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Introduction: Early detection of breast cancer via mammography screening is

essential to improve survival outcomes, particularly in low-resource settings

such as the global south where diagnostic accessibility remains limited. Although

Deep Neural Network (DNN) models have demonstrated high accuracy in breast

cancer detection, their clinical adoption is impeded by a lack of interpretability.

Methods: To address this challenge, CorRELAX is proposed as an interpretable

algorithm designed to quantify the relevance of localized regions within high-

resolution mammographic images. CorRELAX evaluates the contribution of

partial local information to the model’s global decision-making and computes

correlations between intermediate feature representations and predictions to

produce global heatmaps for lesion localization. The framework utilizes a DNN

trained on multi-scale crops of annotated lesions to effectively capture a

spectrum of lesion sizes.

Results: Evaluation on the VinDr-Mammo dataset yielded F1 Scores of 0.8432 for

calcifications and 0.7392 for masses. Heatmap localization accuracy was

assessed using the Pointing Game metric, with CorRELAX achieving average

accuracies of 0.6358 based on model predictions and 0.5602 using the

correlation maps, indicating robust lesion localization capabilities.
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Discussion: These results demonstrate that CorRELAX generates interpretable

coarse-segmentation maps that enhance automated lesion detection in

mammography. The improved interpretability facilitates clinically reliable

decision-making and addresses a critical barrier toward the integration of AI-

based methods in breast cancer screening workflows.
KEYWORDS

breast cancer, deep learning, explainable artificial intelligence, feature attribution,
mammography, medical image analysis
1 Introduction

Breast Cancer is the most common form of cancer among

women worldwide (1). In Latin America, multiple economic,

geographical, and cultural barriers limit access to screening

procedures, medical resources for diagnosis, and clinical research,

leading to lower regional survival outcomes (2–4). In Chile, similar

trends are also observed, as patients with access to private

healthcare and who reside in central urban areas have higher

survival rates than those using the public healthcare system and

living in other regions of the country (5). Early detection of breast

cancer using mammography has shown a significant reduction of

20% in breast cancer mortality risk, according to the World Health

Organization (6). Furthermore, access to screening procedures has

improved prognosis and survival rates for patients in both public

and private healthcare systems (7).

In recent years, the integration of Deep Learning (DL) and other

Machine Learning (ML) techniques as diagnostic assistance tools

has increased, reporting an increase in accuracy and improved

efficiency in comparison to traditional computer-assisted systems

(8–10) It has also been shown to improve sensitivity, reduce false

negatives in malignancy detection, particularly for junior

radiologists (11), and reduce intra-reader variability when used

for breast lesion assessment on multi-modal studies sources, such as

breast ultrasound and tomosynthesis (12, 13). However, integrating

these ML models into the radiologist’s diagnosis workflow faces

challenges due to the lack of human-interpretable explanations of

their decision process. Explainable Artificial Intelligence (XAI) has

emerged as a tool for addressing biases present in these models,

clarifying the relationship between input and reported predictions,

and enabling more transparent and informed choices while

ensuring that medical personnel remain in the loop (14, 15).

Feature Attribution methods attempt to assign an importance

score to a model’s input features by decomposing each feature’s

effect on the resulting output, thereby identifying which feature

most influences the model’s decision function. Gradient-based

feature attribution methods are commonly used to provide

interpretability to black-box models by visualizing how input

features contribute to their inference, measuring how gradients

are affected within the model, and presenting using saliency maps
02
(16). Grad-CAM and its variants, which generate visual

explanations by highlighting critical regions from the input

image, based on gradient information from a particular label

from the output, towards the inspected internal layer of the

model (17) Other feature attribution methods include LIME (18),

which approximates the model’s decision boundary using a simpler,

more shallow model to provide local explanations from a particular

feature. More recent approaches include methods involving

occlusion of features, such as RISE (19) and RELAX (20), which

mask regions from the input image to create feature importance

maps assigned based on the changes in prediction using masked

information. The latter extends this concept by quantifying a

feature’s importance and uncertainty through the comparison of

changes in internal feature vectors between masked inputs and the

original input.

A key limitation when using DL models is their dependence on

the input resolution to extract information. In medical imaging,

input images are often down-scaled to lower resolutions (such as

224 × 224 pixels on standard models) when using these models. Due

to image compression, smaller lesions and other clinically relevant

findings, such as micro-calcifications, can be missed when inspected

by these and not considered in the final prediction. Additionally, by

design, most feature attribution methods cannot present the

interaction between local elements and show the relationships

between similar features across different regions within the input

image. Moreover, accurately generating automatic segmentation

maps can be challenging due to the variability in lesion sizes and the

ambiguity of tissue boundaries. Yet, these can assist radiologists in

locating less conspicuous lesions that automatic methods would

otherwise ignore. These limitations underscore the importance of

using high-resolution inputs and techniques to capture and evaluate

all relevant information accurately during inference.

To address these challenges, this work proposes a method for

evaluating the contribution of local information in high-resolution

mammography images to the decision-making process of deep

learning models. The proposed approach employs a sliding-

window strategy to extract internal feature representations and

the resulting predictions from small regions across the image.

And measure the correlation between the similarity distances of

partial representations and those of their corresponding unmasked
frontiersin.org
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windows. These measurements are then combined into a global

prediction map, representing the likelihood of pathological findings.

A correlation map, which serves as a visualization tool to indicate

how similar local features are to the model’s learned knowledge. The

proposed method and the resulting maps provide an interpretable

representation of the model decision-making process and allow for

obtaining a coarse segmentation of potential lesions, enhancing the

detection of smaller findings that might be missed with traditional

down-sampled approaches.

The core novelty of this work lies in the introduction of

CorRELAX, a correlation-based feature attribution method

designed for the local assessment of image regions in

mammography. In contrast to existing explainability methods

that often rely on global saliency or gradient-based responses,

CorRELAX quantifies the alignment between internal feature

representations and output predictions under partial, random

occlusions. This approach provides a robust explanation of how

incomplete yet informative regions support the model’s inference,

even when pathological findings are underrepresented in the data.

