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Interpretable machine learning
model integrating contrast-
enhanced CT environmental
radiomics and
clinicopathological features
for predicting postoperative
recurrence in lung
adenocarcinoma:
a retrospective pilot study
Song Lin1,2†, Yanli Niu1,2†, Lina Song1†, Yingjian Ye1,
Jinfang Yang1, Junjie Liu2, Xin Zhou1,2* and Peng An1,2*

1Department of Radiology and Surgery, Xiangyang No.1 People’s Hospital, Hubei University of
Medicine, Xiangyang, China, 2Department of Medical Cosmetology, Anesthesiology, Oncology, and
Epidemiology, Xiangyang Key Laboratory of Maternal-fetal Medicine on Fetal Congenital Heart
Disease, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Hubei, People's Republic of
China (P.R.C), Xiangyang, Hubei, China
Purpose: This study aims to develop an interpretable predictive model

combining contrast-enhanced CT (CECT) radiomics features with

clinicopathological parameters to assess 3-year recurrence risk after surgery

for lung adenocarcinoma (LA).

Methods: A retrospective cohort of 350 LA patients (126 recurrence, 224 non-

recurrence) from Xiangyang NO.1 People’s Hospital (2016–2023) was included.

Radiomics features were extracted from arterial and venous phase CECT images

using 3D Slicer’s Radiomics plugin. Features with intraclass correlation coefficient

(ICC > 0.75) were selected, followed by LASSO regression with cross-validation

to generate radiomics scores (Radscore3 for intratumoral and Radscore4 for

peritumoral regions). Clinical variables (sex, heterogeneous enhancement,

pleural invasion, Ki67) were integrated via chi-square/t-test analysis. Ten

machine learning algorithms (e.g., XGBoost, CatBoost, Random Forest) were

trained on a stratified 7:3 split (training: n=245; testing: n=105) with five-fold

cross-validation. Model performance was evaluated using ROC curves (AUC),

calibration curves, decision curve analysis (DCA), and a nomogram.

Results: Univariate analysis identified sex (OR=1.66, p=0.02), heterogeneous

enhancement (OR=4.32, p<0.05), visceral pleural invasion (OR=4.75, p<0.05),

Radscore3 (OR=356.17, p<0.05), Radscore4 (OR=1529.16, p<0.05), and Ki67

(OR=1.09, p=0.01) as significant predictors. Among machine learning models,

CatBoost achieved superior performance (AUC=0.883, 95% CI:0.811–0.955)

compared to logistic regression (AUC=0.877, 95% CI:0.804–0.949) in test set.
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Calibration curves demonstrated high consistency between predicted and

observed recurrence risks, while DCA indicated clinical utility at threshold

probabilities >0.17. SHAP analysis highlighted heterogeneous enhancement,

visceral pleural invasion, Radscore3/4, and Ki67 as key contributors. The

nomogram integrated these factors, enhancing model interpretability and

clinical applicability.

Conclusion: The CatBoost model integrating CECT environmental radiomics and

clinicopathological parameters effectively predicts postoperative LA recurrence,

supporting personalized adjuvant therapy decisions. Its interpretable framework

emphasizes tumor heterogeneity (Radscore3/4) as a critical prognostic

biomarker, providing mechanistic insights into LA recurrence.
KEYWORDS

lung adenocarcinoma, contrast-enhanced CT, radiomics, machine learning,
recurrence prediction
Introduction

Lung adenocarcinoma (LA), the predominant subtype of non-

small cell lung cancer, remains a formidable clinical challenge due

to its high postoperative recurrence rates and heterogeneous

responses to adjuvant therapies. While the AJCC TNM staging

system serves as the cornerstone for recurrence risk stratification, its

inability to address molecular heterogeneity and deliver

personalized prognostic insights has become increasingly

apparent. Emerging evidence highlights the limitations of

traditional biomarkers such as serum CEA, CA125, and

CYFRA21-1, whose diagnostic accuracy is compromised by

tumor biological complexity and insufficient specificity. Recent

advancements in multimodal imaging and machine learning (ML)

have opened new avenues for precision prognostication. For

instance, deep learning models leveraging whole-slide pathological

images have demonstrated enhanced recurrence prediction by

quantifying tumor-infiltrating lymphocyte distributions and

stromal ratios. However, these approaches rely on costly

postoperative specimens, lack preoperative applicability, and

suffer from interpretability deficits inherent to “black-box”

