≥60 14(10.85) 9(10.59) 5(11.36) 3(9.38) 3(14.29) null

Weight
67.65 ±
13.74

64.95 ±
12.49

72.87 ±
14.67

0.001
67.79 ±
12.13

63.78 ± 9.95
75.45 ±
12.64

0.007

BMI 0.043 0.056

≤18.5 3(2.33) 3(3.53) null 0(0.00) null null

18.5-23.9 60(46.51) 46(54.12) 14(31.82) 16(50.00) 13(61.90) 3(27.27)

24.0-27.9 51(39.53) 27(31.76) 24(54.55) 13(40.62) 8(38.10) 5(45.45)

28.0-32.0 12(9.30) 8(9.41) 4(9.09) 2(6.25) null 2(18.18)

>32.0 3(2.33) 1(1.18) 2(4.55) 1(3.12) null 1(9.09)

T category 0.093 0.199

T0 2(1.55) 2(2.35) null 0(0.00) null null

T1 24(18.60) 18(21.18) 6(13.64) 6(18.75) 2(9.52) 4(36.36)

T2 15(11.63) 11(12.94) 4(9.09) 5(15.62) 4(19.05) 1(9.09)

T3 70(54.26) 39(45.88) 31(70.45) 11(34.38) 9(42.86) 2(18.18)

T4 18(13.95) 15(17.65) 3(6.82) 10(31.25) 6(28.57) 4(36.36)

N category 0.369 0.620

N0 13(10.08) 8(9.41) 5(11.36) 3(9.38) 2(9.52) 1(9.09)

N1 49(37.98) 34(40.00) 15(34.09) 13(40.62) 9(42.86) 4(36.36)

N2 34(26.36) 25(29.41) 9(20.45) 11(34.38) 8(38.10) 3(27.27)

N3 33(25.58) 18(21.18) 15(34.09) 5(15.62) 2(9.52) 3(27.27)

M category 0.246 1.000

M0 124(96.12) 80(94.12) 44(100.00) 32(100.00) 21(100.00) 11(100.00)

M1 5(3.88) 5(5.88) null 0(0.00) null null

Stage 0.154 0.148

I 10(7.75) 9(10.59) 1(2.27) 4(12.50) 4(19.05) null

II 68(52.71) 42(49.41) 26(59.09) 14(43.75) 10(47.62) 4(36.36)

III 47(36.43) 30(35.29) 17(38.64) 14(43.75) 7(33.33) 7(63.64)

IV 4(3.10) 4(4.71) null 0(0.00) null null

(Continued)
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TABLE 1 Continued

Feature

Train cohort Test cohort

[ALL] ARD<III ARD≥III
P-value

[ALL] ARD<III ARD≥III
P-value

N=129 N=85 N=44 N=32 N=21 N=11

Cervical Lymph Node
Metastasis

0.968 1.000

No 13(10.08) 8(9.41) 5(11.36) 3(9.38) 2(9.52) 1(9.09)

Yes 116(89.92) 77(90.59) 39(88.64) 29(90.62) 19(90.48) 10(90.91)

Treatment Time (season) 0.414 0.306

Spring 70(54.26) 47(55.29) 23(52.27) 19(59.38) 14(66.67) 5(45.45)

Summer 51(39.53) 31(36.47) 20(45.45) 12(37.50) 6(28.57) 6(54.55)

Autumn 4(3.10) 4(4.71) null 1(3.12) 1(4.76) null

Western 4(3.10) 3(3.53) 1(2.27) 0(0.00) null null

Radiotherapy Sensitizer 0.196 1.000

No 39(30.23) 22(25.88) 17(38.64) 8(25.00) 5(23.81) 3(27.27)

Yes 90(69.77) 63(74.12) 27(61.36) 24(75.00) 16(76.19) 8(72.73)

Induction chemotherapy 0.344 1.000

No 8(6.20) 7(8.24) 1(2.27) 3(9.38) 2(9.52) 1(9.09)

Yes 121(93.80) 78(91.76) 43(97.73) 29(90.62) 19(90.48) 10(90.91)

Concurrent chemotherapy 0.640 0.625

No 77(59.69) 49(57.65) 28(63.64) 17(53.12) 10(47.62) 7(63.64)

Yes 52(40.31) 36(42.35) 16(36.36) 15(46.88) 11(52.38) 4(36.36)

