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Introduction: Early detection of breast cancer via mammography screening is
essential to improve survival outcomes, particularly in low-resource settings
such as the global south where diagnostic accessibility remains limited. Although
Deep Neural Network (DNN) models have demonstrated high accuracy in breast
cancer detection, their clinical adoption is impeded by a lack of interpretability.
Methods: To address this challenge, CorRELAX is proposed as an interpretable
algorithm designed to quantify the relevance of localized regions within high-
resolution mammographic images. CorRELAX evaluates the contribution of
partial local information to the model's global decision-making and computes
correlations between intermediate feature representations and predictions to
produce global heatmaps for lesion localization. The framework utilizes a DNN
trained on multi-scale crops of annotated lesions to effectively capture a
spectrum of lesion sizes.

Results: Evaluation on the VinDr-Mammo dataset yielded F1 Scores of 0.8432 for
calcifications and 0.7392 for masses. Heatmap localization accuracy was
assessed using the Pointing Game metric, with CorRELAX achieving average
accuracies of 0.6358 based on model predictions and 0.5602 using the
correlation maps, indicating robust lesion localization capabilities.
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Discussion: These results demonstrate that CorRELAX generates interpretable
coarse-segmentation maps that enhance automated lesion detection in
mammography. The improved interpretability facilitates clinically reliable
decision-making and addresses a critical barrier toward the integration of Al-
based methods in breast cancer screening workflows.

breast cancer, deep learning, explainable artificial intelligence, feature attribution,
mammography, medical image analysis

1 Introduction

Breast Cancer is the most common form of cancer among
women worldwide (1). In Latin America, multiple economic,
geographical, and cultural barriers limit access to screening
procedures, medical resources for diagnosis, and clinical research,
leading to lower regional survival outcomes (2-4). In Chile, similar
trends are also observed, as patients with access to private
healthcare and who reside in central urban areas have higher
survival rates than those using the public healthcare system and
living in other regions of the country (5). Early detection of breast
cancer using mammography has shown a significant reduction of
20% in breast cancer mortality risk, according to the World Health
Organization (6). Furthermore, access to screening procedures has
improved prognosis and survival rates for patients in both public
and private healthcare systems (7).

In recent years, the integration of Deep Learning (DL) and other
Machine Learning (ML) techniques as diagnostic assistance tools
has increased, reporting an increase in accuracy and improved
efficiency in comparison to traditional computer-assisted systems
(8-10) It has also been shown to improve sensitivity, reduce false
negatives in malignancy detection, particularly for junior
radiologists (11), and reduce intra-reader variability when used
for breast lesion assessment on multi-modal studies sources, such as
breast ultrasound and tomosynthesis (12, 13). However, integrating
these ML models into the radiologist’s diagnosis workflow faces
challenges due to the lack of human-interpretable explanations of
their decision process. Explainable Artificial Intelligence (XAI) has
emerged as a tool for addressing biases present in these models,
clarifying the relationship between input and reported predictions,
and enabling more transparent and informed choices while
ensuring that medical personnel remain in the loop (14, 15).

Feature Attribution methods attempt to assign an importance
score to a model’s input features by decomposing each feature’s
effect on the resulting output, thereby identifying which feature
most influences the model’s decision function. Gradient-based
feature attribution methods are commonly used to provide
interpretability to black-box models by visualizing how input
features contribute to their inference, measuring how gradients
are affected within the model, and presenting using saliency maps
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(16). Grad-CAM and its variants, which generate visual
explanations by highlighting critical regions from the input
image, based on gradient information from a particular label
from the output, towards the inspected internal layer of the
model (17) Other feature attribution methods include LIME (18),
which approximates the model’s decision boundary using a simpler,
more shallow model to provide local explanations from a particular
feature. More recent approaches include methods involving
occlusion of features, such as RISE (19) and RELAX (20), which
mask regions from the input image to create feature importance
maps assigned based on the changes in prediction using masked
information. The latter extends this concept by quantifying a
feature’s importance and uncertainty through the comparison of
changes in internal feature vectors between masked inputs and the
original input.

A key limitation when using DL models is their dependence on
the input resolution to extract information. In medical imaging,
input images are often down-scaled to lower resolutions (such as
224 x 224 pixels on standard models) when using these models. Due
to image compression, smaller lesions and other clinically relevant
findings, such as micro-calcifications, can be missed when inspected
by these and not considered in the final prediction. Additionally, by
design, most feature attribution methods cannot present the
interaction between local elements and show the relationships
between similar features across different regions within the input
image. Moreover, accurately generating automatic segmentation
maps can be challenging due to the variability in lesion sizes and the
ambiguity of tissue boundaries. Yet, these can assist radiologists in
locating less conspicuous lesions that automatic methods would
otherwise ignore. These limitations underscore the importance of
using high-resolution inputs and techniques to capture and evaluate
all relevant information accurately during inference.

To address these challenges, this work proposes a method for
evaluating the contribution of local information in high-resolution
mammography images to the decision-making process of deep
learning models. The proposed approach employs a sliding-
window strategy to extract internal feature representations and
the resulting predictions from small regions across the image.
And measure the correlation between the similarity distances of
partial representations and those of their corresponding unmasked
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windows. These measurements are then combined into a global
prediction map, representing the likelihood of pathological findings.
A correlation map, which serves as a visualization tool to indicate
how similar local features are to the model’s learned knowledge. The
proposed method and the resulting maps provide an interpretable
representation of the model decision-making process and allow for
obtaining a coarse segmentation of potential lesions, enhancing the
detection of smaller findings that might be missed with traditional
down-sampled approaches.

