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Charité Universitätsmedizin Berlin, Germany

*CORRESPONDENCE

Zhen Wang

dhp20080730@163.com

RECEIVED 28 March 2025
ACCEPTED 26 May 2025

PUBLISHED 18 June 2025

CITATION

Du H, Wang J and Wang Z (2025)
Cardiovascular adverse effects of
immunotherapy in cancer:
insights and implications.
Front. Oncol. 15:1601808.
doi: 10.3389/fonc.2025.1601808

COPYRIGHT

© 2025 Du, Wang and Wang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 18 June 2025

DOI 10.3389/fonc.2025.1601808
Cardiovascular adverse effects of
immunotherapy in cancer:
insights and implications
Haiping Du1, Jie Wang2 and Zhen Wang 1*

1Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China, 2Department of Cardiac
Care Unit, Yantaishan Hospital, Yantai, Shandong, China
Immunotherapy has revolutionized cancer treatment, offering novel therapeutic

strategies such as immune checkpoint inhibitors (ICIs), chimeric antigen receptor

(CAR) T-cell therapy, and cancer vaccines. However, these modalities are

associated with varying cardiovascular toxicities that may affect treatment

continuation and patient outcomes. Cardiovascular complications from ICIs,

such as myocarditis (incidence 0.04–1.14%, mortality 25–50%), arrhythmias,

heart failure, and thromboembolic events, are primarily mediated by

autoreactive T-cell activation and immune-related inflammation. CTLA-4 and

PD-1/PD-L1 blockade disrupts immune homeostasis, leading to direct

myocardial infiltration and cytokine-mediated damage. Up to 26% of patients

receiving CAR T-cell therapy develop cardiovascular events, often secondary to

cytokine release syndrome (CRS). Excessive release of pro-inflammatory

cytokines (e.g., IL-6, IFN-g) leads to endothelial dysfunction, hypotension,

myocardial depression, arrhythmias, and acute coronary syndromes. Rare

cases of myocarditis and arrhythmias have been reported following mRNA

vaccine administration, particularly in younger males. Proposed mechanisms

include innate immune activation via Toll-like receptors, leading to cytokine

release and myocardial inflammation. Dendritic cell vaccines show lower

cardiovascular toxicity, likely due to their localized and cell-specific immune

activation. This review provides a comprehensive evaluation of cardiovascular

adverse events across immunotherapy classes. It underscores the importance of

early detection through biomarkers, risk stratification, and multidisciplinary

cardio-oncology collaboration. Future research should aim to refine

immunotherapy protocols to minimize cardiotoxic risks while preserving anti-

tumor efficacy.
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1 Introduction

Over the last few decades, extensive oncology research has

improved our understanding of the molecular pathways driving

tumor cell proliferation, therapeutic resistance, metastatic

propagation, and immune evasion (1–3). As a result, several new

compounds have been developed, and some potential medicinal

medicines are now being evaluated for regulatory approval. Among

these advances, immunotherapy has emerged as one of the most

promising treatments for treating systemic cancer (4).

An important part of oncologic treatment, in addition to

therapeutic success, is dealing with the side effects of anticancer

drugs. While drug-induced toxicities can affect many organ systems,

cardiovascular problems are among the most serious because they

have a significant impact on patient prognosis and overall quality of

life. The cardiotoxic effects of therapies such as anthracyclines and

radiation therapy are widely known and extensively researched in the

literature (5). The immune systems of cancer patients are significantly

compromised, as tumor cells employ various mechanisms to evade

detection by dendritic cells, thus hindering effective immune

surveillance (6). In cancer patients, the immune system’s ability to

identify and eliminate malignant cells is greatly weakened.

Immunotherapy aims to retrain the dysregulated immune response

and restore its anticancer activity. Dendritic cell-based cancer vaccines

and adoptive cell transfer methods are examples of active

immunotherapy (4, 7, 8). These therapeutic approaches involve the

ex vivo manipulation of the patient’s dendritic cells (DCs) or T cells,

followed by their reinfusion to enhance antitumor immune responses

(8, 9). Passive immunotherapy encompasses a diverse range of

therapeutic modalities, including monoclonal antibodies, immune

checkpoint inhibitors, cytokines, and bispecific T-cell engagers.

These biologics are pivotal role in modulating key physiological

mechanisms that influence tumor progression, angiogenic processes,

and T-cell-mediated immune responses (4). Both approaches have

yielded encouraging outcomes across various malignancies. A

comprehensive understanding of the underlying mechanisms

contributing to their distinct cardiotoxic profiles is essential for

identifying high-risk individuals and optimizing oncologic treatment

strategies to mitigate cardiovascular complications (10, 11). With an

emphasis on CAR T-cell therapy, immune checkpoint inhibitors, and

other immunotherapeutic strategies, this review article attempts to

present a thorough summary of the cardiovascular side effects

connected to immunotherapy in the treatment of cancer. The goal

is to elucidate the underlying mechanisms, identify risk factors, and

discuss management strategies to mitigate these complications,

ultimately improving patient safety and therapeutic outcomes in

cancer immunotherapy.
2 Importance of immunotherapy

After heart disease, cancer is the second most common cause of

mortality globally. According to recent data from GLOBOCAN 2020,

cancers killed around 10million people worldwide in 2020 alone (12).

Breast cancer remains the most commonly diagnosed malignancy
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globally, with approximately 2 million new cases reported annually. It

is followed by cancers of the stomach, non-melanoma skin, prostate,

lung, and colorectal regions. In addition, projections indicate a

substantial rise in the global elderly population in the coming

years. This demographic shift is expected to increase cancer

susceptibility, as aging is often accompanied by a decline in

physiological resilience and overall health, making older individuals

more vulnerable to malignancies (13).

Despite the unavoidable side effects and probable limits of

cancer medicines, considerable technical advances in cancer

treatment have been made during the last century. These

discoveries have significantly revolutionized the landscape of

cancer, although issues in treatment effectiveness and side effects

continue (14). In practice, patients diagnosed at an early stage of

cancer demonstrate a significantly higher likelihood of overall

survival and benefit from more cost-effective treatment options

compared to those diagnosed at more advanced stages of the

disease. Early detection not only enhances survival outcomes but

also reduces the financial burden of treatment (15). The primary

goal of any therapeutic regimen is to eradicate cancer and extend

the patient’s life by inhibiting or halting the proliferation of

cancerous cells. However, the approach to cancer treatment can

differ based on the timing of diagnosis, with early detection offering

distinct advantages over late-stage diagnosis, which may involve the

consideration of metastasis.

Chemotherapy, radiation therapy, and surgery have long been

regarded as the three primary pillars of cancer treatment. Because of

the effectiveness of immunotherapy, either alone or in conjunction with

other cancer treatments, immunotherapy has become the fourth

essential pillar in the fight against the illness (15). Unlike conventional

cancer therapies, immunotherapy uses the body’s immune system to

recognize and target cancer cells, providing a more organic way to

manage the course of the illness. Even while traditional therapies like

radiation, chemotherapy, and surgery have been successful in controlling

primary tumors, cancer recurrence is still a serious worry and is

frequently caused by metastases or leftover cancerous cells (16).

Immunotherapy, which uses immune checkpoint inhibitors (ICIs),

chimeric antigen receptor (CAR) T-cell therapy, and cancer vaccines

to boost the body’s immune response against cancerous cells, therefore

becomes a viable alternative or supplemental approach to cancer

treatment (Figure 1) (17). As of 2023, ICIs such as pembrolizumab,

nivolumab, and atezolizumab have been approved by the FDA and

EMA for over 20 malignancies, including non-small cell lung cancer

(NSCLC), melanoma, renal cell carcinoma, and head and neck

squamous cell carcinoma (18, 19). Furthermore, the American Society

of Clinical Oncology (ASCO) and the National Comprehensive Cancer

Network (NCCN) now recommend ICIs as first-line or adjuvant

therapies in multiple stage III and IV cancers. For instance, in

metastatic melanoma, the introduction of ipilimumab and nivolumab

has increased 5-year survival rates from under 10% to over 50% in select

populations (20). In non-small cell lung cancer demonstrated that

pembrolizumab led to a median overall survival of 26.3 months

versus 13.4 months with chemotherapy alone in patients with PD-L1

≥50% (21). The increasing number of clinical trials incorporating

immunotherapy, accounting for approximately 43% of all oncology
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trials registered on ClinicalTrials.gov as of 2022 further underscores its

widespread integration and growing significance. This data-driven

incorporation into treatment standards, coupled with the

transformative survival benefits in previously refractory cancers,

underscores immunotherapy’s position as a cornerstone of modern

oncology. Table 1 summarizes the cardiovascular side effects associated

with different immunotherapy modalities.

As immunotherapy becomes increasingly integrated into frontline

and adjuvant cancer treatment regimens, its associated cardiovascular

toxicities are gaining attention as critical complications with real-

world implications. Although considered rare, immune checkpoint

inhibitor-related myocarditis occurs in approximately 0.04% to 1.14%

of treated patients and is associated with a high case fatality rate,

ranging from 25% to 50%, substantially higher than many other
Frontiers in Oncology 03
immune-related adverse events (22). Additionally, combination ICI

therapies have been shown to increase both the incidence and severity

of cardiovascular events, including pericarditis, arrhythmias, and heart

failure. Similarly, CAR T-cell therapy is associated with cardiovascular

complications in up to 26% of patients, primarily driven by cytokine

release syndrome (CRS) (23). In severe cases, these toxicities can result

in acute heart failure, arrhythmias, and even cardiogenic shock,

particularly in vulnerable patients. Despite these significant risks,

standardized cardiovascular monitoring protocols remain lacking in

most oncology guidelines, and many clinical trials continue to

underreport cardiovascular endpoints. This underscores a pressing

need for dedicated cardio-oncology research to better define risk

factors, identify early biomarkers, and develop evidence-based

surveillance and mitigation strategies. As the use of immunotherapy
FIGURE 1

Active immunotherapy encompasses strategies designed to stimulate the body’s immune system to recognize and eliminate malignant cells. Among
these approaches, dendritic cell-based cancer vaccines play a crucial role by harnessing antigen-presenting cells to initiate a robust adaptive
immune response, primarily through the activation of T lymphocytes. Additionally, chimeric antigen receptor (CAR) T-cell therapy represents a
sophisticated form of adoptive cellular immunotherapy, wherein T cells are genetically modified to express engineered receptors targeting specific
tumor-associated antigens, thereby enhancing their cytotoxic potential. These modalities aim to induce a sustained and highly specific anti-tumor
immune response, ultimately improving patient outcomes. Conversely, passive immunotherapy involves the administration of exogenous immune
components that directly enhance the body’s ability to combat cancer cells without eliciting a de novo immune response. This category includes
monoclonal antibodies, which are engineered to target specific tumor antigens, facilitating immune-mediated destruction through mechanisms
such as antibody-dependent cellular cytotoxicity (ADCC) and complement activation. Checkpoint inhibitors, another class of passive
immunotherapy, function by blocking immune checkpoint pathways such as PD-1/PD-L1 and CTLA-4 that cancer cells exploit to evade immune
detection, thereby restoring T-cell activity against tumors. Additionally, cytokine-based therapies leverage immune-stimulatory molecules, such as
interleukins and interferons, to modulate the tumor microenvironment and enhance immune effector functions. Collectively, these
immunotherapeutic strategies represent significant advancements in oncology, offering targeted and personalized treatment options for
various malignancies.
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expands to earlier-stage and more diverse patient populations,

understanding and managing its cardiovascular implications is

essential for optimizing long-term outcomes and maintaining

quality of life (24).
3 Adverse effect of immunotherapy
related to Cardiovascular

3.1 CAR T-Cell

3.1.1 Clinical evidence
Clinical studies demonstrating recent advancements in

immune-based therapies have demonstrated promise, providing

cancer patients with the possibility of permanent remission and,

in some cases, complete disease elimination (25, 26). In the

continuous fight against cancer, CAR-engineered T cell adoptive

immunotherapy is becoming more and more well-known as a

highly targeted and personalized immune-based therapeutic

approach (27, 28). CARs are artificially created fusion proteins

that are purposefully made to recognize antigens linked to tumors.

