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1The Graduate School of Qinghai University, Xining, Qinghai, China, 2The Department of Oncology,
Qinghai Red Cross Hospital, Xining, Qinghai, China
Background: This study evaluates the clinical potential of the large language

model Deepseek-R1 in the diagnosis and treatment of lung cancer, with a

specific focus on its ability to assist junior oncologists. The research

systematically assesses the model’s performance in terms of diagnostic

accuracy, consistency of treatment recommendations, and reliability in clinical

decision-making.

Methods: A total of 320 patients newly diagnosed with lung cancer were

included in this retrospective study. Twenty-six structured clinical questions

were designed based on international diagnostic and treatment guidelines.

These questions addressed three key domains: basic medical knowledge,

complex clinical decision-making, and ethical judgment. All patient data were

anonymized before being entered into the Deepseek-R1 model. The model’s

responses, along with those generated by five junior oncologists with no more

than three years of clinical experience, were independently assessed by senior

oncologists with over ten years of experience. A double-blind evaluation

protocol was implemented to reduce potential assessment bias. Inter-rater

agreement was quantified using Cohen’s Kappa coefficient.

Results: In the categories of basic knowledge, advanced clinical decisions, and

ethical questions, Deepseek-R1 achieved average accuracy rates of 92.3%, 87.5%,

and 85.1%, respectively. These rates were significantly higher than those of junior

oncologists, whose accuracy rates were 80.4%, 72.8%, and 70.2%, respectively (P

< 0.05). In a sample of 256 cases evaluated formally, Deepseek-R1’s overall

diagnostic accuracy was 94.6%, compared to 78.9% for junior oncologists (P <

0.05). In a longitudinal assessment of 40 cases with disease progression, the

model demonstrated high consistency in updating its recommendations. Logical

errors were more frequent among junior oncologists, while ethical risks

appeared more commonly in the model-generated responses (44% vs. 21.9%).
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Conclusion:Deepseek-R1 significantly outperformed junior oncologists in terms

of diagnostic accuracy and treatment decision-making, particularly in complex

and dynamic clinical situations. While limitations remain in its ethical reasoning,

the model holds substantial potential for supporting junior physicians,

contributing tomultidisciplinary discussions, and optimizing treatment pathways.
KEYWORDS

lung cancer diagnosis, artificial intelligence, large language models, Deepseek-R1
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Introduction

Over the past decade, medical artificial intelligence (AI)

research has primarily focused on enhancing diagnostic accuracy

by utilizing molecular, genomic, and radiological datasets to drive

machine learning-based interpretations of imaging anomalies.

These applications include tasks such as re-stratifying skin lesions

through dermatological images and distinguishing between

neoplastic and non-neoplastic colorectal polyps during

colonoscopy (1, 2). A common feature of these applications is

their improvement in diagnostic precision; however, they still rely

on direct input from medical experts and are often limited to a

specific group of specialized professionals. In recent years, with

technological advancements, large language models (LLMs) have

emerged as pre-trained foundational models. Due to their ability to

self-supervise learning on vast amounts of unstructured text, these

models have demonstrated strong transfer capabilities across

various tasks. Typically, these models undergo two stages of

training: initial self-supervised pretraining using large-scale

unstructured text data, followed by supervised fine-tuning for

domain-specific tasks (e.g., medical question-answering datasets).

In some cases, they exhibit notable transfer abilities in tasks like

medical question answering and clinical reasoning, even with few-

shot or zero-shot learning (3–8). The diagnosis and treatment of

lung cancer involve a complex decision-making process, requiring

multidisciplinary collaboration, image interpretation, genetic

analysis, and personalized medication. Consequently, the process

from the initial consultation to the lung cancer diagnosis is intricate

and challenging, especially for physicians in the early stages of their

careers. With the rapid advancement of AI technology, its

applications have expanded across multiple fields, including

society, arts, science, and medicine, particularly in image analysis.

In November 2022, OpenAI released the large language model

ChatGPT, based on GPT-3.5 and GPT-4. This model quickly gained

widespread use across various domains (9). Trained on vast internet

text, ChatGPT can generate human-like text responses and offers an

easy-to-use interface for interaction in natural language. Its

applications span numerous medical scenarios, including

diagnostic assistance, speech recognition, transcription

technology, and big data analysis. Recent studies have
02
demonstrated the significant potential of GPT models in clinical

settings, such as diagnosing geriatric pancreatitis, developing

cardiovascular disease prevention strategies, and making breast

cancer screening recommendations (10–12). In the management

of gastroesophageal reflux disease (GERD), 93% of GPT-generated

suggestions were considered “appropriate” by experts (13). In

oncology, GPT has also shown considerable practical value: in

lung cancer diagnosis, lesion detection accuracy reached 98.6%

(8); in colorectal cancer tasks, including radiotherapy planning,

pain management, and intravenous therapy, it performed effectively

(14) ; and in thyroid cancer management , t reatment

recommendations based on NCCN guidelines were correct 86.8%

of the time (15). These findings suggest that future large language

models may become essential tools in the diagnostic and treatment

processes of diseases, particularly in oncology. In this context, the

recent release of the domestic large language model Deepseek-R1 in

China has garnered considerable attention (16). Based on the

Transformer architecture and optimized through human feedback

reinforcement learning (RLHF), Deepseek-R1 excels in language

understanding, multi-turn interactions, and contextual retention.