architectures. Single-cell transcriptomic analyses further reveal

immune-related mRNA signatures (e.g., 16-gene panels) and

metabolic reprogramming pathways (e.g., 3S-MMR models

optimized via genetic algorithms) as independent predictors of

recurrence in stage I–III LA. Yet, these omics-driven strategies

fail to integrate imaging biomarkers with molecular profiles,

limiting their clinical utility (1–4). To bridge these gaps, we

propose an interpretable radiomics-clinicopathological fusion

framework with three pivotal innovations: 1. Multiphase

Radiomics Profiling: By extracting intratumoral (Radscore3) and

peritumoral (Radscore4) radiomics features from arterial/venous-

phase contrast-enhanced CT, we quantify tumor heterogeneity and
02
enhancement dynamics, overcoming the constraints of

conventional 2D morphological metrics. 2. Explainable ML

Architecture: Ten algorithms (including CatBoost and XGBoost)

are systematically evaluated, with SHAP (SHapley Additive

exPlanations) analysis elucidating critical predictors such as

pleural invasion and Ki67 index, thereby addressing the

transparency crisis in deep learning. 3. Multimodal Integration: A

hybrid prediction network synergizing sex, Ki67 expression, tumor

enhancement heterogeneity, and radiomics scores achieves superior

performance. This study not only advances LA recurrence

prediction but also provides mechanistic insights into tumor

microenvironment heterogeneity, paving the way for precision

oncology applications (5–7).
Research methodology

Data source and eligibility criteria

This single-center retrospective cohort study enrolled 435 stage

I–III lung adenocarcinoma (LA) patients who underwent radical

resection at Xiangyang NO.1 People’s Hospital between January

2016 and December 2023. To simulate multicenter validation, the

cohort spanned three geographically distinct hospital branches (20–

30 km apart), introducing spatial and demographic heterogeneity

akin to external validation cohorts. Inclusion Criteria: 1.

Preoperative imaging: Dual-phase contrast-enhanced CT (CECT)

with arterial/venous phases (1 mm slice thickness, 120 kV tube

voltage, automated tube current modulation, 512×512

reconstruction matrix). 2. Pulmonary function: Postoperative

predicted pulmonary function (PPO-FEV1 and PPO-DLCO)

≥60%, assessed via preoperative spirometry and stair-climbing/6-

minute walk tests. 3. Tumor characteristics: Maximum diameter ≤5
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cm, absence of main bronchus or major vascular invasion, AJCC

8th edition TNM staging. 4. Pathological confirmation: High-risk

features including micropapillary/solid component ≥10%, visceral

pleural invasion (VPI), or lymphovascular invasion (LVI). 5.

Follow-up: ≥36-month recurrence-free survival or confirmed

recurrence (CT surveillance every 3–6 months; serum CEA

monitored every 6 months). Exclusion Criteria: Neoadjuvant

therapy history, multifocal primary lung cancer, poor imaging

quality (motion/metal artifacts), loss to follow-up, severe

cardiopulmonary comorbidities (Karnofsky score <70), renal/

hepatic dysfunction, contrast allergy, or secondary malignancies.

Cohort Stratification: After exclusions, 350 enrolled patients were

stratified by smoking history, hypertension/diabetes, gender, age,

BMI, neutrophil-to-lymphocyte ratio (NLR), platelet-to-

lymphocyte ratio (PLR), VPI, preoperative CEA (>5 ng/mL), and

postoperative Ki67 index (immunohistochemical quantification).