This helps to activate T cells and encourages the targeted

destruction of cancerous cells (29). The foundational development

of CAR constructs for cancer therapy began in the late 1980s and

early 1990s. However, it is only in recent years that these

technologies have achieved notable clinical breakthroughs
Frontiers in Oncology 04
especially in the management of hematologic malignancies, where

CAR-based therapies have demonstrated remarkable efficacy,

particularly among patients with leukemia and lymphoma (30–36).

Even though CAR-T cell treatment has advanced significantly,

its clinical use is often linked to major toxicities, including serious

and sometimes fatal side effects, such as immunological effector cell-

associated neurotoxicity syndrome (ICANS) and CRS (Figure 2)

(37, 38). The adverse events of CRS types were shown in Table 2.

Optimizing the clinical effectiveness of CAR-T cell therapy requires

a thorough understanding of the unique features of each adverse

event, as well as a methodical examination of how these events

relate to the treatment. In this context, a great deal of research has

been done to assess the negative consequences of CAR-T cell

therapy, focusing most ly on CRS and neurotoxic i ty .

Comparatively fewer studies have examined other possible side

effects, such as cardiovascular toxicity, tumor lysis syndrome (TLS),

and graft-versus-host disease (GVHD) (39–41). As a result, a

comprehensive assessment of such side events is critical for

mitigating or lowering their incidence in patients, permitting a

more reasonable and tailored administration of CAR-T cell

treatment in clinical practice. Cardiotoxicity refers to any direct

or indirect detrimental effect on cardiac structure or function

caused by a therapeutic agent. It may present as arrhythmias,

myocardial infarction, heart failure, cardiomyopathy, pericardial

disease, or changes in cardiac biomarkers or imaging parameters.

Cardiotoxicity is often dose-dependent and may develop acutely,

subacutely, or chronically. For example, decreased LVEF following

CAR-T cell therapy or immune checkpoint inhibitors due to

inflammation-mediated myocardial dysfunction (42, 43).

Among the various adverse effects linked to immunotherapy,

cardiovascular toxicity has emerged as a particularly concerning yet

underexplored issue. Earlier research has shown that

immunotherapy-related cardiac complications pose a considerable

risk of morbidity and mortality, which in turn hampers the progress

and widespread clinical adoption of CAR-T cell therapy (44, 45).

However, despite several studies exploring the cardiovascular

toxicities associated with CAR-T cell therapy, the exact extent

and characteristics of these toxic effects remain poorly understood

(46). For example, 33 cardiovascular (CV) events, or 26% of the

total, were discovered in a trial of 126 patients receiving CAR-T cell

treatment that targeted antigens including CD19, CD22, and

BCMA. Acute coronary syndrome (ACS), arrhythmias, and heart

failure (HF) were the most often reported cardiovascular effects

(47). Consequently, significant variations have often been observed

in the total frequency and types of cardiovascular events that occur

in cancer patients following CAR-T cell therapy (48–52).

Two main processes are believed to be responsible for CAR-T cell

toxicities: specific interactions between the CAR and its target antigen

expressed by non-malignant cells, and a large systemic release of

cytokines brought on by excessive T cell activation (53). CRS, a

multisystem inflammatory reaction brought on by a cytokine storm

from CAR-T cell infusion (Figure 3), is one of the most frequent side

effects associated with CAR-T cell treatment. Among other toxic signs,

37-93% of lymphoma patients have CRS (54), and 77–93% of

individuals diagnosed with leukemia (54–57). Clinical presentations
TABLE 1 The immunotherapy treatments that have been associated with
cardiovascular side effects.

Cardiovascular
side effect

Reference

CAR T-cell Hypotension
QT prolongation
ST segment changes
Sinus tachycardia
Atrial fibrillation
Left ventricular systolic
dysfunction
Troponin elevation
Cardiac arrest

(37)

Immune
checkpoint inhibitor

Myocarditis
Cardiomyopathy
Pericarditis
Arrhythmias

(250)

mRNA vaccine Myopericarditis
Myocarditis
Hypotension
Hypertension
Arrhythmia
Cardiogenic shock
Stroke
Myocardial Infarction/STEMI
Intracranial hemorrhage
Thrombosis

(199)

Monoclonal antibody Cardiomyopathy
Ventricular dysfunction
Arrhythmias
Arrests
Acute coronary syndromes

(251)
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of cytokine release syndrome can vary widely, from mild symptoms

such as fever and general discomfort to more severe manifestations,

including hypoxia, hypotension, organ damage, and, in extreme cases,

the development of sepsis-like syndrome or fatal outcomes (55).

According to theory, CRS results from the enormous and

simultaneous activation of T cells, which causes a notable release of

chemokines and proinflammatory cytokines (56, 58). Interleukins

(IL)-6, IL-8, IL-10, and IL-15, as well as granulocyte-macrophage
Frontiers in Oncology 05
colony-stimulating factor (GM-CSF), interferon-gamma (IFN-g),
monocyte chemoattractant protein-1 (MCP-1), macrophage

inflammatory protein-1 beta (MIP-1b), ferritin, and C-reactive

protein (CRP), have all been linked to elevated levels of CRS.

Elevated levels of soluble IL-2 receptor have also been noted in

severe symptoms (54, 59). The management of CRS is tailored

according to severity, with mild cases typically addressed through

supportive interventions and the administration of antipyretics. In
FIGURE 2

CAR T-cells target tumor cells and induce the release of cytokines as IFN-g or TNF-a, which lead to the activation of bystander immune and non-
immune cells as monocytes/macrophages, dendritic cells, NK and T-cell, and endothelial cells. These cells further release proinflammatory cytokines
triggering a cascade reaction. Macrophages and endothelial cells produce large amounts of IL-6 which in turn activates T cells and other immune
cells leading to a cytokine storm. Cytokine Release Syndrome (CRS) and myocarditis are interrelated inflammatory toxicities observed in patients
undergoing Chimeric Antigen Receptor (CAR) T-cell therapy. Both conditions originate from immune system hyperactivation, leading to systemic
and cardiac-specific inflammation (284). Upon administration, CAR T-cells recognize and bind to specific tumor antigens, triggering their activation
and proliferation. This activation results in the release of pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1 (IL-1), interferon-
gamma (IFN-g), tumor necrosis factor-alpha (TNF-a), and granulocyte-macrophage colony-stimulating factor (GM-CSF). These cytokines further
activate bystander immune cells, including monocytes and macrophages, amplifying the inflammatory response (285). IL-6 plays a pivotal role in the
pathogenesis of CRS by promoting endothelial activation, increasing vascular permeability, and contributing to capillary leak syndrome. The resultant
endothelial dysfunction can lead to hypotension, coagulopathy, and multiorgan failure. In the myocardium, this inflammatory milieu can cause direct
cardiomyocyte injury, leading to myocarditis. Myocarditis in the context of CAR T-cell therapy is characterized by myocardial inflammation, which
may result from direct cytotoxic effects of activated T-cells or from cytokine-mediated damage. Elevated levels of cytokines, particularly IL-6, TNF-
a, and IFN-g, have been associated with myocardial depression and arrhythmias. Additionally, endothelial activation within cardiac tissue can
exacerbate myocardial injury through increased vascular permeability and infiltration of inflammatory cells (286). The interplay between systemic
inflammation and cardiac-specific effects underscores the importance of early recognition and management of these toxicities. Therapeutic
interventions targeting IL-6, such as tocilizumab, have shown efficacy in mitigating CRS symptoms and may also alleviate cardiac inflammation.
However, further research is needed to delineate the precise mechanisms linking CRS and myocarditis and to develop targeted therapies that
address both systemic and cardiac manifestations of CAR T-cell therapy-related toxicities. CAR, chimeric antigen receptor; IFN-g, interferon-gamma;
TNF-a, tumor necrosis factor-alpha; IL, interleukin; GM-CSF, granulocyte colony-stimulating factor; MCP-1, monocyte chemoattractant protein; NK
cell, natural killer cell; DC, dendritic cell.
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moderate CRS or cases refractory to initial supportive measures,

therapeutic strategies include the use of interleukin-6 (IL-6) receptor

antagonists such as tocilizumab. For more severe manifestations,

corticosteroids, including dexamethasone, are employed to mitigate

excessive immune activation and inflammatory responses (60, 61). In

extreme cases, CRS may exhibit clinical signs similar to

hemophagocytic lymphohistiocytosis (HLH) or macrophage

activation syndrome (MAS). Anakinra, an interleukin-1 (IL-1)

receptor antagonist, may be used for targeted immunomodulation

as an alternate strategy to reduce hyperinflammatory reactions in

situations where conventional therapeutic approaches are ineffective

(62–65). Acute-phase reactants such as ferritin and C-reactive protein

(CRP) are examples of serum inflammatory biomarkers that may be

helpful clinical indicators for assessing treatment response or

forecasting the onset of CRS. However, because cytokine levels are

not readily available in clinical settings, real-time monitoring of these

levels is still challenging (65).

ICANS, a disorder exhibiting a broad spectrum of clinical

symptoms, has been connected with CRS. From mild cognitive

impairment and confusion to severe neurological effects such as

cerebral edema, seizures, and, in the worst situations, death,

symptoms can vary widely (60, 66). Symptoms of CRS in the

heart. Studies have shown a connection between increased levels

of inflammatory cytokines like IL-6, IFN-g, and TNFa and ICANS,

even though the underlying mechanism of ICANS is not entirely

understood in comparison to CRS (59, 67, 68). It is thought that

these abnormal signaling pathways cause endothelial activation and

dysfunction, which in turn causes the blood-brain barrier to be

disrupted and vascular permeability to rise. Vigilant surveillance,

regular neurological evaluations, and timely treatment intervention

are necessary for effective management. Furthermore, sinus

bradycardia, which is typically temporary and self-resolving and

frequently doesn’t require any special therapy, has been linked to

ICANS; yet, ongoing clinical monitoring is still crucial (69, 70). In

addition, clinical observations have revealed a variety of systemic
Frontiers in Oncology 06
symptoms involving the constitutional, hematologic, renal,

gastrointestinal, and dermatologic systems (67, 71–73).

Meta-analysis studies have demonstrated that cardiotoxicity is a

frequently observed complication of CAR T-cell therapy, primarily

driven by cytokine release syndrome. Therefore, rigorous

monitoring and the implementation of individualized therapeutic

strategies are essential to mitigate these adverse effects (74). A

thorough investigation found that those receiving CAR-T cell

treatment for cancer are more likely to experience cardiovascular

side effects. The most common cardiovascular problems seen in

these individuals were arrhythmias, circulatory system malfunction,

and heart failure (75).

Recent meta-analyses have reported an overall incidence of

cardiovascular events (CVEs) following CAR T-cell therapy ranging

from 7% to 54% (74). However, these studies predominantly focus

on patients with hematologic malignancies, such as those treated

with CD19-targeted CAR T-cell therapies, where the incidence of

CVEs is notably higher. A separate meta-analysis evaluating

cardiovascular outcomes in CAR T-cell therapy recipients

revealed that the occurrence of ventricular arrhythmias,

myocardial infarction, and cardiovascular mortality was relatively

uncommon during short- to mid-term follow-up periods. In

contrast, left ventricular systolic dysfunction and supraventricular

arrhythmias emerged as the most frequently reported cardiac

events. These findings underscore the need for cardiovascular

monitoring protocols that prioritize the early detection of

declining ejection fraction and the surveillance of supraventricular

arrhythmogenic activity in patients undergoing CAR T-cell

therapy (76).

In contrast, data on CVEs in patients with solid tumors

undergoing CAR T-cell therapy are limited, and available studies

often report lower incidence rates. This discrepancy may be

attributed to differences in tumor biology, patient selection, and

the immunological milieu between hematologic and solid tumors

(77). Furthermore, the heterogeneity in study designs, patient

populations, and definitions of cardiovascular events contributes

to variability in reported incidence rates. However, these aggregate

rates do not fully capture the variability arising from differences in

patient populations, particularly those with hematologic

malignancies versus solid tumors.

3.1.2 Preclinical evidence
Accumulating clinical evidence highlights that cardiovascular

complications are a notable and potentially serious concern

following CAR T-cell therapy. These events are frequently

associated with CRS, an inflammatory cascade that is a common

consequence of CAR-T infusion. Retrospective and prospective cohort

studies across both pediatric and adult populations have reported a

range of cardiovascular toxicities, including arrhythmias, heart failure,

hypotension requiring inotropes, and cardiomyopathy, often in the

context of CRS grade 2 or higher. Arrhythmias, particularly atrial

fibrillation, are among the most frequently observed cardiac

complications. Studies by Brammer et al. (78), Shouval et al. (79),

and Lee et al. (80) documented that arrhythmia occurred in patients

who predominantly experienced CRS, with many showing elevated
TABLE 2 The common terminology criteria for adverse events
classifications for CRS.