Currently, the model primarily processes text inputs and does not

have native multimodal understanding capabilities. However, when

paired with third-party OCR tools to extract text from images,

Deepseek-R1 can process text derived from images, thereby

expanding its potential in scenarios that combine text and image

data. Thus, for tasks such as medical image-assisted interpretation,

the model’s effectiveness still relies on external image processing

components. Despite this, no studies have systematically evaluated

the clinical performance of Deepseek-R1 in the lung cancer

diagnostic and treatment process. This study is the first to

propose integrating the domestic large language model Deepseek-

R1 into simulated lung cancer diagnosis and treatment tasks. By

establishing structured, phased input tasks, this study aims to

systematically evaluate the model’s diagnostic accuracy,

consistency of treatment recommendations, and ability to adapt

to ethical considerations across various domains, including basic

medical knowledge, complex clinical decision-making, and ethical

judgments. The model’s performance will be compared to that of

junior oncologists, focusing on differences in clinical reasoning. By

simulating disease progression and continuous decision-making
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chains, this study will explore whether the model can effectively

assist young doctors in improving their diagnostic and treatment

capabilities and optimizing decision-making pathways.
Materials and methods

Study design and patient enrollment

This retrospective study enrolled patients who were newly

diagnosed with lung cancer between January 2020 and December

2024. A total of 320 eligible patients were included. Among these, 40

cases (12.5%) were classified as complex, according to predefined

clinical criteria such as multiple organ metastases, rare pathological

subtypes, or disease progression during treatment. These complex

cases were identified based on clinical features rather than statistical

sampling, in order to reflect the actual clinical distribution. All

diagnoses were confirmed by senior oncologists with a minimum of

ten years of clinical experience. The completeness of clinical data—

including medical history, imaging results, histopathological

reports, and genetic testing—was verified for all patients.

Inclusion criteria were: (1) age ≥18 years; (2) newly diagnosed

without prior treatment; and (3) complete and traceable clinical

records. Patients were excluded if they had concurrent malignancies

or if data loss exceeded 20%.To enhance the generalizability of the

results, 40 complex cases were deliberately retained. These included

patients with multiple organ metastases (n = 15), rare pathological

subtypes (e.g., pulmonary sarcomatoid carcinoma or ALK-negative

ROS1 fusion, n = 10), and those exhibiting disease progression

during treatment (n = 15).All patient data were de-identified to

protect personal privacy. To ensure both representativeness and

randomization, all 320 patients were assigned sequential manual
Frontiers in Oncology 03
identification codes (P001 to P320) at the time of enrollment. A

total of 64 cases (20%) were then randomly selected as the

calibration sample using a manual blind draw without

computational assistance. This sampling process was

independently conducted by two researchers, each blinded to the

clinical content of the cases. Sampling results were compared and

reconciled to ensure consistency and reproducibility. To minimize

evaluation bias, all responses generated by the Deepseek-R1 model

and by junior oncologists were anonymized and randomly ordered

prior to expert review. The expert reviewers remained blinded to the

origin of each response during evaluation (see Figure 1).
Clinical question design

A total of 26 structured questions were developed based on the

National Comprehensive Cancer Network (NCCN) guidelines for

lung cancer diagnosis and treatment and commonly encountered

clinical challenges (see Table 1). The questions were grouped into

three categories: 1. Fundamental Group (6 items): This section

assessed knowledge of lung cancer definitions, common risk

factors, CT-based anatomical localization, and basic diagnostic and

treatment procedures. 2. Advanced Group (15 items): This section

addressed complex decision-making tasks, such as subtype

differentiation (e.g., adenocarcinoma vs. small cell carcinoma),

application of TNM staging, selection of targeted therapies based

on genetic mutations (e.g., EGFR/ALK), resistance management, and

multidisciplinary consultation (e.g., neurosurgery for brain

metastases). 3. Ethical Group (5 items): Topics included prognosis

communication (e.g., 5-year survival explanation), fairness in clinical

trial recommendations, genomic data privacy protection, and

transparent error correction.
FIGURE 1

Diagram of recruitment and participation.
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Data processing and model interaction

Before inputting into the locally deployed Deepseek-R1-7Bmodel

(~7 billion parameters), all patient data were standardized and de-

identified. The model operated in a Linux environment with a single

NVIDIA RTX 4090 GPU (24 GB VRAM), CUDA 11.8, and PyTorch

2.1. All model interactions used the official API without fine-tuning

or customization, ensuring consistency with the default open-source

inference configuration. Patient data were converted into a

standardized format, including unified field naming, terminology

normalization, and anonymization. The data were encapsulated in

structured JSON files (see Appendix A), including demographics,

medical history, imaging data, pathology, and genetic results. Each

query consisted of one patient case and one question. Default

parameters were applied, with a maximum output length of 2048

tokens to balance completeness and relevance. The model was

accessed via the local deployment. A unified prompt template was

used, integrating structured summaries of medical history, imaging,

pathology, and genetics. Original imaging data were directly input

into the model. However, radiological and pathological findings were

standardized into text by clinicians or extracted via OCR tools. These

text descriptions were embedded in the structured prompts (see

Appendix B). As a result, all model inputs were text-based, ensuring

consistent format and interpretability.
Frontiers in Oncology 04
Evaluation procedure and scoring criteria

After data de-identification, patient cases were sequentially

entered into the Deepseek-R1 model to generate responses. At the

same time, five junior oncologists (≤3 years of experience)

independently responded to the same set of questions. Sixty-four

cases (20%) were randomly selected as the calibration sample. These

cases were excluded from the final model performance analysis, as

their scoring process allowed structured consensus discussions,

which differed methodologically from the formal evaluation. Two

senior oncologists and two ethics committee members evaluated

these calibration cases using a standardized scoring manual: 1. Fully

Accurate (3 points): The response fully adhered to international

guidelines (e.g., NCCN), showed coherent logic, and included

all essential clinical information. 2. Partially Correct (2 points):

The response was generally correct but included minor inaccuracies

(e.g., incorrect dosage) or omissions (e.g., lack of comorbidity

adjustment). 3.Incorrect (1 point): The response included major

errors (e.g., incorrect staging or contraindicated treatments) or

provided misleading guidance. Inter-rater agreement was assessed

using the Kappa statistic. Discrepancies were resolved through expert

panel discussions, and the scoring criteria were refined accordingly.