Additionally, the use of sliding windows for attribution remains an

underexplored strategy for explainable artificial intelligence

methods applied to medical imaging. By combining local

prediction maps and correlation heatmaps, CorRELAX provides

coarse but interpretable segmentation maps of lesions present

within mammography images, facilitating their localization.

This paper is organized as follows: In section 2, a review of the

literature on the application of XAI algorithms is presented, and

more specifically, Feature Attribution Methods to provide

explainability to Convolutional Neural Networks and their

applications to mammography imaging. Section 3 describes the

Dataset used for training, our DL model used for this task, and the

proposed algorithm. An outline of the training procedure and

evaluation is provided, along with the tests used to measure the

precision and stability of our interpretable algorithm. Section 4

shows the results of the proposed experiment, using both a

validation sample from the training dataset and examinations

from Chilean patients. Finally, section 5 presents a discussion

regarding our algorithm’s performance compared to similar

experiments, limitations of the presented research, and potential

future work to improve the evaluation strategy.
2 Related work

In recent years, multiple approaches have been proposed to

provide explainability to ML models for breast anomaly detection.

In a previous work, the use of large language models for identifying

possible findings annotated in mammography reports and the

effects of laterality when reporting these findings (21, 22) was

evaluated. Globally, recent studies have primarily focused on

extracting interpretable features from mammography images that

provide insights into the location and characteristics of breast

lesions, as well as the importance of neighboring regions in the

image for accurate diagnosis.
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2.1 Saliency maps for breast lesion
detection

Saliency maps, particularly Grad-CAM-based methods (17), are

widely used for breast lesion detection and localization in

mammography. These methods, easily integrated into DL models,

use gradient information to generate heatmaps highlighting the

most relevant regions on input images. Their ability to identify

Regions of Interest (ROIs) makes them a popular choice for

providing interpretability in mammography lesion detection.

For instance, Farrag et al. (23) proposed an XAI system for

mammogram tumor segmentation using double-dilated

convolutions to mitigate local spatial resolution loss and

employing Grad-CAM and occlusion sensitivity to identify

regions containing masses. Similarly, Dahl et al. (24) proposed a

two-stage analysis pipeline using a ResNet-121 architecture to

obtain a holistic risk score of the entire mammography image.

Grad-CAM was used to identify the ROI for potential malignancies

and refined at a second stage to extract a detailed heatmap at the

location. Lou et al. (25) developed a Multi-level Global-guided

Branch-attention Network (MBGN) for mass classification in

mammography, employing Grad-CAM to validate the relation of

the selected features to the ground truth. Likewise, Al-Tam et al.

(26) proposed a multi-modal breast cancer detection framework

that combines mammography and ultrasound images. Using a

YOLOv8 architecture for ROI detection, a DL ensemble model for

malignancy classification, and Grad-CAM for feature visualization

of the ROI, providing contextual information of the

detected lesions.

On the other hand, Pertuz et al. (27) evaluated different pre-

trained DL architectures for breast lesion detection by comparing

their saliency maps obtained using Grad-CAM with manual

segmentations by radiologists. Their findings revealed a low

overlap between the identified saliencies and annotations,

suggesting that these models rely upon general features rather

than specific elements for classifying malignancies. Similarly,

Mobini et al. (28) studied multiple DL architectures using Grad-

CAM++ (29), a generalized variant of Grad-CAM that uses a

Rectified Gradient to detect breast arterial calcifications in

mammography images. Their research highlighted that simpler

models, such as VGG16 and MobileNet, outperformed more

complex architectures in terms of classification accuracy and the

quality of saliency maps.
2.2 Comparisons between explainable
methods for breast lesion detection

While Grad-CAM remains a widely popular method for

generating visual explanations, its limitations have prompted

comparisons to similar techniques. A drawback of this method is

its tendency to generalize over broader regions of the input image,

leading to a loss of detail that can impact the precision of saliency

maps, particularly for smaller lesions and calcifications. This has
frontiersin.org

https://doi.org/10.3389/fonc.2025.1601929
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mellado et al. 10.3389/fonc.2025.1601929
motivated researchers to explore alternatives to the relationship

between input and predictions. For instance, Ahmed et al. (30)

compared explanations generated by different XAI methods,

including LIME, SHAP, and Grad-CAM, across various DL

architectures such as VGG16, Inception-V3, and ResNet.

Compared with annotations from the CBIS-DDSM dataset, their

analysis highlighted differences in performance when aligned with

their explanations. Similarly, Barnett et al. (31) proposed an ML-

based system that compares information from input images with

prototypical examples from training data as case-based

explanations. This similarity measurement is then used to classify

breast mass margins, obtaining a measurement of malignancy. This

measurement is then added to the final lesion prediction, and their

explanations are compared to Grad-CAM and Grad-CAM++.

Additionally, Rafferty et al. (32) evaluated methods such as

LIME, SHAP, and RISE to identify regions for breast cancer

malignancy classification. They noted that these methods have

low agreement with the radiologists’ evaluations of lesion

relevance. While RISE provided marginally better explanations,

none of these methods accurately highlighted the precise region,

showing the limitations of these methods on this task. In contrast,

Ortega-Martorell et al. (33) proposed a method based on Fisher

Information Networks (FIN) to visualize and quantify similarities

between learned features. Their approach provides insights into the

characteristics and similarities of a particular lesion, as well as its

resemblance to learned features, describing specific elements in

both benign and malignant masses and calcifications.

Gerbasi et al. (34) developed a DL pipeline for segmentation and

malignancy classification of microcalcifications within

mammography images. Using a UNet for semantic segmentation of

clusters of calcifications within patches of fixed size from

mammography images. Followed by the classification of these

clusters using a ResNet-18 architecture fine-tuned for malignancy

classification. Additionally, the classifier is later inspected using Grad-

CAM and SHAP to identify local regions within these clusters that

indicate a malignancy association within the image, providing

explanations for the resulting prediction.