Grade Toxicity Description Reference

Grade 1 Mild reaction, infusion interruption not indicated;
intervention not indicated.

(57)

Grade 2 Therapy or infusion interruption indicated but
responds promptly to symptomatic treatment
(e.g., antihistamines, NSAIDs, narcotics, IV
fluids); prophylactic medications indicated for
≤24 hours.

Grade 3 Prolonged reaction (e.g., not rapidly responsive to
symptomatic medication or brief interruption of
infusion); recurrence of symptoms following initial
improvement; hospitalization indicated for clinical
sequelae (e.g., renal impairment,
pulmonary infiltrates).

Grade 4 Life-threatening consequences; pressor or
ventilatory support indicated.

Grade 5 Death.
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levels of brain natriuretic peptide (BNP) and, to a lesser extent,

troponin. In Lee et al.’s cohort, BNP elevation was significantly

higher in patients with cardiac events, although troponin levels did

not differ substantially between those with and without events. These

findings suggest BNP may be a more sensitive marker for cardiac

stress in this setting. Cardiomyopathy and reductions in left

ventricular ejection fraction (LVEF) have also been consistently

documented. Ganatra et al. (81) reported a median LVEF drop
Frontiers in Oncology 07
from 58% to 37% in patients who developed cardiomyopathy post-

infusion. Similarly, Alvi et al. (82) and Korell et al. (83) observed

declines in LVEF and noted that many of these cases were

accompanied by elevated troponin and BNP levels. Notably, in

Alvi’s cohort, all cardiovascular deaths occurred in patients with

BNP levels exceeding 3,000 pg/mL, underscoring the prognostic

significance of this biomarker. Furthermore, older patients and

those with pre-existing cardiac risk factors were more likely to
FIGURE 3

The cardiotoxic effects associated with immunotherapy arise from complex immune-mediated mechanisms that disrupt normal cardiac
homeostasis. The blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) signaling removes a critical checkpoint in immune regulation,
leading to an unchecked expansion of cytotoxic CD8+ T lymphocytes. This dysregulated immune activation facilitates the infiltration of these
effector cells into myocardial tissue, thereby contributing to localized inflammation and potential cardiomyocyte damage. Similarly, chimeric antigen
receptor (CAR) T-cell therapy, while highly effective in targeting malignant cells, can precipitate significant immune-related adverse events. One of
the most prominent complications is cytokine release syndrome (CRS), a hyperinflammatory response characterized by excessive production of
proinflammatory cytokines. This systemic immune activation can exert profound effects on cardiovascular function, inducing endothelial
dysfunction, increased vascular permeability, and myocardial inflammation, which may culminate in cardiotoxic manifestations such as myocarditis,
arrhythmias, or even heart failure. Collectively, these immune-mediated processes underscore the necessity for close cardiac monitoring in patients
receiving immunotherapy to mitigate the risk of severe cardiovascular complications. Immunotherapy, encompassing ICIs and CAR T-cell therapies,
has significantly advanced cancer treatment but is associated with cardiovascular toxicities affecting the myocardium, vasculature, conduction
system, and pericardium. ICIs function by inhibiting regulatory pathways such as PD-1/PD-L1 and CTLA-4, thereby enhancing T-cell-mediated anti-
tumor responses. However, this immune activation can lead to unintended cardiac effects. Activated CD4+ and CD8+ T lymphocytes may infiltrate
myocardial tissue, resulting in myocarditis characterized by inflammation and potential necrosis of cardiomyocytes (287). Additionally, ICIs may
disrupt peripheral tolerance, leading to the production of autoantibodies against cardiac proteins like troponin I, contributing to autoimmune-
mediated cardiac injury (288). The inhibition of PD-1/PD-L1 pathways, which are expressed on cardiomyocytes and endothelial cells, removes
protective mechanisms against immune-mediated damage, further exacerbating cardiac inflammation. CAR T-cell therapies, designed to target
specific tumor antigens, can also induce cardiovascular complications. These therapies may cause “on-target, off-tumor” effects if the targeted
antigen is expressed on healthy cardiac tissues, leading to direct cardiotoxicity. Moreover, the activation of CAR T-cells can result in CRS, a systemic
inflammatory response characterized by elevated levels of cytokines such as IL-6, TNF-a, and IFN-g. These cytokines can have deleterious effects on
the heart, including negative inotropy, endothelial dysfunction, and increased vascular permeability, culminating in hypotension, reduced myocardial
contractility, and cardiomyopathy (258). In summary, while immunotherapies offer substantial benefits in oncology, their potential to cause
significant cardiovascular adverse effects necessitates vigilant monitoring and management strategies to mitigate risks and ensure patient safety.
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experience cardiac injury, although not all associations reached

statistical significance. HF in both decompensated and new-onset

was frequently linked to high-grade CRS. Studies by Lefebvre et al.

(52), Alvi et al., and Ganatra et al. (81) each identified HF as a

prominent complication, often occurring in tandem with arrhythmias

or cardiomyopathy. Additionally, hypotension requiring vasopressor

or inotropic support was commonly reported, especially in pediatric

populations, as shown in studies by Burstein et al. (50) and Shalabi

et al. In these cohorts, patients with baseline reduced LVEF or diastolic

dysfunction had higher risks of developing hemodynamic instability,

although age, sex, and race were not significant predictors.

Importantly, CRS appears to be a central driver of these cardiac

events. Multiple studies including those by Alvi, Ganatra, Lefebvre,

and Korell demonstrated a strong correlation between CRS grade ≥2

and the incidence of cardiac complications. For example, in Alvi’s

study, all 17 patients with cardiac events had CRS grade ≥2, and 83%

of those with elevated troponin levels also had high-grade CRS.

Moreover, CRS severity was associated with increased mortality,

prolonged hospitalization, and the need for intensive care support

in several cohorts. The concurrence of ICANS further elevated the risk

of poor outcomes, suggesting a synergistic toxicity profile in severe

systemic immune responses. While most cardiovascular events

occurred early after CAR-T infusion, some delayed presentations

were also noted. In Burstein et al., one pediatric patient experienced

a cardiac arrest two months post-infusion. This underscores the need

for continued cardiovascular surveillance, even after the acute CRS

phase resolves. Although direct cardiovascular mortality was relatively

rare, fatal outcomes were reported in Alvi et al. and Ganatra et al.,

particularly in patients with severe CRS, markedly elevated BNP, and

pre-existing cardiac vulnerabilities. These deaths emphasize the

importance of risk stratification, biomarker-guided monitoring, and

prompt intervention.
3.2 ICIs

In 1996, Leach et al. announced the first discovery of a ‘immune

checkpoint’ molecule, cytotoxic T-lymphocyte-associated antigen 4

(CTLA-4), which was a significant breakthrough in immunological

research (84, 85). In a ground-breaking work, they showed that in a

syngeneic mouse system, the injection of a CTLA-4-targeting

antibody in a murine model successfully increased tumor

rejection (85). This pivotal finding enabled a first-in-human

Phase I clinical trial evaluating CTLA-4 inhibition (MDX-010) in

patients with ovarian and melanoma cancer, and the results were

encouraging. Later Phase II investigations in melanoma proceeded

fast, resulting in a landmark Phase III study that served as the

foundation for the FDA’s approval of ipilimumab (Table 3), a

humanized anti-CTLA-4 monoclonal antibody, for the treatment of

metastatic melanoma (86–88). These trials yielded a number of

significant findings, confirming immune checkpoint blockage as a

distinct and cutting-edge cancer therapy method (Figure 4).

Notably, immunotherapy was not directly comparable to the

typical response kinetics used to assess anti-cancer medicines,

which mostly rely on the assessment of tumor shrinkage (84).
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This family of therapeutic drugs has a distinct immune-related

response pattern that includes an initial increase in tumor size,

followed by eventual shrinkage and, in some cases, the brief

emergence of new lesions. As a result, a unique response criterion

tailored to immunotherapy was developed. Furthermore, the ‘tail of

the curve’ refers to the tendency of patients who improve following

medication to maintain a protracted response, which typically lasts

for years (84). This is believed to be an example of immunologic

memory formation in the context of cancer immunotherapy.

Ipilimumab was authorized ten years ago to treat metastatic

melanoma (89). Dr. Allison was awarded the Nobel Prize for his

groundbreaking discovery of CTLA-4, and the development of

ipilimumab has revolutionized melanoma treatment. Nowadays, it

is frequently used in combination with nivolumab (an anti-PD-1

drug), which gives metastatic melanoma patients a five-year

survival rate of over 50%. In the age of cancer immunotherapy,

this finding calls into question what a “cure” actually means.

The second immune checkpoint molecule discovered was anti-

PD-1, whose primary ligand, PD-L1, was first identified by Dr.

Tasuko Honjo and his colleagues in 2000. He received the Nobel

Prize as a result of this discovery (90). This finding was further

reinforced by mouse studies conducted by Iwai, Honjo, and their

colleagues, which demonstrated that tumor formation was inhibited

in animals lacking anti-PD-1. Furthermore, similar outcomes were

observed in immunocompetent wild-type mice given anti-PD-L1

antibodies (91, 92). Phase I clinical trials were initiated when anti-

PD-1 and anti-PD-L1 monoclonal antibodies showed therapeutic

effectiveness against a range of tumor types, including renal cell

carcinoma, melanoma, and non-small-cell lung cancer (NSCLC)

(93). Single-agent anti-PD-(L)1 therapies have been authorized and

are currently being used extensively for over 15 cancer indications,

including solid tumors and hematologic malignancies, as a result of

the quick advancement of clinical trials in these and other tumor

types (94). Combining anti-PD-1 and CTLA-4 inhibition, primarily

by partnering ipilimumab with nivolumab, has been approved for

several of indications, including advanced non-small cell lung

cancer, melanoma, and kidney cancer. This combination is also

being researched as an adjuvant and neoadjuvant treatment for

illnesses that are still in the early stages of sickness. Anti-PD-1
TABLE 3 FDA-approved ICIs and their targets.

ICI Name Target Approved Cancers Reference

Ipilimumab CTLA-4 Melanoma, Colorectal Cancer
(CRC), HCC, NSCLC, RCC

(44, 252–256)

Nivolumab PD-1 Melanoma, NSCLC, Renal cell
carcinoma (RCC),
Hodgkin’s lymphoma

Pembrolizumab PD-1 Melanoma, NSCLC, Head &
Neck SCC

Atezolizumab PD-L1 NSCLC, Urothelial Carcinoma

Durvalumab PD-L1 NSCLC, Small Cell
Lung Cancer

Relatlimab LAG-3 Advanced solid tumors
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treatments that are tumor-agnostic have been authorized based on

the molecular characteristics of tumors, such as those with a high

burden of non-synonymous mutations, as shown by microsatellite

instability-high colorectal and endometrial malignancies (95).

These findings support the hypothesis that more complex tumors

can trigger a more varied immune response, hence enhancing anti-

tumor immunity. Immune-related adverse events (irAEs) are

defined as adverse effects arising from activation or dysregulation

of the immune system, particularly in the context of ICI therapy.

These may involve cardiac tissues (e.g., ICI-induced myocarditis) or

other organs such as the lungs, liver, or skin.

It was anticipated that utilizing the immune system in this

manner would result in a variety of side effects, which are often

known as irAEs, as ICIs disrupt immunological regulatory systems

(Table 4) (96). 70–90% of individuals have these adverse events, and

all organs may be affected (96). Clinical symptoms often manifest in

the initial weeks to months following the initiation of treatment,
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and 10 to 15 percent of patients develop severe immune-related

adverse effects. However, these symptoms might show up years after

therapy is over or at any time (97). The incidence and intensity of

irAEs are increased by combination immunotherapy, such as the

anti-PD-1/PD-L1 and CTLA-4 regimen. Little is known about other

risk factors for irAEs since high-risk individuals are excluded from

comprehensive clinical research. As a result, it is still uncertain how

safe ICIs are for people with autoimmune diseases, solid organ

recipients, and hematopoietic stem-cell transplant recipients.