The core novelty of this work lies in the introduction of
CorRELAX, a correlation-based feature attribution method
designed for the local assessment of image regions in
mammography. In contrast to existing explainability methods
that often rely on global saliency or gradient-based responses,
CorRELAX quantifies the alignment between internal feature
representations and output predictions under partial, random
occlusions. This approach provides a robust explanation of how
incomplete yet informative regions support the model’s inference,
even when pathological findings are underrepresented in the data.
Additionally, the use of sliding windows for attribution remains an
underexplored strategy for explainable artificial intelligence
methods applied to medical imaging. By combining local
prediction maps and correlation heatmaps, CorRELAX provides
coarse but interpretable segmentation maps of lesions present
within mammography images, facilitating their localization.

This paper is organized as follows: In section 2, a review of the
literature on the application of XAI algorithms is presented, and
more specifically, Feature Attribution Methods to provide
explainability to Convolutional Neural Networks and their
applications to mammography imaging. Section 3 describes the
Dataset used for training, our DL model used for this task, and the
proposed algorithm. An outline of the training procedure and
evaluation is provided, along with the tests used to measure the
precision and stability of our interpretable algorithm. Section 4
shows the results of the proposed experiment, using both a
validation sample from the training dataset and examinations
from Chilean patients. Finally, section 5 presents a discussion
regarding our algorithm’s performance compared to similar
experiments, limitations of the presented research, and potential
future work to improve the evaluation strategy.

2 Related work

In recent years, multiple approaches have been proposed to
provide explainability to ML models for breast anomaly detection.
In a previous work, the use of large language models for identifying
possible findings annotated in mammography reports and the
effects of laterality when reporting these findings (21, 22) was
evaluated. Globally, recent studies have primarily focused on
extracting interpretable features from mammography images that
provide insights into the location and characteristics of breast
lesions, as well as the importance of neighboring regions in the
image for accurate diagnosis.
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2.1 Saliency maps for breast lesion
detection

Saliency maps, particularly Grad-CAM-based methods (17), are
widely used for breast lesion detection and localization in
mammography. These methods, easily integrated into DL models,
use gradient information to generate heatmaps highlighting the
most relevant regions on input images. Their ability to identify
Regions of Interest (ROIs) makes them a popular choice for
providing interpretability in mammography lesion detection.

For instance, Farrag et al. (23) proposed an XAI system for
mammogram tumor segmentation using double-dilated
convolutions to mitigate local spatial resolution loss and
employing Grad-CAM and occlusion sensitivity to identify
regions containing masses. Similarly, Dahl et al. (24) proposed a
two-stage analysis pipeline using a ResNet-121 architecture to
obtain a holistic risk score of the entire mammography image.
Grad-CAM was used to identify the ROI for potential malignancies
and refined at a second stage to extract a detailed heatmap at the
location. Lou et al. (25) developed a Multi-level Global-guided
Branch-attention Network (MBGN) for mass classification in
mammography, employing Grad-CAM to validate the relation of
the selected features to the ground truth. Likewise, Al-Tam et al.
(26) proposed a multi-modal breast cancer detection framework
that combines mammography and ultrasound images. Using a
YOLOWvS architecture for ROI detection, a DL ensemble model for
malignancy classification, and Grad-CAM for feature visualization
of the ROI, providing contextual information of the
detected lesions.

On the other hand, Pertuz et al. (27) evaluated different pre-
trained DL architectures for breast lesion detection by comparing
their saliency maps obtained using Grad-CAM with manual
segmentations by radiologists. Their findings revealed a low
overlap between the identified saliencies and annotations,
suggesting that these models rely upon general features rather
than specific elements for classifying malignancies. Similarly,
Mobini et al. (28) studied multiple DL architectures using Grad-
CAM++ (29), a generalized variant of Grad-CAM that uses a
Rectified Gradient to detect breast arterial calcifications in
mammography images. Their research highlighted that simpler
models, such as VGGI6 and MobileNet, outperformed more
complex architectures in terms of classification accuracy and the
quality of saliency maps.

2.2 Comparisons between explainable
methods for breast lesion detection

While Grad-CAM remains a widely popular method for
generating visual explanations, its limitations have prompted
comparisons to similar techniques. A drawback of this method is
its tendency to generalize over broader regions of the input image,
leading to a loss of detail that can impact the precision of saliency
maps, particularly for smaller lesions and calcifications. This has
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motivated researchers to explore alternatives to the relationship
between input and predictions. For instance, Ahmed et al. (30)
compared explanations generated by different XAI methods,
including LIME, SHAP, and Grad-CAM, across various DL
architectures such as VGGI16, Inception-V3, and ResNet.
Compared with annotations from the CBIS-DDSM dataset, their
analysis highlighted differences in performance when aligned with
their explanations. Similarly, Barnett et al. (31) proposed an ML-
based system that compares information from input images with
prototypical examples from training data as case-based
explanations. This similarity measurement is then used to classify
breast mass margins, obtaining a measurement of malignancy. This
measurement is then added to the final lesion prediction, and their
explanations are compared to Grad-CAM and Grad-CAM++.

Additionally, Rafferty et al. (32) evaluated methods such as
LIME, SHAP, and RISE to identify regions for breast cancer
malignancy classification. They noted that these methods have
low agreement with the radiologists’ evaluations of lesion
relevance. While RISE provided marginally better explanations,
none of these methods accurately highlighted the precise region,
showing the limitations of these methods on this task. In contrast,
Ortega-Martorell et al. (33) proposed a method based on Fisher
Information Networks (FIN) to visualize and quantify similarities
between learned features. Their approach provides insights into the
characteristics and similarities of a particular lesion, as well as its
resemblance to learned features, describing specific elements in
both benign and malignant masses and calcifications.

Gerbasi et al. (34) developed a DL pipeline for segmentation and
malignancy classification of microcalcifications within
mammography images. Using a UNet for semantic segmentation of
clusters of calcifications within patches of fixed size from
mammography images. Followed by the classification of these
clusters using a ResNet-18 architecture fine-tuned for malignancy
classification. Additionally, the classifier is later inspected using Grad-
CAM and SHAP to identify local regions within these clusters that
indicate a malignancy association within the image, providing
explanations for the resulting prediction.