Targeted Therapy 0.564 1.000

No 13(10.08) 10(11.76) 3(6.82) 3(9.38) 2(9.52) 1(9.09)

Yes 116(89.92) 75(88.24) 41(93.18) 29(90.62) 19(90.48) 10(90.91)

Immunotherapy 0.466 1.000

No 111(86.05) 75(88.24) 36(81.82) 29(90.62) 19(90.48) 10(90.91)

Yes 18(13.95) 10(11.76) 8(18.18) 3(9.38) 2(9.52) 1(9.09)

Hormone Drugs 0.329 1.000

No 47(36.43) 34(40.00) 13(29.55) 5(15.62) 3(14.29) 2(18.18)

Yes 82(63.57) 51(60.00) 31(70.45) 27(84.38) 18(85.71) 9(81.82)

Smoking 0.968 0.423

No 116(89.92) 77(90.59) 39(88.64) 27(84.38) 19(90.48) 8(72.73)

Yes 13(10.08) 8(9.41) 5(11.36) 5(15.62) 2(9.52) 3(27.27)

Drinking 0.553 1.000

No 121(93.80) 81(95.29) 40(90.91) 30(93.75) 20(95.24) 10(90.91)

Yes 8(6.20) 4(4.71) 4(9.09) 2(6.25) 1(4.76) 1(9.09)

Thyroid Disease 0.173 1.000

No 123(95.35) 79(92.94) 44(100.00) 29(90.62) 19(90.48) 10(90.91)

Yes 6(4.65) 6(7.06) null 3(9.38) 2(9.52) 1(9.09)

(Continued)
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Construction of clinical, radiomics and
dosiomics model

Following feature selection through univariate and multivariate

regression analyses, two significant clinical variables (weight and

BMI) were identified. The clinical model using LightGBM

demonstrated good predictive performance, with an AUC of

0.704 (95% CI, 0.613-0.786) in the training cohort and 0.753

( 9 5% C I , 0 . 5 8 0 - 0 . 9 2 6 ) i n t h e v a l i d a t i o n c o ho r t

(Supplementary Table 1).
Frontiers in Oncology 07
A total of 1835 radiomic features were extracted from each

patient. Following feature selection, 14 features with non-zero

coefficients were retained for model construction. The constructed

radiomics model exhibited optimal performance using SVM,

outperforming other machine learning approaches. In the training

cohort, the model demonstrated an AUC of 0.865 (95% CI 0.795-

0.935) with sensitivity and specificity values of 0.932 and 0.671.

External validation achieved an AUC of 0.779 (95% CI 0.604-0.954)

with sensitivity and specificity values of 0.727 and 0.762,

respectively (Supplementary Table 2).
TABLE 1 Continued

Feature

Train cohort Test cohort

[ALL] ARD<III ARD≥III
P-value

[ALL] ARD<III ARD≥III
P-value

N=129 N=85 N=44 N=32 N=21 N=11

Diabetes 1.000 1.000

No 128(99.22) 84(98.82) 44(100.00) 32(100.00) 21(100.00) 11(100.00)

Yes 1(0.78) 1(1.18) null 0(0.00) null null

Hypertension 1.000 0.933

No 114(88.37) 75(88.24) 39(88.64) 25(78.12) 17(80.95) 8(72.73)

Yes 15(11.63) 10(11.76) 5(11.36) 7(21.88) 4(19.05) 3(27.27)

Pathology 0.927 1.000

No 7(5.43) 4(4.71) 3(6.82) 3(9.38) 2(9.52) 1(9.09)

Yes 122(94.57) 81(95.29) 41(93.18) 29(90.62) 19(90.48) 10(90.91)

Total Protein 0.233 1.000

Normal 116(89.92) 74(87.06) 42(95.45) 28(87.50) 18(85.71) 10(90.91)

Abnormal 13(10.08) 11(12.94) 2(4.55) 4(12.50) 3(14.29) 1(9.09)

Albumin 1.000 0.415

Normal 93(72.09) 61(71.76) 32(72.73) 25(78.12) 15(71.43) 10(90.91)

Abnormal 36(27.91) 24(28.24) 12(27.27) 7(21.88) 6(28.57) 1(9.09)

Leukocyte 0.422 1.000

Normal 95(73.64) 65(76.47) 30(68.18) 20(62.50) 13(61.90) 7(63.64)