Prodan et al. (35) compared multiple DL classifiers based on

both CNN and Vision Transformers (ViT), for a malignancy

classification task using mammography images and using saliency

methods to highlight areas of importance for the classifier for its

decision-making process. To reduce imbalance within their training

data, they applied a Style-GAN XL (36) to generate positive samples

similar to those present in the dataset. Each image was then

evaluated using Grad-CAM, which highlighted the regions that

had the most impact on the classification task and drew a bounding

box around the location of any potential lesions present.

Prinzi et al. (37) introduced Rad4XCNN, a post-hoc, model-

agnostic method for global explanation of CNN models applied to a

malignancy classification task of breast ultrasound images. This

method aims to enhance the interpretability of CNN-derived

features from different ResNet, DenseNet, and ViT architectures

by quantifying their correlation with clinically meaningful radiomic

features using Spearman’s rank correlation. By identifying deep

features with strong correlations to radiomic descriptors, this
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method enables the construction of class-independent, global

explanations aligned with established clinical knowledge. The

authors evaluated their method on breast ultrasound images from

a publicly available dataset for pre-training, and two in-house

datasets from different clinical centers for internal and external

validation. While CNN architectures, such as ResNet and DenseNet,

demonstrated robust predictive performance and yielded higher

correlations with radiomic features, ViT-derived features showed

no meaningful alignment. The authors also compared their method

to local saliency map explanation methods, such as Grad-CAM,

Eigen-CAM, and Score-CAM. These produced visually inconsistent

explanations, particularly for misclassified samples, compared to

their proposed method.
2.3 Impact of input image resolution

A present challenge for lesion detection in mammography lies

in the impact of the resolution of the input images used for DL

models, which hampers the detection of smaller lesions like

calcifications. Most models down-sample the input images to a

predefined resolution, often losing relevant information from

smaller-sized elements. Conversely, high-resolution inputs can

improve detection but significantly increase computational

requirements for training and inference.

Several studies have proposed strategies to address this trade-

off. Farrag et al. (23), for example, utilized double-dilated

convolutions to improve segmentation accuracy but down-scaled

images to 512×512 pixels. Similarly, Dahl et al. (24) used a two-stage

approach, down-sampled the image to a 976 × 976 resolution to

improve the detection of smaller lesions before rescaling the image

further to 512 × 512 in their second stage to extract interpretable

features from the identified ROI from the first stage. Meanwhile, Al-

Tam et al. (26) rescaled the input to 640×640 for their object

detection stage and later downsampled to 128 × 128 pixels during

runtime training of ROI areas. For calcification detection, Mobini et

al. (28) scaled input images to 1576 × 768 across their evaluated

models to ensure their models’ response to the smaller size of

these lesions.

Despite these efforts, most studies rely on smaller input

resolutions, ranging between 224 × 224 to 512 × 512. While often

sufficient for malignancy classification and coarse lesion localization

tasks, these resolutions fall short on detection tasks involving

smaller-sized elements. This evidences a trade-off that prioritizes

computational load at the cost of precision to identify smaller

clinically significant features.
3 Materials and methods

The proposed method, in summary, studies each view from a

mammography image independently. Each image is initially

segmented into its corresponding ROI and then divided into

small intersecting windows, which are then evaluated using a

CNN classifier. Trained using crops of pathological findings
frontiersin.org
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annotated from a publicly-available dataset. The model outputs

both the multi-label prediction of lesions present within the crop

and a feature vector representation of the input image. Both

predictions and feature vector representations are compared to

the resulting outputs from occluded versions of the input image,
Frontiers in Oncology 05
yielding a correlation measurement for each window. These values

are then combined using our adjacency kernel to reconstruct the

final prediction and correlation maps per class, along with a

distance map indicating the relevance of each window to the

internal learned features within the model. Figure 1 illustrates the
FIGURE 1

General schema of our proposed pipeline. Describing the preprocessing of each mammography image, sampling of annotated crops for training,
reconstruction using sliding windows of the resulting prediction using the trained classifier, the proposed explanation method and examples of the
resulting correlation maps obtained.
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complete pipeline of the proposed method, which is described in the

following subsections.
3.1 Preprocessing

For the preprocessing stage, a set of transformations was

implemented, similar to those proposed by (38). Figure 2 shows

an example of the preprocessing pipeline as described in

this section.

VinDr-Mammo contains images with a mean original size of

2647 × 3387 pixels, ranging between 2012–2812 pixels in width and

2812–3580 pixels in height, and intensity values stored in an

unsigned 16-bit integer format. Each image was initially scaled in

intensity between 0–1 and inverted if the Photometric

Interpretation tag on the DICOM metadata was set to

MONOCHROME1 to ensure all images have a black background

and white foreground.

Then, each underwent a histogram equalization transformation

using the Contrast Limited Adaptive Histogram Equalization

(CLAHE) algorithm (39) to enhance the contrast of the images.

CLAHE divides the image into a series of tiles of defined size (8 × 8

pixels in our case), then clips each tile’s histogram to a specified

contrast limit. Then, each histogram bin is redistributed across all

bins, and the Cumulative Distribution Function (CDF) is calculated.

After this, the pixel intensity values are then remapped using the

CDF. This process is repeated for each tile, enhancing the contrast

locally and avoiding the over-amplification of noise in the image.

Finally, each tile is rejoined using bilinear interpolation to obtain

the contrast-enhanced image without any artifacts. The OpenCV
Frontiers in Oncology 06
(40) implementation of the CLAHE algorithm with clip limits of 1.0

and 2.0 as utilized. The resulting images were then fused channel-

wise to the original non-equalized image, obtaining an RGB

representative image as output.