Prodan et al. (35) compared multiple DL classifiers based on
both CNN and Vision Transformers (ViT), for a malignancy
classification task using mammography images and using saliency
methods to highlight areas of importance for the classifier for its
decision-making process. To reduce imbalance within their training
data, they applied a Style-GAN XL (36) to generate positive samples
similar to those present in the dataset. Each image was then
evaluated using Grad-CAM, which highlighted the regions that
had the most impact on the classification task and drew a bounding
box around the location of any potential lesions present.

Prinzi et al. (37) introduced Rad4XCNN, a post-hoc, model-
agnostic method for global explanation of CNN models applied to a
malignancy classification task of breast ultrasound images. This
method aims to enhance the interpretability of CNN-derived
features from different ResNet, DenseNet, and ViT architectures
by quantifying their correlation with clinically meaningful radiomic
features using Spearman’s rank correlation. By identifying deep
features with strong correlations to radiomic descriptors, this
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method enables the construction of class-independent, global
explanations aligned with established clinical knowledge. The
authors evaluated their method on breast ultrasound images from
a publicly available dataset for pre-training, and two in-house
datasets from different clinical centers for internal and external
validation. While CNN architectures, such as ResNet and DenseNet,
demonstrated robust predictive performance and yielded higher
correlations with radiomic features, ViT-derived features showed
no meaningful alignment. The authors also compared their method
to local saliency map explanation methods, such as Grad-CAM,
Eigen-CAM, and Score-CAM. These produced visually inconsistent
explanations, particularly for misclassified samples, compared to
their proposed method.

2.3 Impact of input image resolution

A present challenge for lesion detection in mammography lies
in the impact of the resolution of the input images used for DL
models, which hampers the detection of smaller lesions like
calcifications. Most models down-sample the input images to a
predefined resolution, often losing relevant information from
smaller-sized elements. Conversely, high-resolution inputs can
improve detection but significantly increase computational
requirements for training and inference.

Several studies have proposed strategies to address this trade-
off. Farrag et al. (23), for example, utilized double-dilated
convolutions to improve segmentation accuracy but down-scaled
images to 512x512 pixels. Similarly, Dahl et al. (24) used a two-stage
approach, down-sampled the image to a 976 x 976 resolution to
improve the detection of smaller lesions before rescaling the image
further to 512 x 512 in their second stage to extract interpretable
features from the identified ROI from the first stage. Meanwhile, Al-
Tam et al. (26) rescaled the input to 640x640 for their object
detection stage and later downsampled to 128 x 128 pixels during
runtime training of ROI areas. For calcification detection, Mobini et
al. (28) scaled input images to 1576 x 768 across their evaluated
models to ensure their models’ response to the smaller size of
these lesions.

Despite these efforts, most studies rely on smaller input
resolutions, ranging between 224 x 224 to 512 x 512. While often
sufficient for malignancy classification and coarse lesion localization
tasks, these resolutions fall short on detection tasks involving
smaller-sized elements. This evidences a trade-off that prioritizes
computational load at the cost of precision to identify smaller
clinically significant features.

3 Materials and methods

The proposed method, in summary, studies each view from a
mammography image independently. Each image is initially
segmented into its corresponding ROI and then divided into
small intersecting windows, which are then evaluated using a
CNN classifier. Trained using crops of pathological findings
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annotated from a publicly-available dataset. The model outputs  yielding a correlation measurement for each window. These values
both the multi-label prediction of lesions present within the crop  are then combined using our adjacency kernel to reconstruct the
and a feature vector representation of the input image. Both  final prediction and correlation maps per class, along with a
predictions and feature vector representations are compared to  distance map indicating the relevance of each window to the
the resulting outputs from occluded versions of the input image,  internal learned features within the model. Figure 1 illustrates the
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FIGURE 1

General schema of our proposed pipeline. Describing the preprocessing of each mammography image, sampling of annotated crops for training,
reconstruction using sliding windows of the resulting prediction using the trained classifier, the proposed explanation method and examples of the
resulting correlation maps obtained.
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complete pipeline of the proposed method, which is described in the
following subsections.

3.1 Preprocessing

For the preprocessing stage, a set of transformations was
implemented, similar to those proposed by (38). Figure 2 shows
an example of the preprocessing pipeline as described in
this section.

VinDr-Mammo contains images with a mean original size of
2647 x 3387 pixels, ranging between 2012-2812 pixels in width and
2812-3580 pixels in height, and intensity values stored in an
unsigned 16-bit integer format. Each image was initially scaled in
intensity between 0-1 and inverted if the Photometric
Interpretation tag on the DICOM metadata was set to
MONOCHROME] to ensure all images have a black background
and white foreground.

Then, each underwent a histogram equalization transformation
using the Contrast Limited Adaptive Histogram Equalization
(CLAHE) algorithm (39) to enhance the contrast of the images.
CLAHE divides the image into a series of tiles of defined size (8 x 8
pixels in our case), then clips each tile’s histogram to a specified
contrast limit. Then, each histogram bin is redistributed across all
bins, and the Cumulative Distribution Function (CDF) is calculated.
After this, the pixel intensity values are then remapped using the
CDF. This process is repeated for each tile, enhancing the contrast
locally and avoiding the over-amplification of noise in the image.
Finally, each tile is rejoined using bilinear interpolation to obtain
the contrast-enhanced image without any artifacts. The OpenCV

Original Image

Normalized

FIGURE 2

CLAHE
Clip Limit 1.0

10.3389/fonc.2025.1601929

(40) implementation of the CLAHE algorithm with clip limits of 1.0
and 2.0 as utilized. The resulting images were then fused channel-
wise to the original non-equalized image, obtaining an RGB
representative image as output.

Next, the image was cropped to its ROI via Otsu’s thresholding
(41) and contour detection to obtain the bounding box of the breast
region. Resulting in a set of images cropped to the breast’s ROIL, with
an average size of (885 + 190) x (2497 + 502) pixels.