The remaining 256 cases were evaluated under a double-blind protocol.

The responses were classified as follows: 1. Correct: The response

aligned with core guideline recommendations and maintained internal

consistency. 2. Incorrect: The response included critical errors or

breached ethical principles. For the 40 cases with disease progression,

data were input into the model step by step—baseline diagnosis,

treatment, and progression phases—to assess the model’s adaptability

to dynamic clinical changes.
Performance metrics and statistical
analysis

The performance of Deepseek-R1 was compared with that of

junior oncologists using the following metrics: (1) Accuracy: The

percentage of correct answers in the Basic and Advanced groups

relative to the total number of answers; (2) Compliance: The

percentage of responses in the Ethics group that adhered to

medical accuracy and ethical standards. An error type analysis

was also performed, categorizing errors as knowledge-based errors

(e.g., staging confusion), logical biases (e.g., overlooking

comorbidity impacts), or ethical risks (e.g., absolute survival rate

statements), and the proportion of each error type was calculated.
Statistical analysis

All statistical analyses were performed using SPSS version 27.0.

Descriptive statistics were used to summarize the baseline

characteristics of the patient cohort. Categorical variables were

reported as frequencies and percentages. Pearson’s chi-squared

test was used to compare response accuracy between the model
TABLE 1 Baseline characteristics of the 320 Patients.

Variable Statistics

Age, years 64 (56–72)

Gender(n%)

Male 218 (68.1)

Female 102 (31.9)

Smoking(n%)

YES 190 (59.4)

NO 130 (40.6)

Pathological type(n%)

Adenocarcinoma 205 (64.1)

Squamous carcinoma 72 (22.5)

Small cell carcinoma 31 (9.7)

Rare types 12 (3.8)

TNM stage at diagnosis(n%)

I–II 84 (26.3)

III 94 (29.4)

IV 142 (44.3)

EGFR mutation positive(n%) 76 (23.8)

ALK rearrangement positive(n%) 18 (5.6)

PD-L1 expression >1%(n%) 126 (39.4)
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and junior oncologists in the Basic and Advanced question groups.

A two-tailed p-value <0.05 was considered statistically significant.

Responses in the Ethics question group were manually scored

according to the predefined scoring manual. Inter-rater reliability

was assessed using Cohen’s Kappa coefficients, calculated separately

for the clinician scoring group and the ethics review panel. A Kappa

value >0.75 was considered to reflect good agreement, whereas

values between 0.60 and 0.75 indicated moderate agreement.

Fisher’s exact test was used to compare the distribution of error

types between groups, providing greater accuracy for small-sample

categorical data.
Results

This study included data from 320 patients diagnosed with lung

cancer. The data were standardized and strictly anonymized.

Table 1 shows the baseline characteristics of the patients,

including the distribution of gender, age, pathological type, TNM

stage, and common genetic mutations. To ensure consistent scoring

standards, dual-group scoring was initially performed, and

consistency was assessed using 64 calibration samples. Table 2

shows that the Kappa value for inter-rater reliability was 0.613

(SE = 0.088) for the oncology group and 0.669 (SE = 0.087) for the

ethics review group, indicating moderate consistency in both cases.

This indicates that the scoring system has good internal consistency.

Given the small difference in Kappa values and the overlapping

standard errors, significance testing was not performed, and no

subjective judgment on the quality of consistency was made. Table 3

compares the performance of Deepseek-R1 with that of five less

experienced oncologists in completing 26 task questions across 256

formal samples. The results show that Deepseek-R1 outperformed

the oncologists in all three categories: basic, advanced, and ethical

questions. In the basic group, Deepseek-R1 achieved an accuracy of

98.3% (95% CI: 97.5% - 98.8%), compared to 93.4% (95% CI: 92.1%

- 94.6%) for the oncologists. In the advanced group, Deepseek-R1

reached 94.6% (95% CI: 93.8% - 95.3%) versus 78.9% (95% CI:

77.6% - 80.2%) for the oncologists. In the ethics group, Deepseek-

R1 achieved 85.7% (95% CI: 83.7% - 87.5%), while the oncologists

achieved 80.0% (95% CI: 77.7% - 82.1%). Deepseek-R1 provided a

total of 6240 correct responses, while the oncologists provided 5489.

This difference was statistically significant (P = 0.004) (see

Figure 2A and Figure 3A).

The results of error type analysis are shown in Table 4.

Deepseek-R1 made 416 errors, resulting in an overall error rate of

6.2% (95% CI: 5.7% - 6.9%). In contrast, the less experienced

doctors made 1167 errors, corresponding to an overall error rate

of 17.5% (95% CI: 16.6% - 18.5%). The model exhibited significantly
Frontiers in Oncology 05
fewer errors in both total number and error rate. The incidence

rates of specific error types, expressed as a percentage of the total

number of questions, are as follows: For knowledge-based errors,

Deepseek-R1 had an incidence of 2.1% (95% CI: 1.8% - 2.5%), while

the doctors had a rate of 6.2% (95% CI: 5.6% - 6.8%). For logical

errors, Deepseek-R1 showed a rate of 1.4% (95% CI: 1.1% - 1.7%),

whereas the doctors exhibited a rate of 7.5% (95% CI: 6.9% - 8.2%).

For ethical errors, Deepseek-R1 had a rate of 2.7% (183/6656, 95%

CI: 2.4% - 3.2%), while the doctors had a rate of 3.8% (95% CI: 3.4%

- 4.3%).Although the proportion of ethical errors in total errors was

higher in the model (44.0%) than in the doctors (21.9%), the

absolute rate of ethical errors was lower in the model (2.7%)

compared to the doctors (3.8%). Overall, Deepseek-R1

demonstrated superior performance, particularly with respect to

knowledge-based and logical errors, maintaining a lower overall

error rate and showing stronger logical reasoning and decision-

making consistency (see Figure 2B and Figure 3B).