Next, the image was cropped to its ROI via Otsu’s thresholding

(41) and contour detection to obtain the bounding box of the breast

region. Resulting in a set of images cropped to the breast’s ROI, with

an average size of (885 ± 190) × (2497 ± 502) pixels.
3.2 Data set

For training, initial testing, and benchmarking, the VinDr-

Mammo dataset (42) was utilized. This publicly available dataset

comprises multi-view mammography images from 5000 patients

from the Hanoi University Hospital in Vietnam. This dataset

provides bounding boxes of the location of ten different types of

lesions present within the breast, including masses, calcifications,

asymmetries, and architectural distortions. It also provides the BI-

RADS score for each marked finding and the patient’s breast density

for each view. This dataset was selected because of its detailed

annotations of the location of multiple types of findings beyond

masses and calcifications, allowing us to inspect the presence of

clinically relevant findings at a local level. However, as some

available findings are limited, some categories with similar

characteristics, such as focal, global, and (general) asymmetries,

nipple, and skin retractions, were grouped into general labels

(asymmetries and retractions, respectively). The dataset is divided

into training and test sets, containing both Cranio-Caudal (CC) and

Medio-Lateral Oblique (MLO) views of both breasts for each
FIGURE 2

Example of our preprocessing pipeline, cropped to the identified Region of Interest of the breast region, using Otsu’s Thresholding.
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patient, split in a 80–20% ratio between training and test sets. All

splits were performed using a subject-out scheme to reduce possible

bias from data from the same patient in different splits.

For training of the proposed classifier model, each annotated

bounding box available was treated as an independent sample,

considering that multiple bounding boxes could be present in a

single image and that each bounding box could contain various

types of lesions. As such, this problem was studied as a multi-label

classification task, where each bounding box could be labeled with

one or many types of lesions. As many images contain no annotated

lesions (labeled as No findings), a random area of the image was

sampled as a negative example for each image in this subset.

Ensuring that the model can learn to differentiate between the

presence and absence of lesions. Table 1 summarizes the

distribution of the different types of findings present in the

dataset on the training and test sets.

For validation with clinical patients, a set of images provided by

a local Hospital in Chile was evaluated. These exams correspond to

a set of mammography images acquired for breast cancer screening

from a population of adult Chilean women, including both CC and

MLO views of these patients, plus the examination report evaluated

by radiologists from the hospital. These examinations were used in

this study with authorization from the Human Research Ethics

Committee of Universidad de Valpara´ıso (CEC-UV), which serves

as the study’s Institutional Review Board (IRB). For the evaluation,

a set of images in which the report indicated the presence of masses
Frontiers in Oncology 07
and calcifications, as well as their general location within the body,

was selected.
3.3 Deep convolutional neural network
classifier

The proposed experiment involves classifying clinically relevant

findings in mammography images using a multi-label classifier. In a

previous work (43), the model selection for this task is detailed and

summarized as follows.

Initially, we trained a series of deep learning architectures to

determine the best model for our task. Comparing the

EfficientNetV2, ResNet50, Swin Transformer, DenseNet121,

VGG19, and MobileNet architectures with pre-trained weights on

the ImageNet dataset; using the implementations provided by

PyTorch’s torchvision library (44). To ensure uniformity between

the models, the final classification layer of each model was replaced

with with a 2-layer Dense Network with an initial Dropout layer of

0.5rate, a hidden layer of 512 units, and ReLU activation, and a final

output layer with the number of classes in the dataset and a Sigmoid

activation function. These parameters were estimated on initial grid

search experiments and were kept constant for all models to ensure

a fair comparison.

Each model was trained using a subset of the findings present in

the dataset, specifically Masses, Calcifications, Asymmetries, and

Suspicious Lymph Nodes, as these are the most common findings.

In Table 2, the resulting F1-Score obtained by each model on the

dataset’s test set is presented. The EfficientNetV2 architecture

obtained the best performance on the test set, with an average F1-

Score of 0.727, outperforming the other architectures by a

small margin.

EfficientNetV2 (45) is a family of convolutional neural network

models optimized for parameter efficiency and computational cost

by scaling the depth, width, and resolution of the network in a

balanced manner. The original EfficientNet architectures were

designed to scale the network’s depth, width, and resolution

simultaneously on Convolutional Neural Networks (CNNs), using

a Neural Architecture Search (NAS) approach to find the optimal

scaling factor on each block to balance a trade-off between accuracy

and computational cost (46). One of the main innovations of

EfficientNetV2 compared to the original is the replacement of the

original MBConv blocks with a new Fused-MBConv block, which
TABLE 1 Number of findings per split in VinDr-Mammo dataset.

Finding Train Test

No Finding 14589 3643

Mass 989 237

Suspicious
Calcification

428 115

Asymmetries 313 79

Architectural
Distortion

95 24

Suspicious
Lymph Node

46 11

Skin Thickening 45 12

Retractions 39 9
TABLE 2 F1 scores for pathological finding classification task using a subset of VinDr-Mammo dataset, comparing different deep learning
architectures. (43).

Finding N DenseNet121 EfficientNetV2 ResNet50 Swin Transformer VGG19 MobileNet

Mass 237 0.783 0.815 0.742 0.770 0.756 0.708

Suspicious Calcification 115 0.847 0.865 0.860 0.828 0.873 0.828

Asymmetries 79 0.306 0.295 0.200 0.310 0.204 0.324

Suspicious Lymph Node 11 0.667 0.500 0.737 0.370 0.400 0.476

Weighted Average 442 0.712 0.727 0.675 0.693 0.679 0.665
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combines the original’s depth-wise separable convolution and its

expansion convolution into a single operation. Another

improvement is using a smaller expansion ratio for the

convolutional layers, which reduces the number of parameters

required for each layer, and using smaller kernel sizes for the

convolutional layers. While compensating for the reduced

receptive field by increasing the number of layers in the network.

Figure 3, shows the architecture of the EfficientNetV2model used in

our experiments, with our modified classification layer, as

previously mentioned.

The model was trained using an Adam optimizer (47) with a

starting learning rate of 0.001 and a Cosine Annealing decay

schedule during 50 epochs, down to a final learning rate of 1 ×

10−7, using a batch size of 48 samples on an NVidia RTX 4080 GPU.