3.2.1 CTLA-4 mechanism
CTLA-4, also known as CD152, was one of the first negative

regulatory molecules to be identified and targeted in therapeutic

situations (98). The majority of CTLA-4 is found on Foxp3+

regulatory T lymphocytes (Tregs), which mainly control the

degree of early T cell activation, and on normal T cells

throughout activation (99–102). Ipilimumab (anti-CTLA-4
FIGURE 4

Checkpoint inhibitors play a pivotal role in immunotherapy by counteracting the immune evasion mechanisms employed by tumor cells. Malignant
cells have evolved sophisticated strategies to suppress the host immune response, one of which involves exploiting immune checkpoint pathways.
Specifically, the activation of programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) receptors on
dendritic cells (DCs) leads to their functional inactivation, thereby impairing antigen presentation and dampening T-cell priming. By blocking these
inhibitory receptors, checkpoint inhibitors effectively prevent the immune-suppressive signaling cascade, allowing DCs to remain in an active state
and sustain an anti-tumor immune response. Despite their therapeutic benefits, checkpoint inhibitors disrupt critical regulatory mechanisms that
maintain immune homeostasis. The inhibition of immune checkpoints diminishes self-tolerance, increasing the risk of immune-mediated tissue
damage. This loss of immunological regulation may lead to autoreactive T-cell activation, resulting in off-target effects where the immune system
indiscriminately attacks host tissues. Notably, the unintended targeting of endothelial cells can precipitate inflammatory vascular conditions such as
vasculitis and may contribute to the development or exacerbation of atherosclerosis. Furthermore, immune-related adverse effects can extend to
cardiac tissues, where T-cell-mediated aggression against myocardial or pericardial cells may manifest as myocarditis or pericarditis. These immune-
related toxicities underscore the need for vigilant monitoring and appropriate management strategies to balance the therapeutic efficacy of
checkpoint blockade with the potential risks of autoimmunity.
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monoclonal antibody) is currently used to treat a variety of cancers,

such as melanoma, colorectal cancer (CRC), hepatocellular

carcinoma (HCC), non-small cell lung cancer (NSCLC), and renal

cell carcinoma (RCC), either by itself or in combination with

nivolumab (anti-PD-1 monoclonal antibody) (103).

The way CTLA-4 works is by blocking CD28, a T cell co-

stimulatory receptor (104–106), and shares ligands [CD80 (B7.1)

and CD86 (B7.2)] with CD28 (107–111). One theory is that CTLA-

4’s greater affinity for CD80 and CD86 lowers T cell activation by

displacing CD28 from these receptors, even if the precise

mechanisms behind its impact remain unknown (112–118).

Immunological suppression results from CTLA-4’s activation of

inhibitory signaling through the protein phosphatases SHP2 and

PP2A when it binds to CD80 and CD86 on antigen-presenting cells

(119), including general immunosuppression, reduced cytokine

release, increased Treg activity, decreased T lymphocyte

proliferation, and inhibition of adaptive responses (120–122).

Furthermore, it has been shown that ipilimumab (anti-CTLA-4

mAb) uses antibody-dependent cell-mediated (ADCC) cytotoxicity

to selectively deplete CTLA-4+ FOXP3+ Treg cells (99).
3.2.2 LAG-3 mechanism
This molecule was identified as a homologue of CD4 more than

20 years ago, and it has since attracted a lot of interest (123). When

LAG-3 was shown to enhance Treg cell activity in 2005, its function

as an immune checkpoint became clear (124, 125). In addition to its

action on Treg cells, LAG-3 itself suppresses CD8+ effector T cells

(126). The only known ligand for LAG-3 is MHC class II molecules,

which are elevated on some epithelial cancers in response to IFN-g.
These substances are also seen on tumor-infiltrating dendritic cells

and macrophages (112). LAG-3 antibodies that do not interfere

with the LAG-3-MHC class II interaction have been demonstrated

to enhance T cell proliferation and promote effector cell functions

both in vitro and in vivo. However, the precise role of this

interaction in suppressing T cell responses remains incompletely

understood (112). It is still largely unknown what the molecular

mechanisms govern LAG-3 signaling and how it interacts with

other immunological checkpoints (127). In a range of biological

contexts, LAG-3 and PD-1 have demonstrated a potent functional

synergy that inhibits immune responses (128, 129). The

combination of relatlimab, a monoclonal antibody targeting LAG-
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3 (BMS-986016), and nivolumab, a monoclonal antibody against

PD-1, has demonstrated significant therapeutic efficacy in

melanoma patients who have previously shown resistance to anti-

PD-1/PD-L1 treatments (130). A significant upregulation of LAG-3

expression was observed in several malignancies when compared to

their corresponding normal tissue counterparts. This includes

kidney renal clear cell carcinoma (KIRC), pancreatic

adenocarcinoma (PAAD), skin cutaneous melanoma (SKCM),

testicular germ cell tumors (TGCT), lymphoid neoplasm diffuse

large B-cell lymphoma (DLBC), and head and neck squamous cell

carcinoma (HNSC). The elevated expression of LAG-3 in these

cancers suggests its potential role in the immune evasion

mechanisms of tumors, which may contribute to their

progression and resistance to immune responses. This finding

underscores the importance of LAG-3 as a promising target for

immunotherapeutic interventions in these malignancies (131). This

suggests that LAG-3 targeting may have a strong antitumor effect in

some cancer types (131).

3.2.3 PD-1/PD-L1
PD-1 and PD-L1 inhibitors enable the prolonged activation of T

lymphocytes, improving their capacity to eradicate tumor cells by

inhibiting inhibitory signaling pathways (91, 132). PD-1 is present on

a variety of immune cells, such as monocytes, T cells, B cells, dendritic

cells (DCs), and tumor-infiltrating lymphocytes (TILs) (133, 134).

However, PD-L1 is usually present on tumor cells and APCs (134).

PD-1 has been demonstrated to be expressed by a wide range of

human cancers, including ovarian neoplasms, bladder carcinoma,

head and neck squamous cell carcinoma, lung carcinoma, renal cell

carcinoma (RCC), melanoma, and gastrointestinal cancers (135). PD-

1 is essential for controlling T cell activity in peripheral tissues,

especially during inflammatory reactions, and it also helps control

autoimmune diseases. CTLA-4, on the other hand, mostly controls T-

cell proliferation in lymphoid organs during the early stages of

immunological activation (136–142). The difference between

CTLA-4 and PD-1/PD-L1 inhibitors is shown in Table 5.

A vital immunosuppressive mechanism in the tumor

microenvironment (TME), PD-1 promotes immune evasion and

increases tumor resistance to immune surveillance (143–145). By

blocking the stimulatory signaling cascades triggered by the

interaction between TCR and CD28, PD-1 expression inhibits the

activation of critical transcription factors required for T cell

activation, proliferation, effector function, and survival (98). T-cell

viability is ultimately compromised by this regulatory mechanism,

which includes the suppression of anti-apoptotic molecules like Bcl-

2 and Bcl-xL as well as the inhibition of important transcription

factors like activator protein 1 (AP-1), nuclear factor of activated T

cells (NFAT), and nuclear factor-kB (NF-kB) (146). A negative

regulatory feedback system is started by the activation of PD-1

ligands, which attenuates the production of cytokines and

suppresses immunological responses (119). Like CTLA-4, PD-1 is

abundantly expressed on Tregs, which may increase their ability to

proliferate when it interacts with its matching ligand (147). A meta-

analysis of 20 clinical trials demonstrated that CTLA-4 inhibitors

significantly increased the risk of all-grade cardiovascular toxicities
TABLE 4 Immune-related cardiovascular adverse events (irAEs) that
variety study reported.

Adverse
Event

Incidence
Rate

ICIs Involved Reference

Myocarditis 0.04% - 1.14% Anti-PD-1, Anti-CTLA-4 (152, 172)

Heart Failure 5.6% - 6.1% Anti-PD-1, Anti-CTLA-4,
Anti-PD-L1

(155, 257)

Pericarditis 10.94% (7/64) Anti-PD-1, Anti-PD-L1 (149)

Myocardial
infarction

17.19% (11/64) Anti-PD-1, Anti-PD-L1 (149)

Arrhythmias 53.13% (34/64) Anti-CTLA-4, Anti-PD-1 (149)
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(OR = 1.33, 95% CI: 1.00–1.75, p = 0.05), with an even higher risk

observed for patients receiving monotherapy (OR = 1.73, 95% CI:

1.13–2.65, p = 0.01). Furthermore, CTLA-4 inhibitors were

associated with a twofold increase in the incidence of grade 3–5

cardiovascular adverse events (OR = 2.00, 95% CI: 1.08–3.70, p =

0.03). Although higher rates of heart failure, hypertension,

pericardial effusion, myocarditis, and atrial fibrillation were

observed, these did not reach statistical significance when

analyzed individually (148).

3.2.4 Cardiovascular and immune checkpoint
complications

Mortality rates in severe instances vary from 10% to 17%,

however, most irAEs may be efficiently controlled in their early

stages (149, 150). The accompanying fatality rate is shockingly high,

even though the frequency of cardiovascular adverse events caused by

ICIs is quite low (151). Heart irAEs gained widespread attention after

Johnson et al. (153) reported two incidences of deadly myocarditis

after ICI treatment (152, 153). Over time, a wide range of clinical

conditions have been recognized as immune-related adverse events

(irAEs) impacting the cardiovascular system. These include acute

myocardial infarction, conduction disturbances like atrioventricular

(AV) block, ventricular and supraventricular arrhythmias, sudden

cardiac arrest, and Tako-Tsubo cardiomyopathy. Other cardiovascular

complications include non-inflammatory cardiomyopathy, pericardial

disorders such as pericarditis and pericardial effusion, cerebrovascular

issues like ischemic stroke, thromboembolic events such as venous

thromboembolism, and the accelerated progression of atherosclerosis

(154). A retrospective study of 424 individuals who received at least

one ICI found that 62 patients (14.6%) experienced newly identified

cardiovascular issues after beginning ICI treatment (155). In this
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cohort, 5.6% of patients experienced heart failure while undergoing

treatment with ICI monotherapy (Table 6), highlighting the potential

cardiovascular risks associated with this therapeutic approach. The

occurrence of heart failure in this patient group underscores the need

for careful monitoring and management of cardiovascular health

during ICI-based treatments (155). When two ICIs were given

consecutively, the incidence of heart failure increased to 6.1% (155).

A similar pattern was seen in a recent meta-analysis that comprised

13,646 patients receiving anti-CTLA-4, anti-PD-1, and/or anti-PD-L1

treatments (156). The subgroup of patients receiving ICI therapy as

the only treatment method had a 3.1% incidence of cardiovascular

adverse events (156). It is significant to note that the incidence of

cardiovascular adverse events in patients undergoing combination

immunotherapy almost doubled, reaching 5.8% (156). When

chemotherapy and ICI treatment were introduced, the incidence

rate was constant at 3.7% with no discernible change (156). These

findings are consistent with evidence from clinical trials, which

indicate that CTLA-4 inhibition is particularly associated with an

increased risk of immune-mediated cardiotoxicity, which
TABLE 6 Comparison of monotherapy vs. combination therapy in
cardiovascular risk.

Therapy Type Cardiac
irAE Risk

Mortality
Rate

Reference

Anti-PD-1 Monotherapy Low 36% (162)

Anti-CTLA-
4 Monotherapy

Moderate 27% (268)

Anti-PD-1 + Anti-CTLA-
4 Combination

High 67% (162)
TABLE 5 Comparative overview of cardiovascular toxicities: CTLA-4 vs. PD-1/PD-L1 Inhibitors.