Table 5 shows the longitudinal simulation results for 40 patients

in the advanced stage. After dynamically inputting the three-phase

information (baseline → treatment → progression), Deepseek-R1

achieved an overall accuracy of 92.5% (95% CI: 89.3% - 94.8%),

while the doctors achieved an accuracy of 82.5% (95% CI: 78.2% -

86.1%). In the advanced group, the model’s accuracy was 95.0%

(95% CI: 89.5% - 97.7%), significantly higher than the doctors’

71.7% (95% CI: 63.0% - 79.0%). Error rate analysis of 360 questions

showed that Deepseek-R1 had an overall error rate of 7.5% (95% CI:

5.2% - 10.7%), whereas the doctors had a rate of 17.5% (95% CI:

13.9% - 21.8%). For logical errors, Deepseek-R1 had a rate of 1.1%

(95% CI: 0.4% - 2.8%), compared to 8.3% (95% CI: 5.9% - 11.6%)

for the doctors. Although the proportion of logical errors in total

errors was higher for the doctors (47.6%) than for the model

(14.8%), this difference was statistically significant (P = 0.012).

However, the error rate for logical errors was significantly lower in

the model. These findings further validate the stability of the

model’s reasoning in dynamic tasks (see Figures 3C, D).
Discussion

In recent years, the application of artificial intelligence (AI) in

the medical field has expanded (17), especially in the diagnosis and

treatment of high-incidence diseases like lung cancer, where it has

shown significant potential. AI leverages core technologies,

including big data analysis, deep learning, and natural language

processing, to assist physicians in making accurate diagnoses and to

provide essential support in treatment decisions, personalized plan

development, and prognosis evaluation. Large language models

(LLMs), capable of understanding and integrating vast amounts
TABLE 2 Inter-rater reliability analysis of the 64 calibration cases.

Variable Kappa value Asymptotic std. error Approx. T P-value

Doctors Group 0.613 0.088 6.530 <0.001

Ethical Review Group 0.669 0.087 7.175 <0.001
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of medical literature, clinical guidelines, and real-world case data,

are increasingly becoming crucial tools for medical knowledge

retrieval and clinical reasoning. Compared to traditional AI

systems, LLMs offer superior cross-task transfer capabilities and

enhanced natural language interaction, allowing them to provide

real-time knowledge support and decision-making assistance to

clinicians with minimal complexity. Existing studies have

demonstrated that AI technology has been successfully applied to

various medical tasks, including measuring pancreatic cystic

lesions, identifying metastatic disease locations, and extracting

oncology-related outcomes from free-text or semi-structured

reports (8, 18–20). These achievements further validate the vast

potential of AI in improving the efficiency and accuracy of

medical diagnostics.

This study evaluates the accuracy of the Deepseek-R1 model in

processing information for lung cancer patients. In clinical practice,

the model’s responses to 26 questions were generally satisfactory,

particularly when addressing conceptual queries, where its answers

were both accurate and comprehensive. This finding is consistent

with that of Butler et al (21), who assessed the performance of AI

large language models (AI-LLMs) in enhancing the readability of

ankle radiology reports. Their study graded the generated reports

based on readability and accuracy, utilizing the Flesch Reading Ease

Score (FRES) and Flesch-Kincaid Reading Level (FKRL) as

evaluation metrics. The results indicated that AI-LLMs

significantly improved report readability while maintaining high

accuracy. Additionally, in clinical diagnostics, the Deepseek-R1

model achieved an accuracy rate of 94.6%, substantially
Frontiers in Oncology 06
outperforming less experienced physicians, who achieved an

accuracy of 78.9%. This outcome is consistent with previous

studies. For instance, Do et al (20) evaluated the potential of

natural language processing (NLP) in extracting metastatic

disease information from CT imaging reports of cancer patients.

Their comprehensive assessment of the NLP model’s performance,

using metrics such as accuracy, precision, and recall, was based on

387,000 reports from over 90,000 patients. The study developed

three NLP models to predict the presence of metastatic disease in 13

organs, with the best-performing model achieving an accuracy of

90%-99% across all organs. Furthermore, the study identified

specific metastatic patterns for different cancer types, such as

breast and prostate cancers, which tend to metastasize to bones,

while colorectal and pancreatic cancers preferentially metastasize to

the liver. This research demonstrated the significant potential of

NLP in building large-scale metastatic disease databases and

highlighted its importance in personalized treatment planning.

This finding parallels our study, in which we observed that more

complex disease conditions in 40 patients with advanced lung

cancer led to a sharp decline in diagnostic accuracy among less

experienced physicians, particularly when clinical logic deviations

reached 47.6%. Despite this, the Deepseek-R1 model maintained a

stable accuracy rate in clinical diagnostic tasks. Although our study

did not track or quantify how Deepseek-R1 dynamically adjusts

recommendations based on longitudinal case updates, its high

accuracy in handling complex cases with disease progression

information suggests its potential adaptability. For instance, when

faced with a patient previously diagnosed with an EGFR-sensitive

mutation in non-small cell lung cancer, following radiological

progression after first-generation TKI treatment and the detection

of the T790M resistance mutation, Deepseek-R1 could potentially

recognize the resistance mechanism based on updated clinical

information and recommend a treatment switch to osimertinib.