Abnormal 34(26.36) 20(23.53) 14(31.82) 12(37.50) 8(38.10) 4(36.36)

Platelet 0.196 0.592

Normal 90(69.77) 63(74.12) 27(61.36) 26(81.25) 16(76.19) 10(90.91)

Abnormal 39(30.23) 22(25.88) 17(38.64) 6(18.75) 5(23.81) 1(9.09)

Hemoglobin 0.446 0.068

Normal 30(23.26) 22(25.88) 8(18.18) 12(37.50) 5(23.81) 7(63.64)

Abnormal 99(76.74) 63(74.12) 36(81.82) 20(62.50) 16(76.19) 4(36.36)

Neutrophile Granulocyte 0.149 0.315

Normal 91(70.54) 64(75.29) 27(61.36) 21(65.62) 12(57.14) 9(81.82)

Abnormal 38(29.46) 21(24.71) 17(38.64) 11(34.38) 9(42.86) 2(18.18)
Initialism; ARD, acute radiation dermatitis; BMI, Body Mass Index.
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107 dosomic features were extracted from each patient.

Consistent with the radiomics approach, the dosomics model

employed analogous feature filtering methodology. A single

predictive feature survived selection and was incorporated into

the final dosomics model. The logistic regression model

demonstrated optimal performance, achieving a training AUC of

0.640 (95% CI 0.540-0.740) with sensitivity and specificity values of

0.795 and 0.459, respectively. External validation yielded

comparable performance (AUC=0.641, 95% CI 0.421-0.861) with

sensitivity and specificity values of 0.545 and 0.741, respectively

(Supplementary Table 3).
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Construction of combined model

Twenty-five features were identified as the most informative

predictors in the combined model, with their coefficient distributions

and importance rankings visualized in Figure 2. Among all evaluated

algorithms, the SVM-based model demonstrated superior predictive

performance. In the training cohort, the model achieved an exceptional

AUC of 0.916 (95% CI 0.866-0.967) with sensitivity and specificity

values of 0.932 and 0.765. External validation yielded an AUC of 0.797

(95%CI 0.616-0.978) with sensitivity and specificity values of 0.727 and

0.762, respectively (Table 2).
FIGURE 2

Coefficient distributions for the 25 most informative predictors in the combined model.
TABLE 2 Predictive performance of all combined models.

Accuracy AUC 95%Cl Sensitivity Specificity PPV NPV Precision Recall F1 Threshold

LR

Train Cohort 0.760 0.888
0.8317-
0.9443

0.955 0.659 0.592 0.966 0.592 0.955 0.730 0.253

Test Cohort 0.781 0.792
0.6131-
0.9713

0.636 0.857 0.700 0.818 0.700 0.636 0.667 0.406

SVM

Train Cohort 0.822 0.916
0.8655-
0.9666

0.932 0.765 0.672 0.956 0.672 0.932 0.781 0.299

Test Cohort 0.750 0.797
0.6155-
0.9776

0.727 0.762 0.615 0.842 615.000 0.727 0.667 0.342

KNN

Train Cohort 0.729 0.794
0.7196-
0.8687

0.432 0.882 0.655 0.750 0.655 0.432 0.521 0.400

(Continued)
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TABLE 2 Continued