3.2 Data set

For training, initial testing, and benchmarking, the VinDr-
Mammo dataset (42) was utilized. This publicly available dataset
comprises multi-view mammography images from 5000 patients
from the Hanoi University Hospital in Vietnam. This dataset
provides bounding boxes of the location of ten different types of
lesions present within the breast, including masses, calcifications,
asymmetries, and architectural distortions. It also provides the BI-
RADS score for each marked finding and the patient’s breast density
for each view. This dataset was selected because of its detailed
annotations of the location of multiple types of findings beyond
masses and calcifications, allowing us to inspect the presence of
clinically relevant findings at a local level. However, as some
available findings are limited, some categories with similar
characteristics, such as focal, global, and (general) asymmetries,
nipple, and skin retractions, were grouped into general labels
(asymmetries and retractions, respectively). The dataset is divided
into training and test sets, containing both Cranio-Caudal (CC) and
Medio-Lateral Oblique (MLO) views of both breasts for each

Fused Image

Clip Limit 2.0

Example of our preprocessing pipeline, cropped to the identified Region of Interest of the breast region, using Otsu’s Thresholding.
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TABLE 1 Number of findings per split in VinDr-Mammo dataset.

Finding Train Test

No Finding 14589 3643
Mass 989 237
Suspicious 08 115
Calcification
Asymmetries 313 79
Architectural

. . 95 24
Distortion
Suspicious % "
Lymph Node
Skin Thickening 45 12
Retractions 39 9

patient, split in a 80-20% ratio between training and test sets. All
splits were performed using a subject-out scheme to reduce possible
bias from data from the same patient in different splits.

For training of the proposed classifier model, each annotated
bounding box available was treated as an independent sample,
considering that multiple bounding boxes could be present in a
single image and that each bounding box could contain various
types of lesions. As such, this problem was studied as a multi-label
classification task, where each bounding box could be labeled with
one or many types of lesions. As many images contain no annotated
lesions (labeled as No findings), a random area of the image was
sampled as a negative example for each image in this subset.
Ensuring that the model can learn to differentiate between the
presence and absence of lesions. Table 1 summarizes the
distribution of the different types of findings present in the
dataset on the training and test sets.

For validation with clinical patients, a set of images provided by
a local Hospital in Chile was evaluated. These exams correspond to
a set of mammography images acquired for breast cancer screening
from a population of adult Chilean women, including both CC and
MLO views of these patients, plus the examination report evaluated
by radiologists from the hospital. These examinations were used in
this study with authorization from the Human Research Ethics
Committee of Universidad de Valpara 1so (CEC-UV), which serves
as the study’s Institutional Review Board (IRB). For the evaluation,
a set of images in which the report indicated the presence of masses

10.3389/fonc.2025.1601929

and calcifications, as well as their general location within the body,
was selected.

3.3 Deep convolutional neural network
classifier

The proposed experiment involves classifying clinically relevant
findings in mammography images using a multi-label classifier. In a
previous work (43), the model selection for this task is detailed and
summarized as follows.

Initially, we trained a series of deep learning architectures to
determine the best model for our task. Comparing the
EfficientNetV2, ResNet50, Swin Transformer, DenseNet121,
VGG1I9, and MobileNet architectures with pre-trained weights on
the ImageNet dataset; using the implementations provided by
PyTorch’s torchvision library (44). To ensure uniformity between
the models, the final classification layer of each model was replaced
with with a 2-layer Dense Network with an initial Dropout layer of
0.5rate, a hidden layer of 512 units, and ReLU activation, and a final
output layer with the number of classes in the dataset and a Sigmoid
activation function. These parameters were estimated on initial grid
search experiments and were kept constant for all models to ensure
a fair comparison.

Each model was trained using a subset of the findings present in
the dataset, specifically Masses, Calcifications, Asymmetries, and
Suspicious Lymph Nodes, as these are the most common findings.
In Table 2, the resulting FI-Score obtained by each model on the
dataset’s test set is presented. The EfficientNetV2 architecture
obtained the best performance on the test set, with an average FI-
Score of 0.727, outperforming the other architectures by a
small margin.

EfficientNetV2 (45) is a family of convolutional neural network
models optimized for parameter efficiency and computational cost
by scaling the depth, width, and resolution of the network in a
balanced manner. The original EfficientNet architectures were
designed to scale the network’s depth, width, and resolution
simultaneously on Convolutional Neural Networks (CNNs), using
a Neural Architecture Search (NAS) approach to find the optimal
scaling factor on each block to balance a trade-off between accuracy
and computational cost (46). One of the main innovations of
EfficientNetV2 compared to the original is the replacement of the
original MBConv blocks with a new Fused-MBConv block, which

TABLE 2 F1 scores for pathological finding classification task using a subset of VinDr-Mammo dataset, comparing different deep learning

architectures. (43).

DenseNet121 EfficientNetV2 ResNet50 Swin Transformer

VGG19 MobileNet

Finding
Mass | 237 0.783 0.815
Suspicious Calcification | 115 0.847 0.865
Asymmetries | 79 0.306 0.295
Suspicious Lymph Node | 11 0.667 0.500
Weighted Average = 442 0.712 0.727
Frontiers in Oncology
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0.742 0.770 0.756 0.708
0.860 0.828 0.873 0.828
0.200 0.310 0.204 0.324
0.737 0.370 0.400 0.476
0.675 0.693 0.679 0.665
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FIGURE 3

EfficientNetV2 architecture, showing each block’s depth, width, and resolution scaling factors. Included is the modified classification layer used in

our experiments.
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combines the original’s depth-wise separable convolution and its
expansion convolution into a single operation. Another
improvement is using a smaller expansion ratio for the
convolutional layers, which reduces the number of parameters
required for each layer, and using smaller kernel sizes for the
convolutional layers. While compensating for the reduced
receptive field by increasing the number of layers in the network.
Figure 3, shows the architecture of the EfficientNetV2 model used in
our experiments, with our modified classification layer, as
previously mentioned.