The Focal Loss (48) function was employed on optimization. This

loss function addresses the effects of extreme class imbalance

between positive and negative samples by adding a modulating

factor g to the cross-entropy loss, which penalizes the loss of well-

classified samples, focusing on the complex examples. As shown in

Equation 1, for the case of multi-label classification, it is defined as

the logarithm of the predicted probabilities p of the ground-truth

label vector y, modulated by the factor (1 − p)g which penalizes

errors on complex samples. And an a parameter, which acts as a

weighting factor between positive and negative labels. When g = 0,

the Focal Loss is equivalent to the standard cross-entropy loss.

Using grid search, the defined parameter values for these were a =
Frontiers in Oncology 08
0.95 and g = 2.5, as these provided the best performance on the

training dataset.

FL(p) = −a½y(1 − p)g log  (p) + (1 − y)pg log  (1 − p)� (1)

Multiple data augmentation techniques were applied to the

cropped images during the training stage, allowing our model to

classify findings across different scales and aspect ratios. On

training, the image was cropped using the bounding box

annotations of the clinically relevant findings and cropping at

different scales (between 0.05–5 times the original bounding box

area) and aspect ratios (between 0.33–1.66) from the center of the

bounding box. In the case of normal tissue, from each image labeled

asNo Finding a random region was cropped using similar scales and

aspect ratios to those used for the positive examples. This cropping

was repeated on each training epoch to ensure the diversity of scales

for each image.

To further mitigate the impact of the dataset’s class imbalance,

each crop was sampled using a Weighted Random Sampling

function, where the inverse of the label frequency in the complete

dataset determined the weight for each sample. Additionally, a

series of transformations was applied to each crop during the

training stage. Randomly applying with a probability of 50%,

horizontal and/or vertical flips, random rotation between -30° to

30°, and random brightness, contrast, saturation, and hue

adjustments. Finally, each crop was resized to a fixed size of 256

× 256 pixels with Bilinear interpolation for the model’s input.
FIGURE 3

EfficientNetV2 architecture, showing each block’s depth, width, and resolution scaling factors. Included is the modified classification layer used in
our experiments.
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During the validation and testing stages, no transformation was

applied except for resizing the crops, utilizing the annotated

bounding boxes on each sample, and a center crop of the

mammography image if the sample was annotated with no

findings present.
3.4 CorRELAX: correlation of
representations for explainability

The proposed method, CorRELAX, is a modification of the

RELAX algorithm (20) that expands upon the original method’s

measurement of feature importance by measuring the correlation

between the distances of representations of the input features and

the model’s predictions. This assumes that the distances between

feature vectors and predictions of incomplete information of the

same input should correlate, as a trained model should infer similar

predictions from similar input representations. This correlation

should be higher when the model is more confident that the input

features are relevant to the prediction, based on the model’s learned

knowledge. This method is expected to provide a more robust

measurement of importance, as it considers both the expected

values of the distances and the uncertainty of the importance of

the input features.

Figure 4, presents a diagram of the workflow of our proposed

method. Given an input image X ∈ RH�W , of size H,W, we do

inference using a trained DL model f (X q)j . Most CNN

architectures can be described as two parts:
Fron
• A feature extractor fextract extracts features at different levels

of abstraction from the input image using a series of

convolutional and pooling layers.

• A classifier fpredic t takes the extracted features ’

representation of the input image and predicts the output

class c from a Multi-Layer Perceptron (MLP)-like structure

with a defined activation function.
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Using a set of parameters q learned during training, on

inference an internal feature vector of size D is extracted from the

last layer previous to the classifier stage h = fextract(X q) ∈ RD
�� , and

the predicted output from the model ŷ = fpredict(h q)j . Following

this, a set of random masks M ∈ [0, 1]b×b is created by sampling

from a Bernoulli process with a probability p of a region being

masked, starting from a block of size b × b which is then up-scaled

to the size of the input image, to mask different regions within the

input. These masks are then applied, resulting in a set of masked

variations of the input image XM = X  ȯM, which are inputted into

the trained model, returning both the masked feature vectors hM =

fextract(XM jq) and the prediction outputs ŷ M = fpredict(hM q)j from

each masked image.

Using a distance function, the similarity between the feature

vectors and their masked versions Sh = S(h,hM ) and the similarity

between the image prediction and the prediction of the masked

images Sŷ = S(ŷ ,ŷ M ) is estimated. The cosine similarity shown in

Equation 2, measures if two vectors are similar in feature space by

calculating the cosine of the angle between them. Vectors with

similar semantic information will have a cosine similarity closer to

1, while vectors with different information will have a cosine

similarity closer to 0.

S(A,B) =
A · B
Ak k Bk k (2)

Using the estimated distances, two correlation coefficients are

then calculated:
• The correlation between the feature vectors’ similarities and

the similarities between the model’s predictions r(Sh ,Sŷ ).
• The correlation between the feature vectors’ similarities to

the probability of the masked views of the input image

r(Sh ,ŷ M ).
The first coefficient r(Sh ,Sŷ ), as shown in Equation 3, evaluates

the similarity distance between the internal feature vector
FIGURE 4

Diagram of the CorRELAX algorithm, showing the method’s workflow for evaluating the correlation between representations and predictions. Using
both an input image and random masked versions of itself on a Deep Learning Image Classifier to obtain a metric of the relevance of information
from the input to the model’s output, and the correlation between the feature vectors and the predictions.
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representations from the original input of the model and the feature

vector representation from a set of masked versions of the input

image. Then, its correlation to the similarity distance between the

resulting predictions from the original input and its masked

versions is measured. This results in a value that measures how

the model’s learned knowledge aligns with representations and

predictions.

r(Sh ,Sŷ ) =
noiShi Sŷ i

−oiShioiSŷ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
noiS

2
hi
− (oiShi )

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

noiS
2
ŷ i
(oiSŷ i

)2
q (3)

The second coefficient r(Sh ,ŷ M ), shown in Equation 4, evaluates

the similarity distance from the internal feature vector

representations, and measures its correlation to the probability of

belonging to the label i ∈ c from each masked image output ŷ M .