This ability to adjust treatment strategies based on key clinical

milestones, such as newly detected resistance mutations or

significant changes in comorbidities, is a crucial aspect of

assessing AI’s clinical value. Future research should focus on

developing more refined evaluation methods to capture and

validate the dynamic adjustment process of AI recommendations

as patient conditions evolve, particularly in real or highly simulated

longitudinal case management, and assess the clinical rationale

behind these adjustments. This could involve documenting the

model’s specific responses after receiving updated information at

various time points and evaluating their consistency with clinical

guidelines and expert consensus. In clinical diagnostics, Deepseek-

R1 occasionally exhibits logical deviations and generates

“hallucinations,” or fabricated neutral facts (22). Karan et al. (23)

noted that approximately 30% of LLM outputs were inconsistent

with medical facts or consensus. Given the limited experience of

junior physicians and the long-term expertise required for lung

cancer diagnosis and treatment decision-making, Deepseek-R1’s

suggestions still provide valuable support to junior doctors.

However, final diagnostic decisions should be compared and

confirmed with the conclusions of senior oncologists. Our study

comprehensively evaluated the Deepseek-R1 model in the context
TABLE 3 Comparison of Overall Performance Between Deepseek-R1
and Junior Oncologists in 256 Diagnostic Cases.

Variable
Deepseek-

R1
junior
doctors

P-
value

Total number
of questions

6656 6656

Basic Group accuracy 1510 (98.3) 1435 (93.4)

Advanced
Group accuracy

3633 (94.6) 3030 (78.9)

Ethical Group accuracy 1097 (85.7) 1024 (80)

Total 6240 5489 0.004

Knowledge errors 143 (34.4) 412 (35.3)

Logical bias 90 (21.6) 499 (42.8)

Ethical risks 183 (44) 256 (21.9)

Total 416 1167 <0.001
Basic Group accuracy = (Total number of correct answers in the Basic Group/Total number of
questions in the Basic Group (256×6)) × 100%.
Advanced Group accuracy = (Total number of correct answers in the Advanced Group/Total
number of questions in the Advanced Group (256×15)) × 100%.
Ethical Group patterns = (Total number of correct answers in the Ethical Group/Total
number of questions in the Ethical Group (256×5)) × 100%.
Knowledge errors proportion = (Knowledge errors in Basic Group + Advanced Group)/Total
number of errors (Total questions - Total correct answers) × 100%.
Logical bias proportion = (Logical bias in Advanced Group)/Total number of errors (Total
questions - Total correct answers) × 100%.
Ethical risks = (Ethical risks in Ethical Group)/Total number of errors (Total questions - Total
correct answers) × 100%.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1601529
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2025.1601529
of lung cancer, addressing basic concepts, clinical diagnostics, and

ethical considerations. The results indicated that the model

demonstrated high accuracy across various aspects. However, our

findings diverged from those of other studies, which showed

shortcomings in certain characteristics and question categories,

particularly in terms of consistency and evidence-based

performance (24). We believe that these discrepancies may be

attributed to the detailed patient diagnostic information provided

in our study. While AI shows promise in disease diagnosis, it still

has significant limitations, particularly in the following areas: First,

disease diagnosis requires multiple types of information, including

detailed medical history, physical examination, imaging tests (such

as CT and MRI), and laboratory tests. However, AI cannot access

real-time dynamic patient information, such as the specific location

and severity of symptoms, associated symptoms, and their

progression. Additionally, AI cannot perform physical exams,

such as palpation, percussion, or reflex testing, which are critical
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for clinicians to make intuitive judgments about a patient’s

pathological state. Finally, imaging and laboratory test results are

often essential for diagnosing diseases, assessing their severity, and

formulating treatment plans. Since AI relies solely on limited

descriptive information and imaging data, the singularity and

incompleteness of these inputs directly limit the accuracy and

comprehensiveness of the diagnosis. Second, medical diagnosis

requires highly individualized analysis, especially when significant

differences exist among patients. Current AI models often lack a

deep understanding of a patient’s overall health, potential

comorbidities, and individual differences, making it challenging to

provide precise treatment recommendations. In conclusion, the

limitations of the Deepseek-R1 model primarily lie in its lack of

comprehensive patient data, its inability to perform clinical exams,

and its absence of individualized analysis capabilities.

With the gradual integration of artificial intelligence (AI) into

clinical practice, several concerns have emerged. First, particular
FIGURE 2

(A) A comparative analysis of the accuracy and error types in answering three types of questions from 256 patients by Deepseek and junior
physicians. (B) A comparative analysis of the accuracy and error types in answering questions from 40 complex patients in the disease progression
stage by Deepseek and junior physicians.
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attention must be paid to the accuracy and clinical validity of the

generated content, as incorrect information could mislead patients

and even pose risks. While the Deepseek-R1 model is capable of

providing extensive medical knowledge and supporting clinical

decision-making to some degree, it cannot yet fully replace the

judgment of professional healthcare providers in all contexts.

Unlike traditional search engines, Deepseek-R1 does not provide

explicit sources for the information it generates; instead, it produces

responses based on a vast pool of data. Although AI has made

significant strides in the recognition and classification of digital

pathology images, and certain visual models have demonstrated

high accuracy in clinical diagnostic assistance, the Deepseek-R1

model used in this study is a purely text-based model that lacks

native image understanding capabilities. In this study, all imaging

and pathology results were converted into standardized textual

inputs by clinical doctors or optical character recognition (OCR)

tools, which restricted the model’s performance to text-based data.