The model was trained using an Adam optimizer (47) with a
starting learning rate of 0.001 and a Cosine Annealing decay
schedule during 50 epochs, down to a final learning rate of 1 X
1077, using a batch size of 48 samples on an NVidia RTX 4080 GPU.
The Focal Loss (48) function was employed on optimization. This
loss function addresses the effects of extreme class imbalance
between positive and negative samples by adding a modulating
factor 7y to the cross-entropy loss, which penalizes the loss of well-
classified samples, focusing on the complex examples. As shown in
Equation 1, for the case of multi-label classification, it is defined as
the logarithm of the predicted probabilities p of the ground-truth
label vector y, modulated by the factor (1 —p)” which penalizes
errors on complex samples. And an o parameter, which acts as a
weighting factor between positive and negative labels. When y =0,
the Focal Loss is equivalent to the standard cross-entropy loss.
Using grid search, the defined parameter values for these were o =
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0.95 and y = 2.5, as these provided the best performance on the
training dataset.

FL(p) = —a[y(1 - p)” log (p) + (1 - y)p” log (1 - p)] (1)

Multiple data augmentation techniques were applied to the
cropped images during the training stage, allowing our model to
classify findings across different scales and aspect ratios. On
training, the image was cropped using the bounding box
annotations of the clinically relevant findings and cropping at
different scales (between 0.05-5 times the original bounding box
area) and aspect ratios (between 0.33-1.66) from the center of the
bounding box. In the case of normal tissue, from each image labeled
as No Finding a random region was cropped using similar scales and
aspect ratios to those used for the positive examples. This cropping
was repeated on each training epoch to ensure the diversity of scales
for each image.

To further mitigate the impact of the dataset’s class imbalance,
each crop was sampled using a Weighted Random Sampling
function, where the inverse of the label frequency in the complete
dataset determined the weight for each sample. Additionally, a
series of transformations was applied to each crop during the
training stage. Randomly applying with a probability of 50%,
horizontal and/or vertical flips, random rotation between -30° to
30°, and random brightness, contrast, saturation, and hue
adjustments. Finally, each crop was resized to a fixed size of 256
x 256 pixels with Bilinear interpolation for the model’s input.
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from the input to the model's output, and the correlation between the feature vectors and the predictions.

During the validation and testing stages, no transformation was
applied except for resizing the crops, utilizing the annotated
bounding boxes on each sample, and a center crop of the
mammography image if the sample was annotated with no
findings present.

3.4 CorRELAX: correlation of
representations for explainability

The proposed method, CorRELAX, is a modification of the
RELAX algorithm (20) that expands upon the original method’s
measurement of feature importance by measuring the correlation
between the distances of representations of the input features and
the model’s predictions. This assumes that the distances between
feature vectors and predictions of incomplete information of the
same input should correlate, as a trained model should infer similar
predictions from similar input representations. This correlation
should be higher when the model is more confident that the input
features are relevant to the prediction, based on the model’s learned
knowledge. This method is expected to provide a more robust
measurement of importance, as it considers both the expected
values of the distances and the uncertainty of the importance of
the input features.

Figure 4, presents a diagram of the workflow of our proposed
method. Given an input image X € RE*W  of size HW, we do
inference using a trained DL model f(X|6). Most CNN
architectures can be described as two parts:

A feature extractor fuyyace €xtracts features at different levels
of abstraction from the input image using a series of
convolutional and pooling layers.

* A classifier fpreqict takes the extracted features’
representation of the input image and predicts the output
class ¢ from a Multi-Layer Perceptron (MLP)-like structure
with a defined activation function.
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Using a set of parameters 6 learned during training, on
inference an internal feature vector of size D is extracted from the
last layer previous to the classifier stage h = femact(X‘ 0) € RP, and
the predicted output from the model = f; eqict(h|6). Following
this, a set of random masks M € [0, I]M
from a Bernoulli process with a probability p of a region being
masked, starting from a block of size b x b which is then up-scaled

is created by sampling

to the size of the input image, to mask different regions within the
input. These masks are then applied, resulting in a set of masked
variations of the input image X, = X 0 M, which are inputted into
the trained model, returning both the masked feature vectors h,, =
fextract(Xp1|0) and the prediction outputs ;= foredice(hpy|6) from
each masked image.

Using a distance function, the similarity between the feature
vectors and their masked versions Sy, = S, ) and the similarity
between the image prediction and the prediction of the masked
images S; = S5, is estimated. The cosine similarity shown in
Equation 2, measures if two vectors are similar in feature space by
calculating the cosine of the angle between them. Vectors with
similar semantic information will have a cosine similarity closer to
1, while vectors with different information will have a cosine

similarity closer to 0.

A-B

Stam) = e )
@0 Al

Using the estimated distances, two correlation coefficients are
then calculated:

¢ The correlation between the feature vectors’ similarities and
the similarities between the model’s predictions P(sus;)-
* The correlation between the feature vectors’ similarities to

the probability of the masked views of the input image

PSuy )

The first coefficient P(s,5;)> S shown in Equation 3, evaluates
the similarity distance between the internal feature vector
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representations from the original input of the model and the feature
vector representation from a set of masked versions of the input
image. Then, its correlation to the similarity distance between the
resulting predictions from the original input and its masked
versions is measured. This results in a value that measures how
the model’s learned knowledge aligns with representations and
predictions.

P ) = ”Eish,sﬁi - 2% XSy,
h>Oy
y \/nEiS}Zl,v - (S, \/”Eisﬁ,(zisy‘,)z

(©)

The second coefficient P($y5 ) shown in Equation 4, evaluates
the similarity distance from the internal feature vector
representations, and measures its correlation to the probability of
belonging to the label i € ¢ from each masked image output y,,.
Obtaining a measure of how partial information at the input
impacts the model’s final prediction establishes the importance of
the input features to the model’s decision-making process.