Obtaining a measure of how partial information at the input

impacts the model’s final prediction establishes the importance of

the input features to the model’s decision-making process.

r Sh,ŷ Mð Þ =
no

i
Shi ŷ Mi

−o
i
Shio

i
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(4)
3.5 Experiment

The proposed model was trained to classify cropped samples of

mammography images containing clinically relevant findings at

various scales and aspect ratios, ensuring adaptability in detecting

elements of interest regardless of their size or location. Initially, the

classifier was evaluated using cropped samples from the test set

corresponding to annotated bounding boxes of findings.

Performance metrics, including accuracy, precision, recall, and

F1-score, were estimated for each label.

A sliding window approach was applied to the entire

mammography image to inspect and identify clinically relevant

findings, as previously shown in (43). The mammography image

was divided into a set of local views of a defined size and stride. In

this experiment, a size of 256 × 256 and a stride of 48 pixels between

each window was determined. Each window was input into the

model, obtaining the internal feature vector and the multi-label

prediction output.

To reconstruct the global prediction, using the projections of all

windows within the image, a convolution operation was applied to

the prediction of each window, using a kernel that represents the

weight of neighboring windows to the current one. This kernel was

constructed by estimating the Intersection over the Union (IoU) of

the neighboring windows, weighted by the number of overlapping

windows for each. The IoU from a pair of rectangular areas (A,B) ∈
R2 as shown in Equation 10, described each one as a pair of points

from the bottom-left corner to the top-right corner of the defined

rectangle A = (xAmin, y
A
min), (x

A
max , y

A
max)

� �
. Equations 5–9 describe

each step of the IoU estimation, as follows:
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A ∩ B = min  (xAmax , x
B
max

� �
−max   xAmin, x

B
min)

� �
(5)

· (min  (yAmax , y
B
max) −max   yAmin, y

B
min)

� �
(6)

Area(A) = (xAmax − xAmin) · (y
A
max − yAmin)

� �
(7)

Area(B) = (xBmax − xBmin) · (y
B
max − yBmin

� �
) (8)

A ∪ B = Area(A) + Area(B) − A ∩ B (9)

IoU(A,B) =
A ∩ B
A ∪ B

(10)

Each value from the kernel of size window _ size
stride is estimated from

the IoU between the center and the neighboring windows with

centers at a distance within ½−window _ size
2 , window _ size

2 �, from the center

at each dimension, separated at stride. This kernel is then applied

using a 2D-convolution operation to each map. This operation

yields a smoothed prediction for each class across a general region

of the complete image, taking into consideration how the

predictions from each window overlap. As a result, a prediction

map was generated for each label, indicating the predicted location

of various clinically relevant findings within the mammogram.

A similar approach was used to inspect the image globally using

our proposed algorithm. For each window analyzed from a

mammography exam, we generated an arbitrarily high number

(2560) of masks using an initial mask block size of 8 × 8 pixels and a

probability of 0.5 for each region to be masked. All masks were then

up-scaled to the original image size using bilinear interpolation and

applied to the window in sets of 128 masks for easy computation.

The resulting feature vectors and prediction for each mask were

accumulated for each window. Then the correlation value of each

window’s set of feature vector and prediction is evaluated. Finally,

this kernel is applied to each class’s resulting feature relevance

metric and correlation maps, obtaining a global heatmap of each

label’s feature relevance and correlation.

To evaluate the precision of our method in localizing clinically

relevant findings on each mammography image, as reported within

the dataset’s bounding boxes, a “Pointing Game” strategy (49) was

applied. Given the prediction and feature correlation maps for each

label in the dataset, we identified the maximum values for each

ground truth label present in each image containing a labeled

finding. The location point of these maxima was considered the

predicted location of the finding. The “Pointing Game” accuracy for

each label was calculated as shown in Equation 11.

Accuracy =
#Hits

#Hits + #Misses
(11)

Considering the effect of the strides between evaluated

windows, a prediction was considered a hit if the predicted

location fell within the reported bounding box with an offset of

48 pixels within. In the case of the prediction heatmaps, we

constrained our evaluation of the maxima to consider a hit if the

prediction value was ≥ 25% or ≥ 50%. For the correlation heatmap,

a hit was counted if it had a positive correlation within.
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Finally, to evaluate the stability of the correlation measurement

at lower mask densities, the correlation coefficient on multiple

subsets of masks was measured. Starting from an initial arbitrarily

large number of generated masks, and reducing the number of

applied masks down to a minimum of 128. Then, the distance

correlation coefficient was estimated for each subset within each

window and compared to the corresponding value obtained from

the complete set of generated masks. This allowed us to determine if

the correlation distance measure was stable when using fewer

masks, providing insights into the robustness of the proposed

method under limited conditions.
4 Results

4.1 Classifier performance on VinDr-
Mammo dataset

Table 3 shows the metrics of the trained classifier on the VinDr-

Mammo dataset, evaluated using crops from the clinically relevant

findings annotated within the dataset.

The trained model showed a high performance in classifying

normal tissue, masses, and suspicious calcifications, achieving an

F1-Score of 0.9901, 0.7372, and 0.8402, respectively. The high

accuracy in classifying normal tissue can be attributed to its

prevalence within the dataset, making our model exceptionally

reliable at identifying the absence of findings. The model

performs reasonably well for masses and calcifications,

considering the challenge of detecting the latter type due to their

small size and sparse distribution in mammography images.

However, the model struggles with rarer findings (i.e., they have a

few limited data samples), such as Architectural distortions,

reflecting on their limited representation within the dataset.

Similarly, asymmetries also show low performance, likely due to

their structural similarity to masses, as asymmetries are defined as

an increased density of fibrous gland tissue, resembling masses (50,

51). Particularly at larger window sizes, these become more ill-

defined and thus harder to differentiate from masses.

Figure 5 presents two examples from the VinDr-Mammo test

set containing a group of masses (4a) and an exam showing a large
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area containing calcifications, evaluated using our method to

visualize the identified regions containing these findings.