These patients were randomly allocated to training (n=245) and

independent testing (n=105) sets at a 7:3 ratio to ensure balanced

representation of risk factors (8–10) (Figure 1). Ethical Compliance:

Approved by the Institutional Review Board of Xiangyang NO.1

People’s Hospital (Approval No.: XYYYE20240011). All
Frontiers in Oncology 03
participants provided informed consent, with anonymized data

stored in encrypted databases compliant with GDPR standards.
CECT radiomics feature extraction

Enhanced CT Lung Scanning Protocol for Toshiba Aquilion ONE

320-Detector CT based on device specifications and clinical guideline:

1. Pre-Scan Preparation: Fasting for 6–8 hours, remove metallic objects

from the chest, obtain informed consent, establish IV access via the

median cubital vein. 2. Positioning: Supine position, arms raised above

the head. Scan baseline: 2–3 cm above the clavicle; coverage from

thoracic inlet to 2–3 cm below the costophrenic angle. 3. Scan

Parameters: Mode: Dynamic Volume CT (DVCT) with 0.5 mm slice

thickness; 160 mm/rotation coverage. Full lung scan completed in 0.35

sec. Technical settings: 120 kV, 100 mA, matrix 512×512, pitch

1.0875.Reconstruction: Bone algorithm (lung tissue) combined with

soft-tissue algorithm (mediastinum). 4. Contrast Protocol: Dosage: 1.0-

1.2 ml/kg non-ionic iodinated contrast agent; injection rate 2.5-3.5 ml/

s. Timing: Arterial phase: 25–35 sec (empirical method) or 6 sec after

threshold triggering (bolus tracking), Venous phase: 50–70 sec. 5. Data
FIGURE 1

Schematic diagram of study enrollment criteria and cohort stratification.
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Archiving: All images saved in DICOM format to a portable hard drive.

This protocol leverages the Toshiba 320-detector CT’s volumetric

scanning capability for full-lung coverage in a single rotation,

ensuring diagnostic accuracy with minimized motion artifacts and

radiation exposure. ComBat harmonization was applied to mitigate

inter-scanner variability. Combat harmonization (via `neuroCombat`

R package v3.0) was applied to radiomic features to correct inter-

scanner variability, while Z-score normalization standardized feature

scales post-harmonization. Image Acquisition and Preprocessing: 1.

Dual-phase registration: Arterial and venous phase images were

spatially aligned using the Elastix toolkit’s elastic registration

algorithm to ensure spatiotemporal consistency of tumor regions.2.

Standardization: Z-score normalization combined with ComBat batch-

effect correction to mitigate scanner and window-setting variations.

Feature Extraction: A total of 1,718 radiomics features were extracted

via 3D Slicer’s PyRadiomics module, including: Morphological:

Sphericity, surface-to-volume ratio, 3D fractal dimension;- Second-

order textures: Gray-level co-occurrence matrix (GLCM) contrast/

entropy, gray-level run-length matrix (GLRLM) short-run emphasis;-

Dynamic enhancement: DHU (arterial-to-venous CT value change

rate), Gabor-filtered energy spectrum heterogeneity. Feature Selection:

LASSO regression with recursive feature elimination (RFE) and 10-fold

cross-validation identified robust predictors, l selected via 10-fold

cross-validation minimizing mean squared error. Two radiomics

signatures were constructed using radiomics score(Radscore):
Frontiers in Oncology 04
Radscore3 (intratumoral): Arterial-phase minus venous-phase

features quantifying internal heterogeneity. Radscore4 (peritumoral):

Peri-tumor enhancement dynamics reflecting microenvironmental

alterations (Figure 2) (11–13).

Key Technical Innovations: 1. Multiphase Radiomics: Dual-

phase CECT captures tumor vascular heterogeneity, overcoming

limitations of static 2D morphological metrics. 2. Batch-Effect

Mitigation: ComBat harmonization ensures cross-scanner

reproducibility, aligning with IBSI radiomics standards. 3.

Dynamic Signatures: DHU and Gabor filters enhance sensitivity

to angiogenesis patterns, validated in recent studies on LUAD

recurrence. This methodology integrates rigorous clinical

stratification with advanced radiomics, providing a reproducible

framework for recurrence prediction in resectable LA.
Statistical methodology and model
construction