Feature CTLA-4 Inhibitors PD-1/PD-L1 Inhibitors Reference

Common Agents Ipilimumab Nivolumab, Pembrolizumab, Atezolizumab (258–267)

Primary
Cardiovascular
Toxicity

Myocarditis Atherosclerosis progression

Incidence
of Myocarditis

Approximately 0.27%–1.14%; higher with
combination therapy

Similar incidence; increased risk with combination therapy

Mortality Rate
of Myocarditis

Up to 50% Comparable mortality rates

Mechanisms - T-cell and macrophage infiltration into myocardium-
Elevated pro-inflammatory cytokines (e.g., IFN-g, TNF-a, IL-
17)- Loss of regulatory T-cell function- Endothelial activation
via ICAM-1 expression

- T-cell-mediated vascular inflammation- Increased IL-17
signaling- Shift from macrophage to lymphocyte-dominated
plaque inflammation- PD-1 deficiency leading to elevated
cholesterol synthesis genes

Clinical
Manifestations

- Arrhythmias- Heart failure- Pericarditis- Vasculitis - Accelerated atherosclerosis- Acute coronary syndrome-
Myocardial infarction- Hypertension

Time to Onset Median of 17–34 days post-initiation Variable; atherosclerotic changes may develop over months

Response to
Immunosuppression

Often resistant; may require agents like abatacept Variable; management strategies are still being defined

Combination
Therapy Risk

Increased risk and severity of myocarditis with CTLA-4 and
PD-1 inhibitors combined

Combination therapy associated with higher incidence of
cardiovascular events
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encompasses conditions such as pericarditis and myocarditis (157,

158). Similarly, cases of myocarditis have been documented when

anti-PD-1 medications like nivolumab or pembrolizumab have been

administered (159, 160). The relationship between the use of ICIs and

an increased risk of cardiovascular issues, including myocarditis,

pericardial diseases, heart failure, dyslipidemia, myocardial

infarction, and cerebral arterial ischemia, was further substantiated

by an independent meta-analysis conducted by Dolladille et al. This

study, which analyzed data from 32,518 patients, reinforced the

evidence that ICI treatment is associated with a higher incidence of

these serious cardiovascular conditions, highlighting the need for

vigilant monitoring and early intervention in patients undergoing

ICI therapy (161). The “number needed to harm” (NNH), which

measures howmany people must be exposed to a specific treatment or

risk factor for one person to experience an adverse event, was 462 for

myocarditis and 260 for heart failure. It’s interesting to note that heart

failure was one of the more frequent adverse events among patients

receiving ICIs (161).

In recent years, there has been a growing awareness of the link

between ICIs and myocarditis, an inflammation of the heart muscle.

While ICIs have proven effective in treating various cancers, this

connection highlights the potential risk of immune-related damage

to the heart. Increased recognition of this complication emphasizes

the importance of careful cardiac monitoring and early detection in

patients receiving ICI therapy, helping to reduce the severity of

myocarditis and enhance patient outcomes (162–164). Numerous

preclinical investigations have shown a connection between ICI

treatment and myocarditis (165–170). The fact that proactive

checks for myocarditis were not a part of the early research on

ICIs raises worries that some instances may have gone unnoticed

(171). Myocarditis is said to be associated with ICI treatments in

between 0.04% and 1.14% of cases (152, 172). The most often

reported cardiac adverse event is myocarditis, mostly because of its

substantial impact on morbidity rates (173–175). Compared to

other irAEs, myocarditis has a much higher mortality rate,

ranging from 25% to 50% (153, 162, 172, 174).

The use of combination ICI therapy is a risk factor for

myocarditis linked to ICIs (152). For example, using ipilimumab

(anti-CTLA-4 monoclonal antibody) and nivolumab (anti-PD-1

monoclonal antibody) together increases the risk of myocarditis by

4.74 times when compared to using nivolumab just by itself (153).

Recent clinical trials examining the combination of relatlimab (an

anti-LAG-3 monoclonal antibody) and nivolumab (an anti-PD-1

monoclonal antibody) have shown a slight increase in the incidence

of myocarditis. Specifically, myocarditis occurred in 1.7% of

patients receiving the combination therapy, compared to 0.6% in

those treated with nivolumab alone. This modest rise suggests that

combining these immune checkpoint inhibitors may elevate the risk

of immune-related cardiac inflammation. These results highlight

the importance of vigilant cardiac monitoring in patients

undergoing combination ICI treatment, as this adverse event,

while uncommon, could have serious clinical consequences.

Further research is needed to understand the mechanisms driving

this increased risk and to improve patient care (176). Moreover,

myocarditis resulting from combination therapies has been
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associated with higher mortality rates and increased severity when

compared to cases induced by monotherapy. This suggests that the

simultaneous targeting of multiple immune checkpoint pathways

may enhance the intensity of the immune response, potentially

leading to more aggressive forms of myocarditis. The heightened

risk of severe outcomes underscores the importance of early

detection and proactive management in patients undergoing

combination immunotherapy, as the potential for life-threatening

complications is more pronounced (162). Research found that the

combination of anti-PD-1/PD-L1 and anti-CTLA-4 medicines

resulted in a considerably higher fatality rate of 67%, compared to

the 36% mortality rate seen with anti-PD-1/PD-L1 monotherapy

(162). However, considering that the study only included 59

individuals, it is crucial to recognize that the observed fatality rate

could not fully represent the actual risk.

According to studies, mice with defective thymic selection may

develop autoreactive T cells specific to cardiac myosin in a naïve

condition. These cells have higher expression levels of PD-1 to reduce

the risk of autoimmune responses (170, 177). In our mouse model,

autoreactive T lymphocytes that target cardiac tissue appear to be

directly activated when the inhibitory PD-1/PD-L1 pathway is

blocked by anti-PD-1 monoclonal antibody therapy. IFN-g,
perforin, and granzyme B are among the cytotoxic molecules and

effector cytokines that are overproduced as a result of this activation,

which eventually causes cardiac damage and the development of

myocarditis (170). Patients with ICI-induced myocarditis showed

clonal growth of T lymphocytes specific to cardiac myosin in their

peripheral blood mononuclear cells, indicating their harmful role in

the condition’s clinical presentation (178, 179).

While the link between anti-PD-1 monoclonal antibody therapy

and ICI-related myocarditis is well established, the involvement of

anti-CTLA-4 monoclonal antibody treatment in causing this

condition remains uncertain. It has yet to be definitively proven

whether anti-CTLA-4 therapy triggers autoreactive T cells that

attack cardiac myosin heavy chain. Nonetheless, preclinical

studies offer valuable insights: for example, CTLA-4-deficient

mice develop fatal myocarditis early in life, underscoring the

essential role of CTLA-4 in maintaining immune tolerance to

cardiac tissue (180, 181). The loss of CTLA-4 function appears to

facilitate the activation of autoreactive T cells, which could lead to

immune-mediated damage in the heart. This suggests that

inhibition of CTLA-4 may disrupt immune regulation, promoting

the emergence of pathogenic T cells that target cardiac components.

These findings underscore the complexity of immune responses

induced by ICI therapy and the need for further investigation into

the molecular mechanisms underlying CTLA-4-mediated immune

tolerance in the context of autoimmune myocarditis (151).

Furthermore, cardiac myosin-specific T cells showed higher levels

of CTLA-4 expression than bystander T cells in our animal model of

ICI-induced myocarditis (170, 182). Therefore, by activating

autoreactive T cells that target cardiac myosin in clinical settings,

blocking CTLA-4 with monoclonal antibodies may cause severe

myocarditis, much like PD-1 inhibition.

Several studies in preclinical and clinical models have demonstrated

that Th17 cells, or T cells that produce IL-17, are essential to the
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pathogenesis of various forms of myocarditis (183–186). These cells

have a role in the development of dilated cardiomyopathy after acute

myocarditis and are significant inflammatorymediators (183–185, 187).

Importantly, it has been demonstrated that severing the connection

between CTLA-4 and B7 molecules stimulates the growth of Th17 cells

both in vitro and in vivo, as well as Th17-mediated autoimmunity in

mice models (186). Furthermore, a number of studies have emphasized

CTLA-4’s function in preserving peripheral heart tolerance. All of these

results point to the possibility that blocking CTLA-4 pathways might

precipitate myocarditis and exacerbate its severity.

Due to LAG-3’s recent FDA approval, there are a few cases of

ICI-induced myocarditis linked to it. Previous LAG-3-related

animal research has demonstrated that mice lacking LAG-3 did

not develop myocarditis (188). However, when both LAG-3 and

PD-1 were lacking, a severe type of myocarditis developed that was

marked by T-cell infiltration, increased production of tumor

necrosis factor (TNF), and persistent Treg inhibitory activity

(189). Although considerable progress has been made in

elucidating the pathophysiological mechanisms underlying certain

ICI-related cardiovascular toxicities, particularly myocarditis and

atherosclerosis, our understanding remains limited for other

manifestations such as arrhythmias, heart failure, vasculitis,

pericardial disorders, and venous thromboembolism. Nonetheless,

emerging data suggest that a set of shared immunological pathways

may contribute to the broader spectrum of cardiovascular adverse

events induced by ICIs. Central to these processes is the enhanced

activation of T lymphocytes following checkpoint inhibition, which

results in elevated secretion of pro-inflammatory cytokines,

including IL-1b, IL-6, and IL-17, as well as IFN-g and TNF-a.
These cytokines are increasingly recognized as key mediators of

inflammatory damage to cardiovascular tissues. Additionally,

crosstalk between activated T cells and macrophages appears to

play a crucial role in amplifying inflammatory signaling and

sustaining immune-mediated injury. Recent clinical and

experimental findings have also implicated the thymus as a

potential central modulator of ICI-associated cardiotoxicity.

Specifically, structural or functional abnormalities of the thymus

have been observed in patients with myocarditis, and animal studies

have demonstrated that perturbations in thymic cytokine signaling

can be associated with cardiac dysfunction. A deeper understanding

of these converging mechanisms may inform the development of

targeted cardioprotective interventions. However, the application of

such strategies must be carefully weighed against the potential risk

of dampening the intended anti-tumor immune response, which is

essential for the therapeutic efficacy of ICIs (190).
3.3 Vaccine

3.3.1 mRNA vaccine
Recent studies examining the safety profile of mRNA vaccines

for COVID-19 have drawn attention to the occurrence of

cardiovascular complications. However, there remains a notable

paucity of research exploring the potential cardiovascular effects of

mRNA vaccines in cancer immunotherapy. A comprehensive
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analysis conducted using the World Health Organization’s

(WHO) global pharmacovigilance database, VigiBase, found that

recipients of the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine

exhibited the highest reported incidence of cardiovascular adverse

events. Notably, the study found that the BNT162b2 and mRNA-

1273 (Moderna) vaccines were associated with 30% and 44%,

respectively, of the reported cardiovascular-related adverse events

following vaccination. The most frequently reported cardiovascular

symptoms for both vaccines were palpitations and tachycardia,

which are indicative of altered heart rhythm and could suggest an

underlying cardiovascular stress response. This data highlights the

critical need for vigilant cardiovascular monitoring in individuals

receiving mRNA-based vaccines, especially as these technologies are

increasingly applied in cancer immunotherapy. Considering the

distinct mechanisms by which mRNA vaccines operate, further

research is essential to better understand their long-term effects and

potential risks, particularly in patients with existing cardiovascular

conditions (191). Furthermore, Simone et al. documented a very

uncommon case of myocarditis (n = 15) in a sizable cohort of

people who had never had heart disease before after receiving the

mRNA COVID-19 vaccine (192). Likewise, another extensive

medical investigation found a connection between the duration of

myocarditis in young males and the period after receiving the

Pfizer-BioNTech vaccine (193).

Although the precise pathophysiology of CV symptoms

following COVID-19 vaccination remains unclear, some studies

propose potential mechanisms for these adverse events. It is

suggested that mRNA vaccination may trigger an immune

response in genetically predisposed individuals, potentially

leading to the recognition of mRNA as an antigen. This

immunomodulatory reaction may result in myocarditis and other

systemic effects, driven by the activation of inflammatory pathways

after dendritic cell and Toll-like receptor stimulation, which induces

cytokine production (194, 195). Similarly, in those with moderate,

“compensated” thrombocytopenia or chronic, hereditary

thrombocytopenia, increased macrophage activity and reduced

platelet production may be the cause of post-vaccination immune

thrombocytopenic purpura (ITP) (196, 197). The development of

thrombosis in unusual locations, such as the splanchnic, adrenal,

cerebral, and ophthalmic veins, is a characteristic of immune

thrombocytopenia (ITP) after vaccination, according to

postmortem examinations of individuals with vaccine-induced

thrombotic thrombocytopenia (VITT) (198).