Figure 5 superior panel contains a group of four labeled masses

within a close region of the upper third of the breast. When

inspecting the Distance Correlation map, the region containing

these masses shows a high correlation value within the neighboring

area. According to the model, this region contains more relevant

information for its prediction than the rest of the image. According

to the model’s knowledge, when inspecting both the prediction and

correlation heatmaps, the region containing these masses shows a

high probability of their presence and a positive correlation to that

particular class. When combining the predicted values and the

correlation map, we can coarsely delineate the region where these

masses are located, allowing us to demarcate more precisely where

these findings are present. In the case of Figure 5 inferior panel, the

presented view shows a large region labeled as containing suspicious

calcifications. Using the proposed method, the combination of

prediction and correlation maps delineates the area where these

calcifications are located compared to the original bounding box.

However, in this particular case, the model identifies a small region

within the borders of the calcification as containing masses, albeit

with a low probability of occurrence. Upon closer inspection, this

misclassification may arise from the similarity to a mass-like

structure with poorly defined borders, as both masses and

calcifications appear in conjunction and share similar areas in the

training dataset (52, 53).
4.2 Evaluation using Chilean patients’
mammography images

To evaluate the performance of the proposed method with local

examinations, the model was applied to a set of mammography

images from Chilean patients obtained from screening procedures

conducted at a local hospital in Chile. Using the available exam

report, the general location of masses present within was identified.

Figure 6 shows both cranio-caudal (Figure 6 superior panel) and

medial-lateral oblique (Figure 6 inferior panel) views of the left

breast from a patient. The report from this patient describes a mass

on the left breast, located at the posterior third of the left upper
TABLE 3 Metrics of our Deep Learning Classifier, trained with crops of pathological findings present in VinDr-Mammo Dataset.

Label Accuracy Precision Recall F1 Score Support

No Finding 0.9824 0.9958 0.9844 0.9901 3643

Mass 0.9690 0.7200 0.7595 0.7392 237

Suspicious Calcification 0.9915 0.8846 0.8000 0.8402 115

Asymmetries 0.9790 0.4000 0.1772 0.2456 79

Architectural Distortion 0.9941 0.5000 0.0417 0.0769 24

Suspicious Lymph Node 0.9973 0.5000 0.0909 0.1538 11

Skin Thickening 0.9983 1.0000 0.4167 0.5882 12

Retractions 0.9973 0.3333 0.2222 0.2667 9
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FIGURE 5

Visualization of the original image and annotated bounding boxes, distance correlation map, and sets of prediction, correlation and product heatmaps
for the labels “No Finding”, “Mass” and “Suspicious Calcification” for two mammography images from the VinDr-Mammo dataset. The superior panel
contains a group of masses in the upper region, while the inferior panel contains a large region labeled as containing suspicious calcifications.
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FIGURE 6

Visualization of the left breast from a patient of a local hospital, containing a defined mass within. The superior view shows the Cranio-Caudal view,
whereas the inferior view shows the Medial-Lateral Oblique view of the same breast.
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inner quadrant, measuring 23mm in size. In both views, the mass is

visible within the described region. On the Distance map, the

demarcated region is identified as containing relevant

information, albeit limited in size compared to the neighboring

tissue, as neighboring windows start to include more normal tissue.

When inspected using the prediction maps, the region shows a

higher probability of a mass lesion’s presence on both views, but

with a low confidence level. The correlation maps indicate a limited

positive correlation between these regions and their neighboring

areas. When combining both model prediction and class

correlation, the detected mass is then delineated on both views.

Showing that, despite the differences in image source, the proposed

model has a positive response to a present lesion, and can identify

the general location where masses and calcifications are present.
4.3 Sensitivity to number of masks in
correlation

Figure 7 shows the effect of mask density on the correlation

evaluation when compared to an arbitrarily high number of masks

(2560). As the number of sampled masks decreases, the correlation

error increases as expected. Using at least 256 masks per window, the

mean correlation error from all windows remains below ±0.025.

Using fewer masks results in less reliable values, as there are fewer

combinations of features on each window to compare, adding bias to

the interpretation of which areas within the evaluated window are

more relevant to the resulting prediction. Conversely, using more

masks increases the number of combinations of occluded regions,

resulting in a more robust measurement of the linear relations of
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features and predictions. This introduces a trade-off between

evaluation speed and correlation precision. While fewer masks can

improve evaluation speed, using a large number ensures more reliable

results, which is crucial for robust model interpretability.
4.4 Accuracy of location using pointing
game metric

Table 4 shows the accuracy for each label when evaluated using

the “Pointing Game” strategy on the prediction and correlation

heatmaps. Some images can contain multiple lesions of the same

label, so these cases were counted as a single hit.

Using the prediction map, the model achieves a weighted mean

accuracy of 0.6358 with a detection threshold of 25%, whereas using

a higher threshold of 50%, our model reaches 0.3613. As each

window is weighted by its neighbors, using a higher threshold

reduces the probability of detection when evaluated globally. In

particular, the proposed method performed well at both threshold

levels when identifying calcifications. Achieving a pointing game

accuracy of 0.7714 and 0.5714 respectively at 25 and 50%. This

indicates that the proposed model can locate the general region

where calcifications are present, regardless of their size, when

evaluated globally. In the case of masses, the prediction maps

reach 0.5205 and 0.2654 at these thresholds. Using the correlation

map, our model achieves a weighted mean accuracy of 0.5602, with

similar results for masses (0.4201) and calcifications (0.7238). This

shows that the measured correlation within each window can help

more confidently locate the presence of lesions on a global

mammography image. While somewhat inaccurate in some cases,
FIGURE 7

Box-plot of the absolute difference of correlation within an image compared to a high number of masks (n=2560), at different numbers of masks per
window, in logarithmic scale.
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our method can locate these lesions on most images using either

method, as shown in our example from Figure 8. Notwithstanding,

in the case of Skin Thickening, both prediction (at the threshold of

25%) and correlation maps achieve an accuracy of 0.5833 and

0.4167, respectively. This suggests that, at least for this particular

finding, our model can effectively locate these when inspected

globally. The model recognizes these findings as similar to its

internal knowledge, despite the limitations imposed by the limited

availability of samples.
5 Discussion

Saliency maps often provide information on the general

location of image regions most influential to the output of DL

models. However, their reliability is often limited by the model’s

resolution, sensitivity to perturbations, and inherent limitations in

identifying subtle features, in the context of medical imaging (54).