”E_Sh,v)A’Mi - ZShIZ_}A’Ml

Psuiar) =

nY S, - (2&,) DI (Em>

i

3.5 Experiment

The proposed model was trained to classify cropped samples of
mammography images containing clinically relevant findings at
various scales and aspect ratios, ensuring adaptability in detecting
elements of interest regardless of their size or location. Initially, the
classifier was evaluated using cropped samples from the test set
corresponding to annotated bounding boxes of findings.
Performance metrics, including accuracy, precision, recall, and
F1-score, were estimated for each label.

A sliding window approach was applied to the entire
mammography image to inspect and identify clinically relevant
findings, as previously shown in (43). The mammography image
was divided into a set of local views of a defined size and stride. In
this experiment, a size of 256 x 256 and a stride of 48 pixels between
each window was determined. Each window was input into the
model, obtaining the internal feature vector and the multi-label
prediction output.

To reconstruct the global prediction, using the projections of all
windows within the image, a convolution operation was applied to
the prediction of each window, using a kernel that represents the
weight of neighboring windows to the current one. This kernel was
constructed by estimating the Intersection over the Union (IoU) of
the neighboring windows, weighted by the number of overlapping
windows for each. The IoU from a pair of rectangular areas (A,B) €
R? as shown in Equation 10, described each one as a pair of points
from the bottom-left corner to the top-right corner of the defined
rectangle A = ((xf;m,yf,,,-n), (xf}mx,yﬁm)). Equations 5-9 describe
each step of the IoU estimation, as follows:
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AN B = (min (e Xpax) = MAX (Xpins X)) (5)
(MmN Ve Yrax) = M@X (Vipins Yiin)) (6)
Area(A) = ((Xnax = Xmin) * Oimax = Ymin) (7)
Area(B) = ((Ymax ~ Xmin) - Omax = Ymin)) (8)
A UB=Area(A) + Area(B)— AN B 9)
IoU(A,B) = ’:—Dg (10)

Each value from the kernel of size is estimated from

stride
the ToU between the center and the neighboring windows with

centers at a distance within [’W'“d"zw-s‘ze R w'"d";"—s‘ze}, from the center

at each dimension, separated at stride. This kernel is then applied
using a 2D-convolution operation to each map. This operation
yields a smoothed prediction for each class across a general region
of the complete image, taking into consideration how the
predictions from each window overlap. As a result, a prediction
map was generated for each label, indicating the predicted location
of various clinically relevant findings within the mammogram.

A similar approach was used to inspect the image globally using
our proposed algorithm. For each window analyzed from a
mammography exam, we generated an arbitrarily high number
(2560) of masks using an initial mask block size of 8 x 8 pixels and a
probability of 0.5 for each region to be masked. All masks were then
up-scaled to the original image size using bilinear interpolation and
applied to the window in sets of 128 masks for easy computation.
The resulting feature vectors and prediction for each mask were
accumulated for each window. Then the correlation value of each
window’s set of feature vector and prediction is evaluated. Finally,
this kernel is applied to each class’s resulting feature relevance
metric and correlation maps, obtaining a global heatmap of each
label’s feature relevance and correlation.

To evaluate the precision of our method in localizing clinically
relevant findings on each mammography image, as reported within
the dataset’s bounding boxes, a “Pointing Game” strategy (49) was
applied. Given the prediction and feature correlation maps for each
label in the dataset, we identified the maximum values for each
ground truth label present in each image containing a labeled
finding. The location point of these maxima was considered the
predicted location of the finding. The “Pointing Game” accuracy for
each label was calculated as shown in Equation 11.

#Hits

— (11)
#Hits + #Misses

Accuracy =

Considering the effect of the strides between evaluated
windows, a prediction was considered a hit if the predicted
location fell within the reported bounding box with an offset of
48 pixels within. In the case of the prediction heatmaps, we
constrained our evaluation of the maxima to consider a hit if the
prediction value was = 25% or = 50%. For the correlation heatmap,
a hit was counted if it had a positive correlation within.
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TABLE 3 Metrics of our Deep Learning Classifier, trained with crops of pathological findings present in VinDr-Mammo Dataset.

Label Accuracy Precision Recall F1 Score Support
No Finding 0.9824 0.9958 0.9844 0.9901 3643
Mass 0.9690 0.7200 0.7595 0.7392 237
Suspicious Calcification 0.9915 0.8846 0.8000 0.8402 115
Asymmetries 0.9790 0.4000 0.1772 0.2456 79
Architectural Distortion 0.9941 0.5000 0.0417 0.0769 24
Suspicious Lymph Node 0.9973 0.5000 0.0909 0.1538 11
Skin Thickening 0.9983 1.0000 0.4167 0.5882 12
Retractions 0.9973 0.3333 0.2222 0.2667 9

Finally, to evaluate the stability of the correlation measurement  area containing calcifications, evaluated using our method to

at lower mask densities, the correlation coefficient on multiple  visualize the identified regions containing these findings.
subsets of masks was measured. Starting from an initial arbitrarily Figure 5 superior panel contains a group of four labeled masses
large number of generated masks, and reducing the number of  within a close region of the upper third of the breast. When
applied masks down to a minimum of 128. Then, the distance  inspecting the Distance Correlation map, the region containing
correlation coefficient was estimated for each subset within each  these masses shows a high correlation value within the neighboring
window and compared to the corresponding value obtained from  area. According to the model, this region contains more relevant
the complete set of generated masks. This allowed us to determine if ~ information for its prediction than the rest of the image. According
the correlation distance measure was stable when using fewer  to the model’s knowledge, when inspecting both the prediction and
masks, providing insights into the robustness of the proposed  correlation heatmaps, the region containing these masses shows a
method under limited conditions. high probability of their presence and a positive correlation to that
particular class. When combining the predicted values and the
correlation map, we can coarsely delineate the region where these