Accuracy AUC 95%Cl Sensitivity Specificity PPV NPV Precision Recall F1 Threshold

KNN

Test Cohort 0.688 0.710
0.5230-
0.8969

0.273 0.905 0.600 0.704 0.600 0.273 0.375 0.400

RandomForest

Train Cohort 0.814 0.922
0.8735-
0.9709

0.909 0.765 0.667 0.942 0.667 0.909 0.769 0.313

Test Cohort 0.781 0.823
0.6478-
0.9972

0.727 0.810 0.667 0.850 0.667 0.727 0.696 0.375

ExtraTrees

Train Cohort 0.767 0.838
0.7690-
0.9064

0.727 0.788 0.640 0.848 0.640 0.727 0.681 0.362

Test Cohort 0.688 0.623
0.3946-
0.8521

0.545 0.762 0.545 0.762 545.000 0.545 0.545 0.359

XGBoost

Train Cohort 0.977 0.995
0.9863-
1.0000

0.955 0.988 0.977 0.977 0.977 0.955 0.966 0.456

Test Cohort 0.562 0.662
0.4701-
0.8546

0.909 0.381 0.435 0.889 0.435 0.909 0.588 0.131

LightGBM

Train Cohort 0.853 0.897
0.8429-
0.9515

0.773 0.894 0.791 0.884 0.791 0.773 0.782 0.398

Test Cohort 0.531 0.675
0.4806-
0.8700

0.909 0.333 0.417 0.875 0.417 0.909 0.571 0.223

MLP

Train Cohort 0.659 0.802
0.7266-
0.8771

0.932 0.518 0.500 0.936 0.500 0.932 0.651 0.298

Test Cohort 0.688 0.719
0.5076-
0.9297

0.636 0.714 0.538 0.789 0.538 0.636 0.583 0.348
F
rontiers in Oncol
ogy
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AUC, area under the receiver operating characteristic curve; KNN, K-Nearest Neighbors; LightGBM, Light Gradient Boosting Machine; LR, Logistic Regression; MLP, Multilayer Perceptron;
NPV, Negative Predictive Value; PPV, Positive Predictive Value; SVM, Support Vector Machine; XGboost, eXtreme Gradient Boosting.
FIGURE 3

Comparison of receiver operating characteristic (ROC) curves for the clinical, dosomic, radiomics, and combined models.
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Validating model performance

To further analyze the predictive performance of the models, we

selected the SVM method, which demonstrated superior overall

performance in various model constructions, for comparison. The

ROC curves showed that the combined model exhibited optimal

predictive performance in both test and validation cohorts in

Figure 3. Additionally, DCA revealed that across all cohorts,

within a threshold probability range of 20%-75%, the combined

model showed similar net benefits to the radiomics model but

significantly outperformed other models in terms of net benefits,

enhancing clinical utility (Figure 4).
Discussion

To address the gap in existing research on ARD prediction for

NPC patients undergoing tomotherapy, we developed a novel

integrated model combining clinical parameters, radiomic

features, and dosomic features using multiple machine learning

methods. Our results show that the optimal combined model

achieved AUC values of 0.916 in the training cohort and 0.797 in

the test cohort, outperforming single-feature models in terms of

discriminative ability, goodness-of-fit, and diagnostic performance.

This study highlights the potential of radiomics and dosomics

approaches in predicting severe ARD reactions in NPC patients

receiving tomotherapy, confirming their capacity to provide

broader evaluations and contributions for assessing ARD severity.

ARD is a frequent complication in NPC radiotherapy, primarily

due to the common co-occurrence of cervical lymph node

metastasis at initial diagnosis. Although advancements in

radiation techniques have been made, the inherent physical

properties of radiotherapy, such as the rapid dose fall-off outside

the treatment field, still result in collateral radiation exposure to

surrounding healthy tissues, leading to skin radiation effects. Our
Frontiers in Oncology 10
total experimental cohort included 161 patients, with a severe ARD

incidence (≥ grade 3) of 34.16%. In line with previous research, the

incidence of severe ARD shows significant variability (4–6). These

differences are likely due to variations in cohort characteristics and

treatment protocols across studies, including tumor volume, tumor-

to-skin distance, radiation techniques, and concurrent

chemoradiotherapy (19).

The occurrence and severity of radiation dermatitis are

influenced by both patient-specific risk factors and treatment

protocols. Structural uniformity and tissue consistency within

treatment fields serve as pivotal factors modulating radiation

dermatitis pathogenesis. The presence of skin folds in treatment

zones correlates with enhanced cutaneous reactions due to

intertriginous contact promoting moisture retention, elevated

temperatures, and frictional forces (20). BMI, reflecting skin fold-

related parameters, is frequently employed as a clinical predictor for

severe acute dermatological toxicity (21, 22). In our analysis, body

weight and BMI were identified as critical predictive factors for

ARD, corroborating previous studies. Treatment-associated

variables encompass radiation modality, fraction size, total

cumulative dose, and anatomical irradiation sites (23). Single

radiation fractions exceeding 2 Gy are linked to exacerbated late-

phase cutaneous effects (24), while concurrent chemotherapy

intensifies cutaneous toxicity through synergistic mechanisms

(25). Radiation dermatitis incidence also varies by anatomical site,

with more severe reactions observed in facial, cervical, upper dorsal,

and thoracic regions (21). These areas are difficult to assess

quantitatively due to interobserver variability, subjective

interpretations, and analytical fatigue, which can lead to critical

data being overlooked. Radiomics and dosomics offer a robust

solution by extracting wavelet-transformed features that capture

subtle cellular damage and vascular changes, providing a more

objective and reproducible assessment of tissue response to

radiotherapy (26). These features elucidate subtle subclinical

tissue modifications through scale- and orientation-dependent
FIGURE 4

Comparison of decision curve analysis (DCA) curves for the clinical, dosomic, radiomics, and combined models.
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variations in high-/low-frequency signal components. High-