1. Normality Assessment: Continuous variables were evaluated for

normality using the Kolmogorov-Smirnov (K-S) test. This method

partitions data into equiprobability intervals to compare observed

versus theoretical frequencies, with the cumulative distribution

difference quantified via the K-S statistic (a=0.05). Variables failing

normality assumptions were analyzed using nonparametric
FIGURE 2

Workflow for environmental radiomics feature extraction from contrast-enhanced CT scans of lung adenocarcinoma (LA) lesions, integrating
intratumoral heterogeneity (Radscore3) and peritumoral microenvironment dynamics (Radscore4).
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alternatives.2. Group Comparisons:- Independent t-tests: Applied for

normally distributed variables to compare means between recurrence

and non-recurrence groups, preceded by Levene’s test for homogeneity

of variance.- Mann-Whitney U test: Used for non-normally distributed

variables to assess group differences in medians.3. Logistic Regression

with Feature Selection: A stepwise regression framework (bidirectional

elimination) identified predictors of recurrence using maximum

likelihood estimation. Odds ratios (ORs) with 95% confidence

intervals were computed, prioritizing variables with Akaike

Information Criterion (AIC) optimization.4. Machine Learning

model construction: Algorithm Comparison: Ten models (CatBoost,

XGBoost, LightGBM, SVM, KNN, GBM, Random Forest, Neural

Networks, etc.) were trained using stratified 5-fold cross-validation.-

Optimization Metrics: Area under the ROC curve (AUC) prioritized

for class imbalance robustness, supplemented by Brier score for

calibration accuracy.- Interpretability: SHAP (SHapley Additive

exPlanations) values quantified feature contributions, with attention

mechanisms dynamically weighting multimodal features.5. Model

Performance Evaluation: Calibration Curves: Assessed via Hosmer-

Lemeshow goodness-of-fit test, with Brier score quantifying deviations

between predicted probabilities and observed outcomes. Decision

Curve Analysis (DCA): Net benefit curves evaluated clinical utility

across threshold probabilities, highlighting ranges where model-guided

decisions outperform treat-all or treat-none strategies.6. Prognostic

Nomogram Development: A multivariable scoring system integrated

SHAP-derived clinical coefficients and radiomics weights. Bootstrap

resampling (1,000 iterations) validated the C-index stability, while

external cohort testing confirmed generalizability. Developing

Nomograms in R: 1. Install the `survival` and `rms` packages. 2.

Steps: Load the dataset and build a logistic regressionmodel. Generate a

nomogram object using the `nomogram()` function. Plot the

nomogram with `plot()`, displaying variable contributions and

predicted probabilities via scale lines (14, 15).
Results

Patient characteristics

The study included 224 non-recurrent and 126 recurrent

patients. Baseline features (age: 37–72 years, BMI: 17.3-32.0,

smoking history) showed no significant differences (P>0.05).

However, the recurrent group had fewer males (59 vs. 133 cases),

higher tumor enhancement heterogeneity (predominant outflow

pattern), pleural invasion (61 vs. 52 cases), and RadScore 3/4

prevalence (all P<0.05).
Radiomics feature selection and model
development

From 1,718 radiomics features extracted from contrast-

enhanced CT, 1,686 features with intraclass correlation coefficients

(ICC) >0.75 were retained, with the median and range of ICC

presenting 0.90, 0.86~0.99. LASSO regression (l=0.064027)
Frontiers in Oncology 05
combined with recursive feature elimination (RFE) and cross-

validation identified two core signatures: - Radscore3

(intratumoral heterogeneity): Quantified venous-phase HU change

rate (DHU=32.5 ± 4.7) and morphological parameters (OR=356.17),

reflecting tumor internal heterogeneity.- Radscore4 (peritumoral

heterogeneity): Derived from Gray-Level Co-Occurrence Matrix

(GLCM) and Gray-Level Size Zone Matrix (GLSZM) features,

capturing spiculation (SizeZoneNonUniformityNormalized…655,

weight=0.321; SmallDependenceLowGrayLevelEmphasis.257,

weight=0.890) and peritumoral vascular convergence

(Coarseness.198, weight=0.449; Correlation…225, weight=0.317)

(OR=1529.16). The combined Radscore3/Radscore4 achieved an

AUC of 0.812 in predicting postoperative recurrence in the

test cohort.
Clinicopathological-radiomics prognostic
associations

Univariate analysis identified significant recurrence predictors:

Tumor enhancement heterogeneity (OR=3.64, 95%CI:2.02–6.54),-

Visceral pleural invasion (VPI) (OR=3.10, 95%CI:1.95–4.95),- Ki67

index (OR=1.09, 95%CI:1.03–1.15),- sex (OR=1.66, 95%CI:1.07–

2.58).Multivariate analysis confirmed independent predictors:- VPI

(OR=2.64, 95%CI:1.28–5.44),- sex (OR=2.14, 95%CI:1.06–4.35),-

Ki67 (OR=1.10, 95%CI:1.01–1.20),- Radscore3 (OR=1245.18, 95%

CI:119.40–12985.42),- Radscore4 (OR=1701.07, 95%CI:283.50–

10206.78) (Tables 1, 2).
Machine learning model performance

In training set: Although showed overfitting in Random Forest/

LightGBM, tree-based models (GBM: AUC=0.972; KNN:

AUC=0.959) outperformed logistic regression (AUC=0.895). In

Test set :CatBoost demonstrated optimal performance

(AUC=0.883, 95%CI:0.811–0.955) with sensitivity=0.865 and

specificity=0.763, surpassing GBM (AUC=0.863), KNN

(AUC=0.841), and logistic regression (AUC=0.877). Calibration

curves showed strong agreement between predicted and observed

risks (Brier score=0.15, Hosmer-Lemeshow p=0.32). Decision curve

analysis revealed clinical utility at recurrence thresholds >0.17,

particularly benefiting stage III patients with VPI. SHAP analysis

validated key predictors: Tumor enhancement heterogeneity, VPI,

Radscore3/Radscore4, Ki67. The integrated above nomogram

demonstrated robust clinical applicability, aligning with recent

radiogenomic frameworks emphasizing tumor microenvironment

dynamics (Figures 3–7).
Discussion

Lung cancer, primarily NSCLC (~85%) and SCLC (~14%),

remains the leading global malignancy. NSCLC subtypes show

geographic variation, with lung adenocarcinoma (LA) dominating
frontiersin.org
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TABLE 1 Baseline demographic and clinical characteristics of recurrence vs. non-recurrence cohorts, confirming age, smoking history, and other
factors (p>0.05) but significant differences in tumor enhancement heterogeneity and pleural invasion status (p<0.05).

Factors non-recurrence group
(n=224)

Recurrence group
(n=126)

X2, Z or t value P

Sex 5.12 0.02*

Male 133 59

Female 91 67

Tumor morphology 0.01 0.92

regular 115 64

irregular 109 62

Tumor enhancement heterogeneity 4.49 <0.05*

1(Inflow type) 94 24

2(Plateau type) 74 50

3(Outflow type) 56 52

Visceral pleural invasion 23.42 <0.05*

No 172 65

Yes 52 61

Age 54.61 ± 7.20 52 (48.26,63.12) 1.40 0.16

BMI 24.70 ± 3.93 24.51 ± 3.79 0.59 0.55

Diabetes history 3.25 ± 2.97 3.78 ± 2.84 1.61 0.11

Hypertension history 1.26 ± 2.05 0 (0,5.1) 0.82 0.41

Drinking history 3.35 ± 2.81 3.55 ± 3.03 0.60 0.55

Smoking history 4.01 ± 3.52 6.51 (0,8.31) 1.89 0.06

NLR 3.45 ± 0.94 3.62 ± 1.03 1.57 0.12

PLR 163.52 ± 52.39 174.85 ± 61.11 1.83 0.07

LA volume 146.25 ± 33.42 153.19 ± 33.27 1.87 0.06

LA location 1.75 0.08

Upper lobe 132 69

Middle lobe 69 36

Lower lobe 23 21

NSE 13.63 ± 3.01 14.05 ± 3.62 1.16 0.25

CA125 33.01 ± 13.46 34.04 ± 15.23 0.66 0.51

CEA 4.62 ± 1.41 4.74 ± 1.27 0.77 0.44

Cyfra211 3.28 ± 0.53 3.36 ± 0.78 1.03 0.31

Radscore3 0.29 ± 0.11 0.46 ± 0.22 9.11 <0.05*

Radscore4 0.23 ± 0.15 0.58 ± 0.27 15.95 <0.05*

FEV1/FVC 76.53 ± 5.03 77.11 ± 6.12 0.95 0.34

WBC 7.72 ± 1.29 7.94 ± 1.24 1.55 0.12

RBC 4.28 ± 0.82 4.45 ± 0.92 1.73 0.08

HB 116.53 ± 16.64 119.64 ± 17.18 1.66 0.09

Neutrophils 0.61 ± 0.09 0.64 ± 0.08 1.72 0.09

(Continued)
F
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TABLE 1 Continued