4 Results masses are located, allowing us to demarcate more precisely where

these findings are present. In the case of Figure 5 inferior panel, the
4.1 Classifier performance on VinDr- presented view shows a large region labeled as containing suspicious
Mammo dataset calcifications. Using the proposed method, the combination of

prediction and correlation maps delineates the area where these
Table 3 shows the metrics of the trained classifier on the VinDr-  calcifications are located compared to the original bounding box.
Mammo dataset, evaluated using crops from the clinically relevant ~ However, in this particular case, the model identifies a small region
findings annotated within the dataset. within the borders of the calcification as containing masses, albeit
The trained model showed a high performance in classifying  with a low probability of occurrence. Upon closer inspection, this
normal tissue, masses, and suspicious calcifications, achieving an  misclassification may arise from the similarity to a mass-like
F1-Score of 0.9901, 0.7372, and 0.8402, respectively. The high  structure with poorly defined borders, as both masses and
accuracy in classifying normal tissue can be attributed to its  calcifications appear in conjunction and share similar areas in the
prevalence within the dataset, making our model exceptionally  training dataset (52, 53).
reliable at identifying the absence of findings. The model
performs reasonably well for masses and calcifications,
considering the challenge of detecting the latter type due to their 4.2 Evaluation using Chilean patients’
small size and sparse distribution in mammography images. mammography images
However, the model struggles with rarer findings (i.e., they have a
few limited data samples), such as Architectural distortions, To evaluate the performance of the proposed method with local
reflecting on their limited representation within the dataset.  examinations, the model was applied to a set of mammography
Similarly, asymmetries also show low performance, likely due to  images from Chilean patients obtained from screening procedures
their structural similarity to masses, as asymmetries are defined as  conducted at a local hospital in Chile. Using the available exam
an increased density of fibrous gland tissue, resembling masses (50,  report, the general location of masses present within was identified.
51). Particularly at larger window sizes, these become more ill-  Figure 6 shows both cranio-caudal (Figure 6 superior panel) and
defined and thus harder to differentiate from masses. medial-lateral oblique (Figure 6 inferior panel) views of the left
Figure 5 presents two examples from the VinDr-Mammo test ~ breast from a patient. The report from this patient describes a mass
set containing a group of masses (4a) and an exam showing a large  on the left breast, located at the posterior third of the left upper
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FIGURE 5

Visualization of the original image and annotated bounding boxes, distance correlation map, and sets of prediction, correlation and product heatmaps
for the labels "No Finding”, “Mass” and “Suspicious Calcification” for two mammography images from the VinDr-Mammo dataset. The superior panel
contains a group of masses in the upper region, while the inferior panel contains a large region labeled as containing suspicious calcifications.
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FIGURE 6

Visualization of the left breast from a patient of a local hospital, containing a defined mass within. The superior view shows the Cranio-Caudal view,
whereas the inferior view shows the Medial-Lateral Oblique view of the same breast.
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inner quadrant, measuring 23mm in size. In both views, the mass is
visible within the described region. On the Distance map, the
demarcated region is identified as containing relevant
information, albeit limited in size compared to the neighboring
tissue, as neighboring windows start to include more normal tissue.
When inspected using the prediction maps, the region shows a
higher probability of a mass lesion’s presence on both views, but
with a low confidence level. The correlation maps indicate a limited
positive correlation between these regions and their neighboring
areas. When combining both model prediction and class
correlation, the detected mass is then delineated on both views.
Showing that, despite the differences in image source, the proposed
model has a positive response to a present lesion, and can identify
the general location where masses and calcifications are present.

4.3 Sensitivity to number of masks in
correlation

Figure 7 shows the effect of mask density on the correlation
evaluation when compared to an arbitrarily high number of masks
(2560). As the number of sampled masks decreases, the correlation
error increases as expected. Using at least 256 masks per window, the
mean correlation error from all windows remains below +0.025.
Using fewer masks results in less reliable values, as there are fewer
combinations of features on each window to compare, adding bias to
the interpretation of which areas within the evaluated window are
more relevant to the resulting prediction. Conversely, using more
masks increases the number of combinations of occluded regions,
resulting in a more robust measurement of the linear relations of

10.3389/fonc.2025.1601929

features and predictions. This introduces a trade-off between
evaluation speed and correlation precision. While fewer masks can
improve evaluation speed, using a large number ensures more reliable
results, which is crucial for robust model interpretability.

4.4 Accuracy of location using pointing
game metric

Table 4 shows the accuracy for each label when evaluated using
the “Pointing Game” strategy on the prediction and correlation
heatmaps. Some images can contain multiple lesions of the same
label, so these cases were counted as a single hit.

Using the prediction map, the model achieves a weighted mean
accuracy of 0.6358 with a detection threshold of 25%, whereas using
a higher threshold of 50%, our model reaches 0.3613. As each
window is weighted by its neighbors, using a higher threshold
reduces the probability of detection when evaluated globally. In
particular, the proposed method performed well at both threshold
levels when identifying calcifications. Achieving a pointing game
accuracy of 0.7714 and 0.5714 respectively at 25 and 50%. This
indicates that the proposed model can locate the general region
where calcifications are present, regardless of their size, when
evaluated globally. In the case of masses, the prediction maps
reach 0.5205 and 0.2654 at these thresholds. Using the correlation
map, our model achieves a weighted mean accuracy of 0.5602, with
similar results for masses (0.4201) and calcifications (0.7238). This
shows that the measured correlation within each window can help
more confidently locate the presence of lesions on a global
mammography image. While somewhat inaccurate in some cases,
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FIGURE 7

Box-plot of the absolute difference of correlation within an image compared to a high number of masks (n=2560), at different numbers of masks per

window, in logarithmic scale.
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TABLE 4 Accuracy of “Pointing Game” evaluation of prediction and correlation maps compared to labeled bounding boxes.