The Israeli Ministry of Health revealed in late April 2021 that

myocarditis instances had been reported among recipients of the

BNT162b2 (Pfizer-BioNTech) vaccination (199). The FDA has

documented 45 reported cases of myocarditis in its Vaccine

Adverse Event Reporting System (VAERS), with 19 of these cases

linked to the Pfizer-BioNTech vaccine and 26 attributed to the

Moderna vaccine. In response to these reports, the Centers for

Disease Control and Prevention (CDC) initiated a comprehensive

investigation aimed at assessing the long-term effects of myocarditis

following vaccination with the two authorized mRNA COVID-19

vaccines. The study involved surveying individuals who had

experienced myocarditis post-vaccination to better understand the
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lasting impact of these cardiac events on overall health. Alongside

myocarditis, the mRNA vaccines have been associated with a range

of other serious cardiovascular complications, including

thrombosis, thrombocytopenia, and stroke. These findings

underscore the importance of continuous monitoring and

vigilance for cardiovascular side effects in individuals receiving

mRNA-based vaccines. As the application of mRNA vaccines

extends into emerging fields like cancer therapy, it becomes

increasingly vital to assess the broader implications. Careful

evaluation of the benefits versus potential risks is especially

important for those with pre-existing cardiovascular conditions

(199). Many of the cardiovascular effects reported following

mRNA vaccination, such as myocarditis, are based on case

reports and data from post-marketing surveillance systems like

VAERS or national health databases. While these systems play a

vital role in identifying potential safety signals, they are subject to

underreporting, reporting biases, and a lack of comprehensive

clinical detail. Therefore, findings from such data should be

interpreted with caution, as they may not be fully generalizable.

Confirmatory evidence from prospective, controlled studies is

essential to accurately characterize the incidence, risk factors, and

outcomes associated with these events. In addition, an association of

mRNA vaccine and myocarditis, such as long-term follow-up

results, and gender/age-specific risks is shown in Table 7.

Myocarditis has been identified as a rare but notable adverse event

following administration of the BNT162b2 (Pfizer–BioNTech) mRNA

COVID-19 vaccine, with incidence and severity varying across

different demographic groups. A comprehensive study conducted

within a large Israeli healthcare organization reported an overall

incidence of myocarditis of 2.13 cases per 100,000 vaccinated

individuals within 42 days post-vaccination. The highest incidence

was observed among males aged 16 to 29 years, reaching 10.69 cases

per 100,000. Further analysis indicated that the risk of myocarditis was

significantly elevated after the second dose of the vaccine, particularly

in youngmales (193, 200). Clinical presentations of vaccine-associated

myocarditis were predominantly mild to moderate, with symptoms

typically manifesting within 3 to 5 days following the second vaccine

dose. Most patients experienced chest pain and had elevated cardiac

biomarkers, but severe outcomes were rare. In the Israeli cohort, only

one case progressed to cardiogenic shock, and there was one death of

unknown cause among patients with preexisting cardiac conditions

(193). Long-term follow-up data suggest a favorable prognosis for

individuals who developed myocarditis post-vaccination. In the

aforementioned study, among patients who exhibited left ventricular

dysfunction during hospitalization, subsequent evaluations showed

normalization of cardiac function in the majority of cases over a

median follow-up period of 83 days. These findings underscore the

importance of continued surveillance and research to further elucidate

the mechanisms, risk factors, and long-term outcomes associated with

vaccine-related myocarditis, particularly in younger male populations.

3.3.2 Dendritic cell-based vaccines
DC-based vaccines harness the natural ability of dendritic cells

to present antigens and activate T cells. By loading dendritic cells

with tumor antigens ex vivo and reintroducing them into the
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patient, these vaccines elicit a potent immune response targeted

specifically at cancer cells (201). According to clinical studies, DC-

based vaccinations are generally well tolerated, with side effects

usually confined to minor injection site responses or flu-like

symptoms. This approach avoids the systemic toxicities often

associated with conventional cancer treatments, such as

chemotherapy or radiation (202). DC vaccines represent a rapidly

advancing class of cancer immunotherapies known for their

personalized approach and excellent safety profile, particularly

with regard to cardiovascular tolerability. Evidence from clinical

trial NCT01280552 revealed that DCs pulsed with tumor-specific

immunogenic peptides resulted in a longer median overall survival

(18.3 months) compared to unpulsed DCs (16.7 months). The

progression-free survival (PFS) was also notably improved in the

antigen-pulsed group, emphasizing the therapeutic potential of this

antigen-targeting strategy. However, outcomes are not universally

favorable; for example, trial NCT02332889 reported no clinical

benefit in a pediatric patient with relapsed high-grade glioma

receiving a combination of autologous DC vaccination, poly-

ICLC, and decitabine, highlighting the influence of tumor type

and individual immune context on efficacy. Meanwhile, trial

NCT01067287 is assessing the combined use of DC vaccines and

PD-1 checkpoint inhibition following stem cell transplantation in

multiple myeloma, though results remain pending. Despite these

mixed efficacy outcomes, a consistent trend across studies is the

excellent safety record of DC vaccines, particularly their negligible

association with cardiotoxic complications. This differentiates them

from therapies such as CAR T cells or ICIs, which have well-

documented risks including myocarditis, cytokine release

syndrome, and arrhythmias. To further boost their immunogenic

potential, innovative approaches are being investigated. One such

strategy involves transfecting DCs with mRNA encoding human

telomerase reverse transcriptase (hTERT) to promote a potent

cytotoxic T-cell response in prostate cancer (NCT01153113).

Similarly, a more complex formulation using mRNA plus tumor
TABLE 7 Incidence and outcomes of myocarditis after BNT162b2
vaccination (mRNA vaccine).

Parameter Findings Reference

Highest Risk Group Males aged 16–19 years (200)

Incidence in Males
16–19 Years

150.7 cases per million (269)

Incidence in
Females 16–
19 Years

10 cases per million (269)

Incidence After
Second Dose in
Males 16–17 Years

15.7 cases per 100,000 doses (270)

Median Time to
Symptom Onset

2–3 days post-vaccination (271)

Severity Majority mild; <1% severe cases (200)

Long-Term
Outcomes

Lower frequency of cardiovascular
complications compared to
conventional myocarditis at 18 months

(272)
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cell lysates to load DCs has been explored in the treatment of acute

myeloid leukemia (NCT00514189), allowing for a broader antigenic

repertoire though at the cost of increased production complexity.

Taken together, DC-based vaccines offer a promising and safe

platform for cancer immunotherapy, particularly appealing for

patients at risk of cardiovascular adverse events. Their ability to

stimulate a tailored immune response with minimal systemic

toxicity underscores their potential as a next-generation treatment

strategy worthy of continued clinical exploration.
3.3.3 DNA vaccines
DNA vaccines involve the direct delivery of genetic material

encoding tumor-associated antigens into the patient’s cells,

enabling in situ antigen expression and subsequent immune

activation. These vaccines have shown significant safety

advantages due to their non-replicating nature, reducing the risk

of insertional mutagenesis or undesired effects on the genome.

Furthermore, DNA vaccines are inherently non-infectious and do

not involve live vectors, further enhancing their safety. In cancer

therapy, DNA vaccines have demonstrated promising results in

generating both humoral and cellular immune responses with

minimal adverse events reported in clinical trials (203). Both

dendritic cell vaccines and DNA vaccines exhibit favorable safety

profiles with predominantly mild adverse events and low incidences

of serious complications. DC vaccines, being cell-based therapies,

involve complex manufacturing processes and logistical challenges

but have demonstrated excellent tolerability in clinical settings.

DNA vaccines offer advantages in production scalability and

stability, with minimal adverse effects observed in trials. However,

theoretical concerns such as the potential for anti-DNA antibody

production exist , though not commonly observed in

practice (Table 8).
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DNA-based neoantigen vaccines have emerged as a prominent

approach in cancer immunotherapy and currently rank alongside

mRNA vaccines as one of the most commonly investigated

platforms in ongoing clinical trials. Due to their strong inherent

immunogenic properties, these vaccines typically do not require

adjuvant support, yet they are often administered in conjunction

with immune checkpoint inhibitors such as durvalumab or

nivolumab to potentiate antitumor responses. For example,

clinical studies NCT03199040 and NCT04397003 are evaluating

patient outcomes by comparing DNA vaccination alone versus its

combination with durvalumab. GNOS-PV02, a prototypical DNA

vaccine, is being assessed in trial NCT04251117 alongside plasmid-

encoded interleukin-12 and pembrolizumab, showcasing the

platform’s adaptability for combinatory immunotherapy

regimens. In addition to these combination approaches, DNA

neoantigen vaccines are also being explored as stand-alone

therapies. Trial NCT03122106 involves the use of a personalized

DNA vaccine that integrates prioritized tumor neoantigens and

mesothelin epitopes into a pING plasmid vector for patients

following surgical resection and chemotherapy. Another example

is trial NCT03988283, which investigates DNA vaccine

monotherapy in pediatric populations with treatment-resistant or

recurrent brain tumors. To optimize intracellular delivery, several of

these trials utilize the TDS-IM system—a microneedle-based

dermal delivery platform designed to facilitate efficient DNA

transfection while minimizing systemic reactogenicity. One of the

distinguishing advantages of DNA vaccines is their favorable safety

profile, particularly concerning cardiovascular outcomes. Unlike

CAR T-cell therapies and immune checkpoint inhibitors, which

carry substantial risks such as myocarditis, cytokine release

syndrome, and arrhythmogenic complications, DNA vaccines

typically induce localized immune activation with minimal

systemic inflammation. Additionally, their non-viral delivery
TABLE 8 Comparative safety profile of dendritic cell vaccines and DNA Vaccines.

Feature Dendritic Cell (DC) Vaccines DNA Vaccines Reference

Vaccine Platform Autologous or allogeneic dendritic cells pulsed with tumor antigens Plasmid DNA encoding tumor antigens (273–283)

Mechanism
of Action

Ex vivo antigen loading and maturation of dendritic cells, followed by
reinfusion to stimulate T-cell responses

In vivo transfection of host cells leading to antigen
expression and immune activation

Common
Adverse Events

Mild local reactions (e.g., injection site erythema), low-grade
fever, fatigue

Mild local reactions, transient fatigue, rare
systemic effects

Serious Adverse
Events (SAEs)

Rare; low incidence of Grade ≥3 adverse events Rare; low incidence of Grade ≥3 adverse events

Autoimmunity Risk Low; minimal evidence of inducing autoimmunity Low; theoretical risk due to potential for anti-DNA
antibody production

Long-term
Safety Data

Favorable; low incidence of adverse events over extended follow-
up periods

Favorable; long-term studies show minimal
adverse effects

Production
Complexity

High; requires personalized cell processing and quality control Moderate; scalable production with
standardized protocols

Storage
and Stability

Limited shelf-life; requires cold chain logistics High stability; can be stored at standard refrigeration
or freezing temperatures

Regulatory Status Several DC vaccines have reached clinical trials; limited approvals Multiple DNA vaccines in clinical trials; some
approved for veterinary use
frontiersin.org

https://doi.org/10.3389/fonc.2025.1601808
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Du et al. 10.3389/fonc.2025.1601808
mechanisms further reduce the likelihood of off-target immune

effects. These characteristics make DNA-based neoantigen vaccines

a compelling option within the immunotherapy landscape,

especially for patients with preexisting cardiovascular conditions

or those at heightened risk of cardiotoxicity.

3.3.4 Neoantigen vaccines
Neoantigen vaccines represent a personalized cancer therapy

that targets unique mutations present only in tumor cells. By

leveraging advanced sequencing and bioinformatics, patient-

specific neoantigens are identified and incorporated into vaccine

formulations. The personalized nature of these vaccines ensures a

high degree of tumor specificity, minimizing off-target effects.