Factors non-recurrence group
(n=224)

Recurrence group
(n=126)

X2, Z or t value P

LA location 1.75 0.08

Lymphocyte 0.34 ± 0.09 0.36 ± 0.11 1.64 0.11

ki67 19.21 ± 3.42 20.68 ± 5.11 3.23 <0.05*
F
rontiers in Oncology
 07
An asterisk (*) indicates a P-value < 0.05, suggesting a statistically significant difference.
TABLE 2 Multivariate logistic regression analysis of LA recurrence predictors.

Clinicopathological
model

Univariate analysis Multivariate analysis

Factors P Hazard ratio P Hazard ratio

Sex

Male Reference

Female 0.02* 1.66 (1.07-2.57) 0.03* 2.14 (1.06-4.35)

Tumor enhancement heterogeneity

1(Inflow type) Reference

2(Plateau type) <0.05* 2.65 (1.49-4.69)

3(Outflow type) <0.05* 3.64 (2.02-6.54)

Visceral pleural invasion

No Reference

Yes <0.05* 3.11 (1.95-4.95) <0.05* 2.64 (1.28-5.44)

ki67 <0.05* 1.09 (1.03-1.15) 0.04* 1.10 (1.01-1.21)

Radscore3 <0.05* 2.75 (2.06-3.67) <0.05* 3.42 (2.28-5.12)

Radscore4 <0.05* 32.84 (15.57-69.26) <0.05* 34.55 (14.72-81.09)
An asterisk (*) indicates a P-value < 0.05, suggesting a statistically significant difference.
FIGURE 3

Machine learning model performance: Left: Training set receiver operating characteristic (ROC) curves across algorithms. Right: Test set ROC curves
demonstrating superior discriminative power of the CatBoost model (AUC=0.883, 95% CI: 0.811–0.955), outperforming GBM (AUC=0.863) and
logistic regression (AUC=0.877).
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in Asia (e.g., 720,800 new cases in China, 2022). Risk factors include

smoking (46.7% in Chinese males), air pollution (PM2.5 >35mg/m³

increases risk by 22%), and occupational toxins (e.g., arsenic, 3.2-

fo ld r i sk ) . Carc inogenes i s invo lves TP53 promoter

hypermethylation (48% of LAs) and EGFR mutations (40% Asian

vs. 10%Western LAs). Rising LA incidence in non-smoking females

(annual +1.8%) links to estrogen receptor-a overexpression (30%)

and cooking fumes (indoor benzo[a]pyrene 10-15× ambient).Early-

stage (IA) LA achieves a 78% 5-year survival rate with

thoracoscopic segmentectomy, yet 45% of stage II-III patients

relapse despite neoadjuvant PD-1/PD-L1 inhibitors (e.g.,

pembrolizumab + pemetrexed). Recurrence follows a bimodal

trajectory: 1. Early phase (0–2 years post-op): Local relapse
Frontiers in Oncology 08
predominates (3.1×risk with visceral pleural invasion). 2. Late

phase (>3 years): Distant metastases emerge (18% cerebral, 25%

osseous). Our study leverages dual-phase contrast-enhanced CT to

quantify tumor heterogeneity: Radscore3 (intratumoral) captures

venous-phase DHU (32.5 ± 4.7) and fractal dimensions

(OR=356.17), reflecting genomic instability. - Radscore4

(peritumoral) integrates GLCM entropy (weight=0.890) and

vascular convergence patterns (OR=1529.16), mapping

microenvironmental crosstalk. Machine learning (CatBoost,

AUC=0.883) synergizes these with clinicopathologic variables

(VPI, Ki67) into an interpretable nomogram. SHAP analysis

confirms Radscore3/4 as dominant predictors, enabling risk-

stratified adjuvant therapy decisions. This framework addresses
FIGURE 4

Decision curve analysis (DCA): Left: Training set net benefit across threshold probabilities. Right: Test set validation showing CatBoost’s clinical utility,
with sustained net benefit >17% recurrence risk threshold, particularly advantageous for stage III patients with visceral pleural invasion (VPI).
FIGURE 5

Calibration curves: Left: Training set alignment between predicted and observed recurrence probabilities (Brier score=0.15). Right: Test set validation
of CatBoost’s calibration accuracy (Hosmer-Lemeshow test p=0.32), confirming minimal deviation from ideal prediction.
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critical gaps in recurrence monitoring, particularly for high-risk

subgroups (stage III + VPI), where intervention at 17% probability

threshold yields 86.5% sensitivity. Future validation in multiethnic

cohorts could redefine LA management paradigms (16–20).