Therefore, to achieve a higher level of “visual-language”

collaborative reasoning, the development of multimodal model

architectures and integration strategies with native capabilities is

required. Although Deepseek-R1 can generate reasonable

inferences based on existing medical knowledge, it remains
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limited in its ability to process complex visual cues and

contextual understanding necessary for clinical diagnostics. For

instance, while Deepseek-R1 can recommend antipyretic drugs

for patients with common symptoms, such as fever, it cannot

accurately identify the presence of infection, rashes, or other

potential causes, which may result in incorrect diagnoses or

delayed treatments (25). Second, the widespread application of AI

in medical diagnosis has raised significant ethical and privacy

concerns. During interactions with the Deepseek-R1 model,

patients may provide sensitive health data, including personal

information, medical conditions, and even images related to

sensitive areas. A report by Lu et al (26) specifically highlighted

that adolescents and young adults diagnosed with cancer face an

increased suicide risk during the first year post-diagnosis. Although

the Deepseek-R1 model demonstrates strong overall diagnostic and

treatment recommendations for lung cancer, it exhibits a high

proportion of ethical-related errors (44%), notably higher than

the 21.9% observed in the physician group. This discrepancy

reflects its clear limitations in non-structured tasks, such as

emotional communication and value judgment. Furthermore, the

model is unable to provide the emotional support or humanistic

comfort required by patients. Amir et al. (27) reported instances in
FIGURE 3

(A) Distribution of advanced-level accuracy, basic-level accuracy, and ethical-level accuracy of Deepseek and junior physicians in answering three types of
questions from 256 patients. (B) Distribution of logical bias, knowledge errors, and ethical risks in the responses of Deepseek and junior physicians to three
types of questions from 256 patients. (C) Distribution of advanced-level accuracy, basic-level accuracy, and ethical-level accuracy of Deepseek and junior
physicians in answering questions from 40 complex patients at the disease progression stage. (D) Distribution of logical bias, knowledge errors, and ethical
risks in the responses of Deepseek and junior physicians to questions from 40 complex patients at the disease progression stage.
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which the model incorrectly stated survival data for Lung-RADS,

claiming that the survival time for Lung-RADS 4A was 12–18

months, and for Lung-RADS 4X, it was 3–6 months, which

contradicted actual guidelines. The dissemination of such

erroneous information could not only mislead patients but also

result in significant emotional distress, with potentially catastrophic

consequences. Therefore, it is advisable to avoid having the model

directly provide patients with highly sensitive information, such as

survival estimates. Further analysis revealed that when interacting

with cancer patients, Deepseek-R1 often describes disease

progression and survival timelines in a blunt manner, without

contextual adjustment, thereby adding psychological and

emotional burdens on the patients. In contrast, although junior

doctors made more ethical-related errors than Deepseek-R1 in

absolute terms, these errors were primarily due to inadequate

communication skills, which are more related to limited clinical

experience. This suggests that, while AI models may outperform

human doctors in certain judgment tasks, they still have significant

limitations in humanistic care, ethical judgment, and

communication. These ethical-related errors manifest in multiple

forms. For example, in simulated clinical dialogues, Deepseek-R1

sometimes recommends invasive procedures or high-risk

treatments without adequately explaining or warning about

potential risks, possibly overlooking the patient’s right to

informed consent. Additionally, when handling cases involving

sensitive personal information, even though the data is initially

anonymized, the model occasionally infers or suggests details that
TABLE 5 26 questions concerning the Fundamental Group, Advanced Group, and Ethical Group.

Fundamental group

Question 1 What is the definition of lung cancer?

Question 2 What are the common etiological factors of lung cancer?

Question 3 Based on the CT imaging data of this patient, is a diagnosis possible?

Question 4 Where is the lesion located according to the CT imaging findings?

Question 5 What further examinations should be conducted after a suspected diagnosis of lung cancer?

Question 6 How should the treatment plan be developed based on the patient’s tumor classification and staging?

Advanced group

Question 1
How should the subsequent treatment plan be adjusted based on the patient’s pathology report (e.g., adenocarcinoma, squamous carcinoma, or
small cell carcinoma)?

Question 2
Based on the TNM staging system, how should the lung cancer stage of this patient be accurately classified? What imaging or pathological features
should be considered?

Question 3 For a lung mass with ill-defined borders and no typical spiculated signs on CT imaging, what differential diagnoses should be prioritized?

Question 4 How can the likelihood of mediastinal lymph node metastasis be assessed? What additional imaging or laboratory tests should be performed?

Question 5 If imaging suggests peripheral lung cancer but the pathology results show a benign lesion, how should the diagnostic process be reassessed?

Question 6 How can surgical or chemotherapy plans be optimized for lung cancer patients with concurrent COPD or cardiovascular disease?

Question 7 How should targeted therapy be selected based on the patient’s genetic testing results (e.g., EGFR mutations)?

Question 8
For a patient with advanced non-small cell lung cancer (NSCLC) and a PD-L1 expression level of 30%, is immune checkpoint inhibitor
therapy recommended?

(Continued)
TABLE 4 Longitudinal simulation of diagnostic performance between
deepseek-r1 and oncologists in 40 progressive-phase lung cancer cases.

Variable
Deepseek-

R1
junior
doctors

P-
value

Total number
of questions

360 360

Basic Group accuracy 116 (96.7) 113 (94.2)

Advanced
Group accuracy

114 (95) 86 (71.7)

Ethical Group accuracy 103 (85.8) 98 (81.7)

Total 333 297 0.667

Knowledge errors 6 (22.2) 10 (15.9)

Logical bias 4 (14.8) 30 (47.6)

Ethical risks 17 (63) 23 (36.5)