Finding Prediction Map (> 25%) Prediction Map (> 50%) Correlation Map Support
Mass 0.5205 0.2654 0.4201 219
Suspicious Calcification 0.7714 0.5714 0.7238 105
Asymmetries 0.2692 0.0384 0.3462 78
Architectural Distortion 0.0000 0.0000 0.0000 24
Suspicious Lymph Node 0.4000 0.2000 0.0000 10
Skin Thickening 0.5833 0.4166 0.4167 12
Retractions 0.0000 0.0000 0.0000 8
Weighted

Mean Accuracy 0.6358 0.3613 0.5602 456

our method can locate these lesions on most images using either
method, as shown in our example from Figure 8. Notwithstanding,
in the case of Skin Thickening, both prediction (at the threshold of
25%) and correlation maps achieve an accuracy of 0.5833 and
0.4167, respectively. This suggests that, at least for this particular
finding, our model can effectively locate these when inspected
globally. The model recognizes these findings as similar to its
internal knowledge, despite the limitations imposed by the limited
availability of samples.

5 Discussion

Saliency maps often provide information on the general
location of image regions most influential to the output of DL
models. However, their reliability is often limited by the model’s
resolution, sensitivity to perturbations, and inherent limitations in
identifying subtle features, in the context of medical imaging (54).
Most existing approaches in the literature rely on global saliency
extraction from the full mammography image (27, 32), which can
hide the contribution of smaller lesions.

Grad-CAM remains one of the most widely used methods for
visual explanations. Despite its popularity, its tendency to generalize
over broad regions limits its effectiveness on high-resolution
domains. In the case of mammography, where smaller lesions may
critically influence diagnostic outcome, the provided explanation
often fails to adequately explain their relation to the resulting
output. Furthermore, previous work has shown low overlap to
relevant features, compared to other interpretable methods (30).

In contrast, approaches that focuses on local information and
their relation to elements similar to the target lesions have shown
more alignment with clinical findings. Case-based interpretability
methods have demonstrated the potential to improve radiologists’
decision-making, offering more intuitive insights compared to
traditional gradient-based saliency maps (31).

Several recent studies have proposed explainability methods for
visual attribution in breast imaging. Cerekci et al. (55) conducted a
quantitative evaluation of saliency-based XAI methods, employing
the “Pointing Game” strategy to assess the precision of their
resulting explanation maps. They report a value of 41% for the
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detection of masses in mammography images using Grad-CAM,
30% with Grad-CAM++, and 35% with Eigen-CAM. By contrast,
CorRELAX achieves 52.05% using the prediction map at a low-
acceptance threshold, and 42.01% using the correlation map for the
same task. Demonstrating competitive performance relative to
gradient-based saliency methods. Nonetheless, some key
methodological differences between both methods should be
noted. First, Cerekci et al. method focuses solely on mass
detection, while CorRELAX handles multi-label classification
across different lesion types. Second, their analysis was performed
on down-sampled mammograms, resized to 512 x 512 pixels, which
may compress small-sized lesions that could be present, limiting
their detection. While CorRELAX leverages high-resolution local
windows and reconstructs prediction maps from overlapping
patches, preserving spatial detail and improving sensitivity to
smaller findings.

Gerbasi et al. (34) proposed a pipeline involving patch-based
analysis for microcalcification segmentation and malignancy
classification. Their method achieved strong quantitative results,
reporting an IoU of 0.74 and an AUROC of 0.95 for detection of
calcification clusters. However, their use of Grad-CAM and SHAP
for explanation was limited to attributing malignancy to the
identified clusters. And restricted to a single type of lesion, as
with the case of the previous study.

Prinzi et al. (37) recently introduced a correlation-based
method linking CNN features to radiomic descriptors in
ultrasound breast images. Their approach addresses some of the
limitations of saliency map explanations, specifically their
consistency and extensibility in extracting global information.
While their method differs from ours in modality and focus, it
opens future opportunities for integrating radiomic interpretability
into CorRELAX, potentially improving clinical robustness.

Despite the promising results, CorRELAX faces several
limitations. First, the current experiment is constrained by the
availability of labeled examples for less-represented findings such
as asymmetries, lymph nodes, and architectural distortions. Most
public mammography datasets only provide annotations for masses
and calcifications, which limits their generalizability for smaller or
less common lesions. Expanding annotated dataset could improve
detection performance and increase clinical applicability.
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Visualization of prediction maps (above) and correlation maps (below) of three labels present on a VinDr-Mammo image with three annotated
findings. Each box shows the labeled area as containing a particular finding. With a dot signaling the location of the maximum value of the map in

that particular label.

Although the presented analysis confirmed that the resulting
correlation metric is robust to the number of masks used, the
resulting explanations remain dependent on the masking strategy
and occlusion configuration. A more thorough analysis of these
parameters could improve stability and efficiency of the explanation
process, enabling real-time applicability.

Future work will also explore the application of CorRELAX to
other medical imaging contexts, such as brain imaging (56), to
evaluate how learned features correlate with radiomic information
across different modalities. Additionally, a deeper integration of
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radiomic descriptors into the correlation analysis in mammography
could further enhance the semantic richness of the
provided explanations.

6 Conclusion

In this work, we presented CorRELAX, an algorithm for feature
attribution analysis designed to measure the correlation between a
deep learning model’s internal feature representation vectors and
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the resulting prediction from local regions using high-resolution
mammography images. This method uses a deep CNN model
trained to classify clinically relevant lesions in mammography
images using fixed-sized sliding windows. The developed model
can accurately classify normal tissue, masses, and suspicious
calcification with a reported F1-Score of 0.9901, 0.7372, and
0.8402, respectively. Evaluating the global mammography image,
our resulting correlation maps enable us to identify regions within
the image that the model considers more relevant to the presence of
specific findings. Reporting on the certainty of the model’s
prediction when combined with the global predictions resulting
from the model’s output. This method could provide new insights
into the automatic identification and location of small pathological
findings present within the breast when applied at early screening,
before biopsy. Allowing the improvement of diagnostic evaluation
times and giving more information to the radiologist for a more
complete assessment of the risk of breast cancer.
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