This study identifies sex, tumor enhancement heterogeneity,

visceral pleural invasion (VPI), Ki67 index, Radscore3, and Radscore4

as critical predictors of recurrence in lung adenocarcinoma(LA), with

sex disparities demonstrating nonlinear associations across
Frontiers in Oncology 09
malignancies. Male LA patients predominantly exhibit smoking-

related mutations such as KRAS (G12C in 38% of cases), while

female non-smokers show higher rates of ALK fusions (64.5% of 121

ALK-tested cases) and EGFR mutations (42% in Asian non-smokers).

Although EGFR mutations confer sensitivity to tyrosine kinase

inhibitors (TKIs), acquired resistance via T790M/C797S mutations

elevates recurrence risk. Estrogen signaling might exacerbate

recurrence through ERa-mediated activation of PI3K/AKT pathways,
FIGURE 6

SHapley Additive exPlanations (SHAP) summary plot: Key predictors ranked by feature importance: VPI, tumor enhancement heterogeneity,
Radscore4, Radscore3, and Ki67 index.
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compounded by sex-specific immune surveillance deficits that permit

residual tumor cell survival post-treatment. VPI increases postoperative

recurrence risk by 30–50% through dual mechanisms: (1) direct

dissemination via tumor penetration beyond the elastic layer,

enabling pleural cavity seeding and transdiaphragmatic spread; (2)

microenvironment remodeling through inflammation-driven VEGF-

A overexpression (↑2.8-fold in VPI+ tumors) and lymphovascular

invasion. LAs with micropapillary/solid histology and VPI

demonstrate 3.1× higher local recurrence rates, necessitating adjuvant

radiotherapy for subpleural lesions. Ki67 overexpression (>15%)

correlates with aggressive phenotypes, reflecting hyperproliferative

clones with frequent DNA replication. Paradoxically, while high Ki67

tumors exhibit chemotherapy sensitivity (response rate: 68% vs. 42% in

Ki67-low tumors), ABCB1/P-gp-mediated drug efflux accelerates

resistance. Contrast-enhanced CT habitat imaging delineates three

prognostically distinct zones:1. Intratumoral hypervascular regions
Frontiers in Oncology 10
(Radscore3: OR=356.17) associate with VEGF-rich metastatic

clones;2. Intratumoral hypovascular regions indicate necrotic niches

resistant to conventional therapies;3. Peritumoral hypervascular regions

(Radscore4: OR=1529.16) enrich with cancer-associated fibroblasts

(CAFs) and M2 macrophages, driving immune evasion through

stromal crosstalk. This radiomics-clinicopathological integration

achieved 86.5% sensitivity for stage III/VPI+ cases, outperforming

traditional TNM staging (DAUC=+0.21). Future directions include

exploring estrogen receptor antagonists for ERa+ female LAs and

VEGF inhibitors for VPI+ subgroups and corresponding imaging

markers (21–25).

This study demonstrates that Radscore3 (intratumoral

enhancement radiomics score) and Radscore4 (peritumoral

enhancement radiomics score) significantly enhance predictive

accuracy for postoperative recurrence in lung adenocarcinoma (LA).

Radscore3 quantifies intratumoral heterogeneity through texture

features extracted from contrast-enhanced CT (e.g., gray-level co-

occurrence matrix [GLCM] contrast and entropy), reflecting

variations in cellular proliferation, necrosis, and vascular distribution.