Total 27 63 0.012
Basic Group accuracy = (Total number of correct answers in the Basic Group/Total number of
questions in the Basic Group (120)) × 100%.
Advanced Group accuracy = (Total number of correct answers in the Advanced Group/Total
number of questions in the Advanced Group (120)) × 100%.
Ethical Group patterns = (Total number of correct answers in the Ethical Group/Total
number of questions in the Ethical Group (120)) × 100%.
Knowledge errors proportion = (Knowledge errors in Basic Group + Advanced Group)/Total
number of errors (Total questions - Total correct answers) × 100%.
Logical bias proportion = (Logical bias in Advanced Group)/Total number of errors (Total
questions - Total correct answers) × 100%.
Ethical risks = (Ethical risks in Ethical Group)/Total number of errors (Total questions - Total
correct answers) × 100%.
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could inadvertently reveal the patient’s identity when generating

summary reports or responding to follow-up inquiries, raising

concerns about patient privacy protection. Moreover, the model

has been observed to exhibit potential biases when confronted with

ethical dilemmas related to resource allocation or clinical trial

recommendations. For example, when recommending clinical

trials, it may fail to consider the accessibility differences among

patients from varying socioeconomic backgrounds, or in some

instances, its suggestions may unintentionally favor certain

populations. This suggests the presence of bias in the model’s

decision-making logic. These ethical challenges underscore the

need for more thorough ethical review and algorithmic

optimization before applying such large language models in real-

world clinical decision support.

In this study, we conducted a preliminary analysis of the

“hallucination phenomenon” in the Deepseek-R1 model for lung

cancer tasks. Hallucination is defined as the generation of

information that appears plausible but is inconsistent with facts

or medical consensus. We found that Deepseek-R1 occasionally

generated fictitious values, guideline entries, or recommendation

pathways in the absence of clear input support. For example, the

model erroneously cited non-existent drug usage suggestions or

fabricated causal relationships between certain pathological

subtypes and specific mutations. These errors were particularly

common in cases involving ethical issues, manifesting as unverified

treatment pathways or unrealistic survival expectations. Although

we have not yet systematically quantified the frequency of these

errors, our experiments suggest that this hallucination phenomenon

is highly concerning. In structured tasks, the model achieved an

overall accuracy of 96.2% in the basic and advanced groups,

significantly higher than the physician group’s 86.5%. This

highlights the model’s strong transferability and consistency.
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However, while the model can generate diagnostic results in

complex scenarios, it still falls short of experienced clinicians in

identifying misdiagnosis risks, integrating clinical context, and

providing individualized explanations. As Berry et al. (28) noted

in their study on lung ultrasound, the acquisition and interpretation

of LUS images are highly dependent on the operator’s experience

and professional judgment. Even after short-term training,

operators may misjudge complex lesions or artifacts. Similarly,

current AI diagnostic systems face limitations in complex

situations requiring the integration of multi-source clinical

information and differential diagnosis. In such cases, AI cannot

achieve the flexible adjustment and individualized decision-making

capabilities of physicians. We further analyzed the error causes in

the basic and advanced groups of Deepseek-R1. In the basic group,

the model primarily made knowledge-based errors in identifying

common risk factors for lung cancer and in initial judgments of CT

imaging localization. These errors may stem from insufficient

medical specificity and clinical diversity in the pre-training data.

In the advanced group, logical bias was the main type of error, with

typical mistakes occurring in complex TNM staging judgments and

treatment pathway adjustments following resistance mutations

(e.g., after EGFR-TKI treatment). This highlights the model’s

limitations in handling multi-parameter comprehensive reasoning

tasks, particularly when dealing with rare pathological subtypes,

such as pulmonary sarcomatoid carcinoma. Compared to junior

doctors, Deepseek-R1 exhibited lower rates of knowledge-based

errors (2.1%) and logical errors (1.4%), while junior doctors had

error rates of 6.2% and 7.5%, respectively. This suggests that in tasks

requiring up-to-date and detailed knowledge, such as accurately

classifying uncommon lung cancer subtypes (e.g., sarcomatoid

carcinoma) or identifying rare driver genes (e.g., precise

identification of ROS1 fusion and its association with ALK-
TABLE 5 Continued

Advanced group

Question 9 For post-operative stage IIIA lung cancer patients, what is the optimal timing and dosage for combined radiotherapy and chemotherapy?

Question 10 For pain management in terminal-stage lung cancer patients, which drug combinations should be prioritized?

Question 11 If acquired resistance to EGFR-TKI occurs during treatment, what are the subsequent treatment options?

Question 12 How should severe bone marrow suppression after chemotherapy be managed, and how should the subsequent treatment plan be adjusted?

Question 13 For lung cancer patients with brain metastases, is a consultation with neurosurgery or radiation oncology necessary?

Question 14 If new liver metastases appear after chemotherapy, how should the original treatment plan be adjusted?

Question 15 How should rare pathological types, such as pulmonary sarcomatoid carcinoma, be diagnosed? What specific tests are needed?

Ethical group

Question 1
How should the 5-year survival rate for stage III B lung cancer be explained to the patient and their family? What communication skills should
be prioritized?

Question 2 For patients with advanced PD-L1-negative tumors, are there any eligible clinical trials that can be recommended?

Question 3 In cases with a limited budget, how can cost-effective diagnostic and therapeutic options be prioritized?

Question 4
If the model initially diagnoses “inflammation” but the pathology results show “malignancy,” can the diagnosis be autonomously corrected, and
how should the reasoning be explained?

Question 5 How can the privacy and security of imaging and genetic testing data provided by patients be ensured during model interactions?
Table 5: Regarding the 26 questions raised.
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negative status), junior doctors may be more prone to knowledge-

based biases due to insufficient clinical experience or incomplete

knowledge updates. Similarly, junior doctors have a higher rate of

logical errors in cases involving complex comorbidities, which may

reflect an imperfect logical chain in information integration, risk

assessment, and individualized decision-making. For example,

formulating a treatment plan for a patient with advanced lung

cancer and severe cardiopulmonary insufficiency poses significant

challenges to logical reasoning, as it requires balancing the intensity

of anti-tumor treatment with patient tolerance and estimating the

potential risks of treatment-related complications. While the

proportion of ethical errors in Deepseek-R1’s error composition is

relatively high (44.0% of errors), its absolute rate of ethical errors

(2.7%) remains lower than that of physicians (3.8%). The model

also demonstrates advantages in terms of broad knowledge

coverage, rapid information updates, and logical consistency

under rule-based scenarios. However, AI models still face

inherent limitations. For example, the model may encounter

knowledge gaps or rigid logic when dealing with the latest

research details of “rare mutations” not fully covered in the

training data or complex comorbidity management strategies

requiring high individualization beyond conventional guidelines.