Clinical studies have shown that neoantigen vaccines are

generally safe, with side effects primarily confined to mild

injection site reactions or transient flu-like symptoms. This safety

profile, combined with their potential to induce durable and specific

anti-tumor immunity, positions neoantigen vaccines as a

transformative approach in cancer immunotherapy (204). Recent

early-phase clinical trials (NCT02950766) evaluating the safety of

neoantigen vaccines have demonstrated a highly favorable safety

profile. In one such study, the most common adverse events were

low-grade, self-limited injection-site reactions, which occurred in

100% of patients, and transient flu-like symptoms, reported in 8 out

of 9 patients (205). Importantly, no patient experienced a grade 3 or

higher (dose-limiting) toxicity, underscoring the generally benign

tolerability of this immunotherapy modality. These findings

support the notion that neoantigen vaccines, which are designed

to elicit precise and personalized immune responses against tumor-

specific epitopes, are associated with minimal systemic toxicity and

a low risk of serious immune-mediated complications, including

cardiovascular adverse events. In the same clinical investigation

(NCT03480152), the administration of mRNA-based neoantigen

vaccines was also associated with gastrointestinal side effects (206),

specifically mild episodes of nausea and vomiting. These symptoms

were transient and non-severe, reflecting the overall tolerability of

the vaccine formulation. Their occurrence highlights that while

mRNA neoantigen vaccines are generally safe and well-tolerated,

they can still elicit mild systemic reactions, likely due to innate

immune activation or vaccine-related inflammatory responses.
3.5 Cytokine-based therapies

Although interferon alphas are mainly known for their

neuropsychiatric and immunomodulatory effects, they have also

been linked to a wide range of adverse reactions. These effects span

multiple physiological systems, including the nervous and sensory

systems, cardiovascular and respiratory functions, endocrine and

metabolic pathways, hematologic profiles, urinary tract health, and

skin conditions. Among the cardiovascular complications reported,

pericarditis has emerged as a notable side effect, alongside other

cardiovascular concerns. The occurrence of pericarditis and other

related cardiovascular issues highlights the multifaceted nature of

interferon alpha-induced toxicity, underscoring the importance of
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close monitoring in patients undergoing interferon-based therapies.

Given the diverse range of potential adverse reactions, clinicians

must remain vigilant in assessing the overall health of patients,

particularly those with pre-existing conditions or those receiving

long-term treatment, to mitigate the risks associated with these side

effects. Further research into the mechanisms driving these systemic

effects is essential to improve patient management and therapeutic

outcomes (207–209). Additionally, once interferon was removed,

cancer patients’ cardiomyopathy with left ventricular dilatation

improved, allowing for the use of lower dosages of treatment

(210). Pegylated interferon alfa-2b has been associated with

serious cardiovascular complications, including acute myocardial

infarction, pericarditis, and pericardial effusion resulting in cardiac

tamponade. It has also been linked to the onset of sick sinus

syndrome, a condition that can lead to significant arrhythmias. In

one notably severe case, an orthotopic heart transplant recipient

experienced allograft failure and ultimately passed away, with

interferon-related toxicity identified as the underlying cause.

These adverse events underscore the potential risks associated

with pegylated interferon alfa-2b, particularly in individuals with

pre-existing cardiovascular conditions or those who have

undergone complex surgeries like heart transplants. The

cardiovascular complications associated with this drug highlight

the need for vigilant monitoring and careful management during

treatment, as the severity of these side effects can significantly

impact patient outcomes. Further investigation is necessary to

elucidate the underlying mechanisms of interferon-induced

toxicity, especially about its cardiovascular effects, to guide clinical

decision-making and enhance patient safety (211–215). Both

interferon alfa-2a and interferon alfa-2b have been implicated in

the development of interstitial lung disease. However, the incidence

is higher with interferon alfa-2a, whereas elevated doses of

interferon alfa-2b are more frequently associated with this

condition (216–221). Interferon gamma has been associated with

cardiovascular complications, particularly at elevated doses, leading

to conditions such as ventricular tachycardia, arrhythmias,

hypotension, and coronary vasospasm (222, 223).
3.6 Monoclonal antibodies

There is still some misunderstanding in the medical literature

about the exact meanings and consequences of the terms “cardiac

hypersensitivity” and “cardiac toxicity,” especially when these terms

are used to describe the immediate side effects of administering

therapeutic monoclonal antibodies. Cardiac hypersensitivity refers

to an immunologically mediated reaction, usually an immediate

(Type I) or delayed (Type IV) hypersensitivity reaction that affects

the heart. Unlike classic cardiotoxicity, cardiac hypersensitivity is

not dose-dependent and may occur unpredictably, even at low or

first-time exposure to a drug or vaccine (224). More broadly,

cardiac toxicity usually refers to a cardiovascular side effect that

depends on the treatment dosage and that persists and continues to

show symptoms long after the administration of the causing

medication has stopped. The development of a fibrotic response
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is an abnormal condition typically confirmed through histological

analysis represents the most severe outcome of cardiac toxicity,

though such confirmation has yet to be adequately performed or

documented. However, when characterizing adverse events

associated with therapeutic monoclonal antibodies, the term

cardiac hypersensitivity may offer a more accurate and

appropriate description than cardiac toxicity. For this reason, it is

advised that this term be used instead of the other one. A

hypersensitive reaction is characterized by an inflammatory

reaction that is independent of the drug’s dosage, can occur at

any stage of treatment, even when the drug is present in trace

amounts, and is often accompanied by the development of anti-

drug antibodies. These anti-drug antibodies are primarily IgG

isotype, but it is important to note that a subgroup of

hypersensitivity reactions can also involve IgE antibodies, which

are known to elicit a different immune response; in fact, patients

have been reported to experience IgE reactions specifically directed

against therapeutic antibodies, especially those who have been

treated with rituximab, a commonly used monoclonal antibody in

clinical settings. To enhance patient care during monoclonal

antibody therapy and promote clarity in medical discussions, it is

essential to distinguish between these two terms. A clear and

thorough understanding of their meanings can significantly

impact both immunotherapy research and clinical practice.

Within the context of monoclonal antibody treatment, it is vital

for researchers and healthcare professionals to carefully evaluate

these concepts to foster clearer communication and ultimately

improve patient outcomes (225).

A novel class of anti-cancer treatments called antibody-drug

conjugates (ADCs) is being used more and more to treat a variety of

cancers, including hematologic and solid tumors. Frequently called

“magic bullets,” these substances provide focused cancer therapy

(226–228). ADC is made up of a monoclonal antibody (mAb),

payload, and linker (229). ADCs are one of the most well-known

fields in cancer medication research and development because of

their exceptional capacity to combine accurate targeting with strong

cytotoxic effects. This dual capacity makes it possible to eradicate

cancer cells effectively and selectively (229). ADCs were developed

because they offer improved targeting and higher cytotoxicity

compared to standard cytotoxic chemotherapy, while also

reducing the systemic toxicity that anti-tumor drugs often

produce (230). Despite being a type of targeted chemotherapy,

ADC usage has been linked to increased toxicity and unfavorable

side effects in some cases (231). A patient’s quality of life and long-

term survival may be significantly and potentially fatally impacted

by adverse cardiovascular events (232). Cancer patients’ prognosis

might be greatly impacted by adverse cardiovascular consequences.

ADCs may be harmful to the cardiovascular system, according to

evidence from the FAERS database. According to a recent study,

there have been repeated instances of cardiotoxicity linked to ADCs

that include trastuzumab deruxtecan (T-DXd) (233). The risk of

ADCs developing into CVD is still up for debate, despite the fact

that they are often prescribed and utilized in therapeutic settings.

Although it hasn’t been verified yet, some research has shown a link

between cardiotoxicity and trastuzumab deruxtecan and
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trastuzumab emtansine. Profoundly paraphrase in an intellectual

manner (233, 234). Furthermore, it is yet unknown if additional

ADCs pose a risk of cardiotoxicity.

Cardiovascular toxicity encompasses a range of conditions

affecting the heart and blood vessels, including cardiomyopathy,

heart failure, myocarditis, arrhythmias, coronary artery disease,

early-onset valvular disorders, high blood pressure (hypertension),

and the risk of thromboembolism. These conditions collectively

represent the harmful effects of certain substances or diseases on

cardiovascular health (235, 236). Previous research has explored the

adverse events associated with ADCs using the FAERS database, both

internationally and domestically. One study specifically analyzed

adverse event signals for two ADCs, while another investigation

concentrated on liver-related injuries caused by ADCs (234, 237).

However, no study has used the FAERS database to look at the

cardiovascular adverse events linked to ADCs. Therefore, by

examining the cardiovascular adverse effects associated with ADCs,

this study seeks to close that gap.
4 Future perspective

The future of immunotherapy holds immense potential to

revolutionize cancer treatment by advancing precision medicine

and mitigating adverse effects, including cardiovascular

complications (Figure 5). As our understanding of the immune

system’s complexities deepens, several promising avenues emerge

(238, 239). Developing novel strategies to minimize immune-

related cardiovascular toxicities, such as predictive biomarkers for

early detection and risk stratification, will enhance patient safety

and therapeutic outcomes.

Immunotherapy, particularly with ICIs and mAbs is

revolutionizing cancer treatment and is now being utilized across

a broader range of malignancies. Notably, ICIs have recently been

approved for use in adjuvant and neoadjuvant settings for early-

stage cancers, where long-term quality of life and the prevention of

adverse events are of increasing importance. Despite fast-track

regulatory approvals, the full spectrum of ICI-related toxicities

both short- and long-term remains insufficiently understood,

especially regarding their impact on patient-reported outcomes

and quality of life. Some irAEs, particularly those involving the

cardiovascular system, can significantly affect patient survival and

necessitate treatment discontinuation. Approximately one-third of

the 1.8 million new cancer cases diagnosed annually are expected to

require complex immune-oncological therapies, which elevates the

potential risk for serious irAEs. Several promising strategies are

under investigation to mitigate immune-related cardiotoxicity. IL-6

inhibitors such as tocilizumab have shown efficacy in attenuating

CRS without diminishing the therapeutic efficacy of CAR T-cell

therapies. Additionally, JAK-STAT pathway inhibition via agents

like ruxolitinib offers another cardioprotective avenue. In patients

with ICI-related myocarditis, combination therapy with abatacept

and ruxolitinib has been associated with a reduced incidence of

major adverse cardiac events (MACE). Co-therapies that combine

ICIs with cardioprotective agents may represent a future direction
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in balancing anti-tumor efficacy with cardiovascular safety. Given

the unique nature of immunotherapy-induced cardiotoxicity, it is

essential to develop tailored risk assessment models. In the future,

validated predictive scores may facilitate the early identification of

high-risk patients and guide clinical decision-making for immune-

oncological therapies (240).
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Furthermore, engineering next-generation CAR-T cells with

reduced off-target effects and designing less toxic immune

checkpoint inhibitors represent critical areas of innovation (241).

Moreover, the development of advanced vaccine platforms,

including mRNA vaccines and neoantigen-based vaccines, offers a

safer and more targeted approach to cancer treatment, with the ability
FIGURE 5

The integration of artificial intelligence (AI) in cancer immunotherapy for optimizing CAR-T cell therapy and mRNA vaccine design. AI-driven
approaches facilitate the development of next-generation CAR-T cells with reduced cardiovascular side effects, enhance AI-powered
electrocardiogram analysis, and improve drug discovery through predictive machine learning models. AI and big data analytics contribute to
personalized immunotherapy protocols, while AI-based neoantigen prediction enables the design of efficient mRNA vaccines. This comprehensive
AI-driven strategy enhances the safety and efficacy of immunotherapy in cancer treatment.
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to elicit strong and durable anti-tumor immune responses.

Innovations in cytokine engineering and delivery methods, such as

localized cytokine release or nanoparticle-based systems, could

significantly reduce systemic toxicity, including cardiovascular side

effects. Future research must also address disparities in access to

immunotherapy and its long-term effects on quality of life, particularly

as survival rates improve. With a focus on improving safety profiles,

tailoring treatments to individual patients, and expanding therapeutic

options, immunotherapy is poised to reshape cancer care while

minimizing its unintended consequences, including cardiovascular

adverse events.

CAR T-cell therapy and ICIs have revolutionized cancer

immunotherapy, yet they pose significant cardiovascular risks,

including myocarditis, arrhythmias, hypertension, and

thromboembolic events. The integration of artificial intelligence

(AI) offers a transformative approach to predicting, preventing, and

managing these complications, ultimately improving patient

outcomes and expanding the safe application of these therapies.

AI-driven predictive modeling, utilizing machine learning (ML)

and deep learning (DL), can analyze vast datasets from clinical

trials, patient records, multi-omics (genomics, transcriptomics,

proteomics), and imaging studies to identify individuals at higher

risk of cardiovascular toxicity. By integrating these data, AI can

develop personalized risk stratification models, allowing clinicians

to preemptive ly adjust treatment plans , incorporate

cardioprotective strategies, and monitor high-risk patients more

closely. Moreover, AI-powered electrocardiogram (ECG) and

echocardiographic analysis can enhance early detection of

cardiotoxicity by identifying subtle changes in cardiac function

before symptoms manifest (242). Real-time AI-assisted monitoring

systems, including wearable biosensors and remote patient

monitoring platforms, can track heart rate variability, blood

pressure fluctuations, and biomarkers of cardiac injury, providing

continuous risk assessment and enabling early intervention. In

addition to risk prediction, AI can aid in optimizing

immunotherapy regimens to reduce cardiovascular complications.