High intratumoral heterogeneity indicates genomic instability and

coexisting resistant subclones (e.g., EGFR mutations with MET

amplification), elevating recurrence risk, particularly in

micropapillary subtypes. Enhanced CT hyperperfusion zones

correlate with Ki67 overexpression, suggesting proliferative clones

prone to distant metastasis. Radscore4 captures peritumoral features

(e.g., spiculation, ground-glass opacity) linked to immune infiltration

(CD8+ T-cell density), angiogenic factors (VEGF), and stromal

remodeling (MMP-9 expression). High peritumoral entropy predicts

lymphatic/pleural dissemination, synergizing with visceral pleural

invasion risk. Traditional TNM staging fails to capture tumor

biological complexity, whereas machine learning (ML) integrates

radiomics, genomic data (e.g., ctDNA mutations), and clinical

variables (e.g., smoking/alcohol history) into multidimensional

models. ML excels at modeling nonlinear relationships via

algorithms like random forests or neural networks, capturing

intricate interactions between intratumoral/peritumoral features and

recurrence. Temporal analysis (e.g., LSTM tracking post-radiotherapy

edema) further refines recurrence window prediction. In this study, ML

models outperformed conventional approaches, reducing false-

negative rates. The CatBoost algorithm demonstrated unique clinical

utility by efficiently handling categorical features (e.g., sex, tumor

location/morphology) without manual encoding, leveraging Ordered

Boosting and symmetric tree structures to mitigate overfitting in high-

dimensional radiomics data (>1000 features). SHAP value analysis

revealed key predictors (e.g., Radscore3/4, Ki67), guiding postoperative

decision-making. CatBoost’s advantages include automatic ordinal

conversion of nominal variables (e.g., CT scanner type [GE/Siemens/

Philips]), accelerating training by 40%, and reducing prediction error

variability by 18% in 10-fold cross-validation. Innovatively, this study

hierarchically fused radiomics (Radscores), biomarkers (Ki-67), and

clinical data (age/sex) via kernel-based high-dimensional mapping to

quantify treatment response heterogeneity. Using CatBoost’s

distillation, multilayer features were compressed into recurrence

probabilities, achieving <10% deviation between predicted and

observed risks on calibration curves (26–29).
FIGURE 7

Clinically interpretable dynamic nomogram: Top: Integrated scoring
system combining SHAP-derived weights of Radscores, Ki67, and
clinicopathological factors. Bottom: External validation case (#267)
demonstrating concordance between nomogram-predicted risk
(87.3%) and observed recurrence status (ground truth: positive).
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Research limitations and future directions

The single-center study design may limit external validity,

necessitating multicenter validation with standardized CT scanning

parameters across diverse platforms (particularly addressing inter-

device variability in detector configurations and reconstruction

algorithms). The biological linkage between Radscores and tumor

immune microenvironment components (e.g., PD-L1 expression,

CD8+ T-cell infiltration) remains unclarified, requiring integration

with spatial transcriptomics to map immune-stromal cell spatial

distributions and intercellular communication networks. While

baseline CT features were analyzed, temporal radiomic evolution

during treatment (e.g., radiotherapy-induced tumor shrinkage

patterns such as concentric regression or eccentric necrosis) warrants

exploration to refine dynamic risk stratification. The model’s potential

for predicting drug sensitivity across LA molecular subtypes (e.g.,

EGFR/ALK-driven variants) remains untapped, which could

accelerate clinical trial enrichment by identifying cohorts likely to

benefit from specific TKIs or immunotherapy combinations. Cost-

benefit implications of reduced surveillance imaging—potentially

decreasing healthcare expenditures by 18-22% through optimized

follow-up intervals—await formal health economic modeling using

Markov decision analyses (30–32).
Conclusion

Environmental radiomics (Radscore3/Radscore4) deciphers LA

recurrence biology through dual perspectives: intratumoral

genomic instability (captured by GLCM entropy and wavelet

features) and peritumoral immune-evasive niches (characterized

by CAF-rich stromal remodeling). Machine learning synergizes

multi-omics data (radiomic habitats, clinical variables) to enable

real-time recurrence prediction, with CatBoost algorithms

demonstrating 86.5% sensitivity for stage III/VPI+ cases. This

paradigm enhances early intervention windows and facilitates

precision adjuvant therapy selection (e.g., VEGF inhibitors for

perivascular-invasive subgroups). Future validation should

prioritize cross-platform radiomic harmonization (IBSI-compliant

feature extraction) and longitudinal integration of circulating tumor

DNA profiling to capture spatial-temporal heterogeneity.
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