Most existing approaches in the literature rely on global saliency

extraction from the full mammography image (27, 32), which can

hide the contribution of smaller lesions.

Grad-CAM remains one of the most widely used methods for

visual explanations. Despite its popularity, its tendency to generalize

over broad regions limits its effectiveness on high-resolution

domains. In the case of mammography, where smaller lesions may

critically influence diagnostic outcome, the provided explanation

often fails to adequately explain their relation to the resulting

output. Furthermore, previous work has shown low overlap to

relevant features, compared to other interpretable methods (30).

In contrast, approaches that focuses on local information and

their relation to elements similar to the target lesions have shown

more alignment with clinical findings. Case-based interpretability

methods have demonstrated the potential to improve radiologists’

decision-making, offering more intuitive insights compared to

traditional gradient-based saliency maps (31).

Several recent studies have proposed explainability methods for

visual attribution in breast imaging. Cerekci et al. (55) conducted a

quantitative evaluation of saliency-based XAI methods, employing

the “Pointing Game” strategy to assess the precision of their

resulting explanation maps. They report a value of 41% for the
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detection of masses in mammography images using Grad-CAM,

30% with Grad-CAM++, and 35% with Eigen-CAM. By contrast,

CorRELAX achieves 52.05% using the prediction map at a low-

acceptance threshold, and 42.01% using the correlation map for the

same task. Demonstrating competitive performance relative to

gradient-based saliency methods. Nonetheless, some key

methodological differences between both methods should be

noted. First, Cerekci et al. method focuses solely on mass

detection, while CorRELAX handles multi-label classification

across different lesion types. Second, their analysis was performed

on down-sampled mammograms, resized to 512 × 512 pixels, which

may compress small-sized lesions that could be present, limiting

their detection. While CorRELAX leverages high-resolution local

windows and reconstructs prediction maps from overlapping

patches, preserving spatial detail and improving sensitivity to

smaller findings.

Gerbasi et al. (34) proposed a pipeline involving patch-based

analysis for microcalcification segmentation and malignancy

classification. Their method achieved strong quantitative results,

reporting an IoU of 0.74 and an AUROC of 0.95 for detection of

calcification clusters. However, their use of Grad-CAM and SHAP

for explanation was limited to attributing malignancy to the

identified clusters. And restricted to a single type of lesion, as

with the case of the previous study.

Prinzi et al. (37) recently introduced a correlation-based

method linking CNN features to radiomic descriptors in

ultrasound breast images. Their approach addresses some of the

limitations of saliency map explanations, specifically their

consistency and extensibility in extracting global information.

While their method differs from ours in modality and focus, it

opens future opportunities for integrating radiomic interpretability

into CorRELAX, potentially improving clinical robustness.

Despite the promising results, CorRELAX faces several

limitations. First, the current experiment is constrained by the

availability of labeled examples for less-represented findings such

as asymmetries, lymph nodes, and architectural distortions. Most

public mammography datasets only provide annotations for masses

and calcifications, which limits their generalizability for smaller or

less common lesions. Expanding annotated dataset could improve

detection performance and increase clinical applicability.
TABLE 4 Accuracy of “Pointing Game” evaluation of prediction and correlation maps compared to labeled bounding boxes.

Finding Prediction Map (> 25%) Prediction Map (> 50%) Correlation Map Support

Mass 0.5205 0.2654 0.4201 219

Suspicious Calcification 0.7714 0.5714 0.7238 105

Asymmetries 0.2692 0.0384 0.3462 78

Architectural Distortion 0.0000 0.0000 0.0000 24

Suspicious Lymph Node 0.4000 0.2000 0.0000 10

Skin Thickening 0.5833 0.4166 0.4167 12

Retractions 0.0000 0.0000 0.0000 8

Weighted
Mean Accuracy

0.6358 0.3613 0.5602 456
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Although the presented analysis confirmed that the resulting

correlation metric is robust to the number of masks used, the

resulting explanations remain dependent on the masking strategy

and occlusion configuration. A more thorough analysis of these

parameters could improve stability and efficiency of the explanation

process, enabling real-time applicability.

Future work will also explore the application of CorRELAX to

other medical imaging contexts, such as brain imaging (56), to

evaluate how learned features correlate with radiomic information

across different modalities. Additionally, a deeper integration of
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radiomic descriptors into the correlation analysis in mammography

could further enhance the semantic r ichness of the

provided explanations.
6 Conclusion

In this work, we presented CorRELAX, an algorithm for feature

attribution analysis designed to measure the correlation between a

deep learning model’s internal feature representation vectors and
FIGURE 8

Visualization of prediction maps (above) and correlation maps (below) of three labels present on a VinDr-Mammo image with three annotated
findings. Each box shows the labeled area as containing a particular finding. With a dot signaling the location of the maximum value of the map in
that particular label.
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the resulting prediction from local regions using high-resolution

mammography images. This method uses a deep CNN model

trained to classify clinically relevant lesions in mammography

images using fixed-sized sliding windows. The developed model

can accurately classify normal tissue, masses, and suspicious

calcification with a reported F1-Score of 0.9901, 0.7372, and

0.8402, respectively. Evaluating the global mammography image,

our resulting correlation maps enable us to identify regions within

the image that the model considers more relevant to the presence of

specific findings. Reporting on the certainty of the model’s

prediction when combined with the global predictions resulting

from the model’s output. This method could provide new insights

into the automatic identification and location of small pathological

findings present within the breast when applied at early screening,

before biopsy. Allowing the improvement of diagnostic evaluation

times and giving more information to the radiologist for a more

complete assessment of the risk of breast cancer.
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