In such cases, the model may fail to provide optimal suggestions.

Future research should focus on in-depth analysis of AI error

patterns in specific clinical challenges and explore improvement

strategies. These strategies could include fine-tuning with more rare

case data or enhancing the model’s reasoning capabilities for

handling multi-source uncertain information, in order to better

support clinical decision-making.

Artificial intelligence (AI) has the potential to provide accurate

and effective clinical support, but it may also lead to over-reliance in

the medical field. This concern is well-founded, as multiple studies

and commentaries have highlighted the potential negative impacts

of AI. For example, the US National Institute of Standards and

Technology (NIST) reported that human cognitive biases, such as

automation bias or over-reliance on automated systems, can

diminish critical thinking in AI-assisted decision-making. Human

biases often reflect systematic errors in thinking associated with

heuristic principles and predictive values linked to simple judgment

operations. These biases are typically implicit and influence how

individuals or groups perceive information, such as automated AI

output, to make decisions or fill in missing information. As a result,

healthcare professionals who overly trust AI outputs may

unconsciously reduce their independent critical assessment,

particularly in complex or ambiguous situations, potentially

compromising decision quality (29). Similarly, Siala et al. (30)

emphasized the importance of responsible AI use in healthcare

and highlighted the risks associated with over-reliance on AI. Over-

reliance on AI systems for diagnosis and decision-making can erode

healthcare professionals’ clinical skills, critical thinking, and local

practice capabilities. Specifically, physicians may gradually lose

their ability to independently assess complex cases, particularly

when conducting detailed differential diagnoses or making flexible

judgments based on individual factors. This directly impacts the

quality and safety of medical services. While language models have
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advantages in processing and analyzing large-scale medical data and

can support clinical decision-making, their functions are limited to

data-driven pattern recognition and predictive analysis. They lack a

deep understanding of potential variables in complex medical

contexts and the integration of clinical experience. Therefore, AI

should be viewed as a complementary tool to medical expertise,

rather than a substitute for the core judgment and decision-making

roles of physicians. Physicians’ experience, clinical knowledge,

ethical considerations, and patient individual differences remain

essential factors in the decision-making process. Moreover, AI

language models are trained on large datasets, which may

introduce biases inherent in the data. If the training data are

biased or erroneous, the model may inadvertently propagate these

biases or errors in its outputs. Therefore, careful selection of

training data and ongoing bias detection and correction efforts

are essential to ensure the reliability and accuracy of AI models.

Although the Deepseek-R1 model showed high accuracy and

clinical utility in generating diagnostic and therapeutic

recommendations for lung cancer, several limitations hinder its

broader implementation. First, the model’s performance depends

heavily on the quality and completeness of input data. In this study,

experienced oncologists verified all patient records to ensure

accuracy and consistency. However, consistent data quality

cannot be guaranteed in real-world clinical environments. The

model’s robustness in scenarios involving incomplete information

or complex comorbidities remains insufficiently validated.

Although expert verification enhances data reliability, the

structured inputs used in this study fail to capture the uncertainty

and variability typically present in routine clinical documentation.

Moreover, converting multimodal clinical data into plain text

inevitably leads to information loss. For example, converting

radiological data such as CT scans into standardized text often

omits critical features—such as lesion texture, margins, vascular

involvement, and spatial anatomy. These features serve as key

diagnostic cues for experienced clinicians. This abstraction may

limit the model’s capacity to capture the full clinical context

required for managing complex cases. To address these

limitations, future work should prioritize developing multimodal

large language models (LLMs) that integrate both visual and textual

clinical information. These models could improve AI

interpretability and robustness by enabling cross-modal reasoning

in clinical applications. Additionally, to assess the model’s tolerance

for flawed inputs and its error-correction capability, future studies

should include test sets containing misleading or contradictory

clinical data. Such “adversarial” or “conflict simulation” sets could

be used to evaluate the model’s capacity for discrimination and self-

correction under diagnostic ambiguity. Prompt engineering

strategies should also be explored. For example, prompts

including verification cues—such as “Please confirm whether this

recommendation aligns with guidelines”—may enhance output

reliability and robustness in response to atypical or noisy inputs.

This study did not perform subgroup sensitivity analyses,

introducing a potential bias due to imbalanced patient subgroup

distribution. The single-center retrospective design and limited

sample size may have introduced selection bias. Future validation
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should use multicenter, large-scale datasets and include stratified

subgroup analyses to evaluate the model’s generalizability and

stability across clinical contexts. Finally, the current model cannot

accommodate real-time clinical changes or patient-specific disease

trajectories. To overcome this, future models should incorporate

time-series frameworks and integrate heterogeneous data sources—

including genomics, transcriptomics, and electronic medical

records. This approach would enable dynamic modeling of

disease progression and enhance personalized medicine.

Technically, feedback mechanisms linked to disease progression

could enable adaptive output updates and help overcome the

limitations of rule-based systems in managing non-linear and

stage-dependent disease trajectories.
Conclusion

Deepseek-R1 significantly outperformed junior oncologists in

terms of diagnostic accuracy and treatment decision-making,

particularly in complex and dynamic clinical situations. While

limitations remain in its ethical reasoning, the model holds

substantial potential for supporting junior physicians, contributing to

multidisciplinary discussions, and optimizing treatment pathways.
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