frequency signals predominantly map microstructural

perturbations (e.g., cellular injury, capillary remodeling), while

low-frequency components characterize macroscopic anatomical

patterns (27). These methods uncover high-dimensional tissue

modifications, enhancing our ability to predict ARD development.

Current interventions for radiation dermatitis predominantly

rely on clinician experience, anecdotal evidence, or low-grade

studies, with critically limited prospectively validated data to

guide therapeutic decision-making. Therapeutic objectives

primarily focus on optimizing patient comfort, mitigating

secondary in jury r i sks , and acce lera t ing wound re-

epithelialization. Our predictive model stratifies ARD risk in NPC

patients initiating radiotherapy, enabling personalized risk

assessment, targeted patient education, and precision therapeutic

planning. This framework can be embedded in clinical information

systems, regardless of the specific radiotherapy technique, such as

tomotherapy, VMAT, or other modern platforms, to create

standardized cutaneous toxicity risk stratification protocols and

ARD early alert tools. Early identification of high-risk cohorts

through this system permits preemptive interventions that

attenuate dermatitis severity, ultimately improving therapeutic

outcomes, patient-reported quality metrics, and long-term

clinical trajectories.

Our findings are consistent with a growing body of evidence

that adding radiomic and dosiomic descriptors to conventional

inputs meaningfully boosts skin-toxicity prediction. In our own

data the LightGBM clinical-only model reached an AUC of 0.704 in

training and 0.753 in external testing, whereas the early-fusion

model that combined unfiltered clinical variables with LASSO-

selected radiomic and dosiomic features improved performance to

0.916 and 0.797, respectively. A recent study (9) reported similar

gains: integrating clinical, radiomic, and dosiomic features lifted the

AUC from 0.62 to 0.83, compared with using only clinical and DVH

variables in breast cancer. Li et al (28). reported that a random-

forest model combining ten radiomic features, three dosimetric

variables and six clinical factors achieved an AUC of 0.946 (95 % CI

0.887–0.987) in a breast cancer cohort. Xiang et al (29).

demonstrated that a nomogram integrating DL, dosiomic

features, and clinical factors achieved an AUC of 0.945, 0.916,

and 0.832 in the training, internal, and external validation

sets, respectively. Collectively, these findings reinforce the

complementary value of the two modalities: radiomics contributes

micro-textural information, and dosiomics captures spatial dose

heterogeneity-signals that clinical and DVH variables alone

cannot convey.

Nevertheless, this single-center retrospective study has inherent

biases, and the limited sample size (n = 161), particularly the smaller

test cohort (n = 33) relative to the training cohort (n = 129), may

affect model stability and generalizability. Future multi-center

studies and external validation using heterogeneous datasets

acquired from different scanners and imaging protocols are
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needed to confirm the robustness of the model in diverse clinical

settings. Furthermore, our ARD grading relied on clinicians’

empirical assessments, while variability in patient adherence to

skin care protocols may introduce confounding effects. Finally,

the mechanistic underpinnings connecting radiomic signatures to

histopathological changes remain unvalidated, necessitating

cautious interpretation of our findings. Future investigations

should incorporate histopathological and genomic biomarkers to

develop multidimensional predictive frameworks, ensuring

bio logica l p laus ib i l i ty whi le advancing personal ized

therapeutic strategies.
Conclusion

The developed combined prediction system achieves superior

performance in anticipating severe (grade≥3) ARD in NPC patients

receiving tomotherapy. This tool facilitates pre-therapeutic risk

stratification, dosimetric parameter refinement, and evidence-

based scheduling of preventive skin management protocols,

offering a paradigm-shifting approach to individualized cutaneous

protection strategies.
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