In silico modeling and AI-based drug discovery approaches can

refine CAR T-cell designs, improving antigen specificity while

minimizing inflammatory responses that contribute to myocardial

damage. Similarly, AI can help identify novel biomarkers for

immune-related myocarditis, guiding the development of targeted

prophylactic and therapeutic strategies. As AI algorithms become

more explainable and widely adopted in clinical practice, their role

in cardiovascular risk management for immunotherapy patients

will likely evolve into real-time decision support systems (243, 244).

These systems will assist oncologists and cardiologists in

dynamically adjusting therapy based on an individual’s evolving

risk profile, ensuring a balance between maximizing therapeutic

efficacy and minimizing adverse effects. Future research should

focus on integrating AI-driven cardiotoxicity models into routine

clinical workflows, enhancing collaboration between oncology and

cardiology specialists, and developing AI-enhanced personalized

immunotherapy protocols (245). With advancements in AI and big

data analytics, the next decade will likely witness a paradigm shift

where cardiovascular complications of CAR-T and ICI therapies are
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not just managed but proactively prevented, ensuring safer and

more effective cancer treatment. Emerging evidence suggests that

ICANS may contribute to cardiovascular complications through

disruptions in the neuro-cardiac axis. Neuroinflammation

associated with ICANS can impair autonomic regulation, leading

to dysregulation of heart rate and blood pressure. For instance, a

case study reported persistent orthostatic hypotension and

tachycardia in a patient following CAR T-cell therapy, attributed

to autonomic dysfunction secondary to ICANS (246). Furthermore,

the intrinsic cardiac nervous system (ICNS), which plays a crucial

role in cardiac autonomic control, may be affected by

neuroinflammatory processes. Disruption of the ICNS can lead to

arrhythmias and other cardiac dysfunctions (247). These findings

underscore the importance of monitoring cardiovascular function

in patients experiencing ICANS and suggest that interventions

targeting autonomic dysfunction may be beneficial in mitigating

associated cardiovascular risks.
5 Challenges and limitation

Despite the transformative impact of immunotherapy in

oncology, its application is fraught with substantial challenges and

limitations, particularly concerning cardiovascular complications.

These challenges are multifaceted, spanning from unpredictable

immune responses and heterogeneous patient outcomes to

insufficient long-term safety data and inadequate risk

stratification models. As immunotherapeutic agents especially

ICIs, CAR T-cell therapy, and cancer vaccines gain clinical

prominence, a critical evaluation of their limitations is essential

for optimizing their use while minimizing harm (248).
5.1 ICIs: balancing efficacy and
autoimmunity

One of the major challenges associated with ICIs is their

propensity to trigger immune-related adverse events (irAEs),

including cardiovascular toxicities such as myocarditis,

pericarditis, arrhythmias, and heart failure. These adverse events

are often life-threatening and difficult to predict. While ICIs such as

anti-PD-1, anti-PD-L1, and anti-CTLA-4 have shown remarkable

success in prolonging survival in cancers like melanoma and lung

cancer, they simultaneously disrupt immune homeostasis, leading

to unintended immune activation against healthy tissues.

Cardiovascular irAEs, though less frequent than dermatologic or

gastrointestinal ones, carry high morbidity and mortality rates, with

myocarditis alone exhibiting a case fatality rate of 25–50%.

Furthermore, combination therapies, such as anti-PD-1 plus anti-

CTLA-4, exacerbate this issue, significantly increasing the risk and

severity of irAEs. For example, myocarditis risk is nearly five times

higher in combination therapy compared to monotherapy. Yet, early

clinical trials were not adequately powered to detect these rare but

severe events, leading to a gap in post-marketing surveillance and

delayed recognition of cardiovascular toxicity profiles. Additionally,
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patients with pre-existing autoimmune diseases or cardiovascular

conditions are often excluded from trials, limiting the

generalizability of findings to real-world settings. Another limitation

is the absence of reliable biomarkers to predict which patients will

develop cardiovascular complications. Although research has

suggested that elevated levels of troponin or NT-proBNP may

indicate early myocardial injury, these markers are nonspecific and

can be confounded by cancer-related stress or comorbidities. There is

an urgent need for validated, immunotherapy-specific biomarkers to

guide clinical decision-making and facilitate early intervention.
5.2 CAR T-cell therapy: potent but perilous

CAR T-cell therapy, particularly in hematologic malignancies,

represents a revolutionary advance in personalized medicine.

However, its utility is limited by its unique and severe toxicity

profile, including CRS and ICANS. Cardiovascular toxicity, while

less studied, is an underappreciated yet serious complication. CRS-

induced systemic inflammation can lead to vasodilation, capillary

leak syndrome, and myocardial depression, culminating in

arrhythmias, hypotension, and even cardiogenic shock. A critical

challenge lies in the heterogeneity of cardiovascular events and their

temporal relationship with therapy. Unlike chemotherapy-induced

cardiotoxicity, which tends to be dose-dependent and cumulative,

CAR T-cell-associated cardiotoxicity is acute, unpredictable, and

may occur in the absence of pre-existing heart disease. Moreover,

the severity of CRS is not always correlated with the degree of

cardiac injury, complicating monitoring and treatment efforts.

There is also a lack of standardized protocols for cardiac

monitoring in CAR T-cell recipients. While some centers perform

baseline echocardiograms and biomarker assessments, there is no

consensus on the frequency or duration of follow-up. This

heterogeneity in practice may lead to missed diagnoses and delayed

management of cardiotoxic events. Furthermore, current

interventions (e.g., corticosteroids or tocilizumab) are designed to

suppress immune activation broadly and may reduce the efficacy of

CAR T cells, underscoring the need for selective immunomodulation

strategies. Another significant limitation is the exclusion of patients

with impaired cardiac function from CAR T-cell trials, which creates

uncertainty about the safety and efficacy of this therapy in

populations most vulnerable to cardiovascular complications.
5.3 Cancer vaccines: a promise tempered
by uncertainty

Cancer vaccines, including mRNA-based and dendritic cell

(DC)-based platforms, offer a promising route to induce tumor-

specific immunity. However, their cardiovascular safety profiles

remain poorly characterized. mRNA vaccines, such as those

developed for SARS-CoV-2, have been linked to myocarditis and

pericarditis, particularly in younger males. While these findings have

raised concerns about the broader application of mRNA platforms in

oncology, there is currently insufficient data on their cardiovascular
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effects in cancer patients, who often present with multiple

comorbidities and altered immune responses.

The challenges extend to the potential for unintended systemic

immune activation. Unlike conventional vaccines, therapeutic cancer

vaccines are designed to stimulate a potent cellular immune response,

which may inadvertently target cardiac tissues if cross-reactive

antigens are present. This risk is heightened in neoantigen-based

vaccines, where each formulation is unique and personalized,

complicating safety monitoring and regulatory oversight.

Moreover, logistical challenges, such as the time required to

develop personalized vaccines, limit their application in rapidly

progressing cancers. The integration of cardiovascular screening into

vaccine trials is also not routine, further limiting our understanding of

vaccine-induced cardiotoxicity.
5.4 Cytokine-based therapies and
monoclonal antibodies: double-edged
swords

Cytokine-based therapies, including interferons and interleukins,

are associated with a broad range of adverse effects across various organ

systems, with cardiovascular toxicity being particularly concerning.

Interferon-alpha, for instance, has been linked to pericarditis,

myocardial infarction, arrhythmias, and cardiomyopathy. These

effects are thought to stem from immune-mediated endothelial

injury and inflammation but remain poorly defined mechanistically.

High inter-individual variability in response to cytokine therapies

further complicates risk assessment and management.

Similarly, monoclonal antibodies and ADCs have shown promise

in targeting tumors with precision. However, they can induce

“cardiac hypersensitivity” reactions that are independent of dosage

and may involve IgE-mediated mechanisms, especially in the case of

rituximab. This unpredictability complicates therapeutic planning

and necessitates careful pre-treatment screening. The delayed onset of

cardiotoxicity, sometimes occurring months after therapy, adds

another layer of complexity to surveillance and diagnosis.
5.5 Gaps in real-world evidence and long-
term safety

Another significant challenge is the scarcity of long-term safety

data. Most clinical trials have short follow-up periods, insufficient

for assessing chronic cardiovascular outcomes such as

atherosclerosis progression, valvular disease, or delayed

cardiomyopathy. Additionally, real-world studies are limited by

underreporting and variability in documentation of cardiovascular

events, especially in community oncology settings with limited

access to cardio-oncology services.

Data on vulnerable populations, including the elderly, those

with pre-existing cardiovascular disease, and racial or ethnic

minorities, are also lacking. These groups may experience

differential risks due to pharmacogenomic variations or baseline

health disparities but remain understudied in clinical research.
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5.6 Practical and ethical barriers

Finally, logistical and ethical constraints hinder the

advancement of cardio-oncology as a subspecialty. There is a

pressing need for interdisciplinary collaboration between

oncologists and cardiologists, but institutional silos often impede

communication. Resource limitations in low- and middle-income

countries further exacerbate disparities in access to cardio-oncology

care, limiting the global applicability of immunotherapy.

Ethically, the risk-benefit calculus becomes challenging when

potentially life-saving immunotherapies carry a non-negligible risk

of fatal cardiovascular events. Patients must be thoroughly

counseled about these risks, yet this is complicated by the lack of

robust predictive tools and variable physician expertise.
5.7 Limitations of preclinical models

Despite their indispensable role in elucidating mechanistic

insights, preclinical models used to evaluate ICI-induced

cardiotoxicity have notable limitations that restrict their

translational relevance. Knockout mouse models, while useful for

dissecting molecular pathways, fail to replicate the pharmacokinetic

profiles of immune checkpoint inhibitors and may inadequately

reflect the clinical disease context (249). Additionally, ICI

administration in animal studies often employs murine-specific

antibodies at supra-therapeutic doses that do not accurately

mimic human dosing regimens. This may lead to either an

overestimation or underrepresentation of immune-mediated

cardiotoxic effects, limiting the applicability of findings to patient

care. Another significant challenge is the inadequate representation

of the human microbiome and environmental pathogen exposure in

current animal models. These factors are increasingly recognized as

critical modulators of both the efficacy and toxicity of ICI therapy.

Furthermore, murine models inherently lack the capacity to reflect

the full spectrum of human biological heterogeneity, including

variations in age, sex, genetic background, comorbidities, and

socio-environmental influences. As a result, findings derived from

these models may not fully capture the complexity of ICI responses

observed in diverse patient populations. Addressing these

limitations requires the development of more sophisticated and

human-relevant experimental systems, such as humanized mouse

models or organ-on-chip platforms, to improve predictive accuracy

and clinical translatability.
6 Conclusion

The advent of immunotherapy has significantly transformed

cancer treatment, offering new hope for patients with previously

l imited therapeutic options. However, i ts widespread

implementation has also highlighted a concerning spectrum of

cardiovascular toxicities associated with immune checkpoint

inhibitors, CAR T-cell therapy, and cancer vaccines. Myocarditis,

arrhythmias, hypertension, heart failure, and thromboembolic
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events are among the most frequently reported cardiovascular

adverse effects, posing substantial risks to patient health and

treatment outcomes. The mechanisms underlying these toxicities

are complex, often involving immune-mediated inflammation,

cytokine release, and endothelial dysfunction. Given the

increasing integration of immunotherapy into clinical practice, a

multidisciplinary approach involving oncologists, cardiologists, and

immunologists is essential for early identification, monitoring, and

management of these complications. Strategies such as pre-

treatment cardiovascular screening, biomarker-based risk

assessment, and the use of cardioprotective agents may help

mitigate these adverse effects while preserving the therapeutic

benefits of immunotherapy. Future research should focus on

optimizing immunotherapeutic approaches to minimize off-target

effects and developing predictive models for cardiovascular toxicity.

Advances in artificial intelligence, precision medicine, and

biomarker discovery may pave the way for personalized treatment

strategies that balance efficacy with safety. By addressing these

challenges, the field of cardio-oncology can ensure that

immunotherapy remains a viable and effective treatment option

while safeguarding patient cardiovascular health.
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