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Aim: This study aims to develo\p a population-adapted machine learning-based 
prediction model for hepatocellular carcinoma (HCC) lymph node metastasis 
(LNM) to identify high-risk patients requiring intensive surveillance. 

Methods: Data from 23511 HCC patients in the SEER database and 57 patients 
from our hospital were analyzed. Seven LNM risk indicators were selected. Four 
machine learning algorithms—decision tree (DT), logistic Regression (LR), 
multilayer perceptron (MLP), and extreme gradient boosting (XGBoost)—were 
employed to construct prediction models. Model performance was evaluated 
using area under the curve, accuracy, sensitivity, and specificity. 

Results: Among 23511 SEER patients, 1679 (7.14%) exhibited LNM. Race, 
Sequence number, Tumor size, T stage and AFP were identified as 
independent predictors of LNM. The LR model achieved optimal performance 
(area under the curve: 0.751; accuracy: 0.707; sensitivity: 0.711; specificity: 0.661). 
External validation with 57 patients from our hospital confirmed robust 
generalizability (area under the curve: 0.73; accuracy: 0.737; sensitivity: 0.829; 
specificity: 0.5), outperforming other models. 

Conclusions: The LR-based model demonstrates superior predictive capability 
for LNM in HCC, offering clinicians a valuable tool to guide personalized 
therapeutic strategies. 
KEYWORDS 

hepatocellular carcinoma, machine learning, predictive model, lymph node metastasis, 
logistic regression 
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Background 
 

 

Hepatocellular carcinoma (HCC) ranks as the sixth most 
common cancer worldwide and is the most prevalent—and 
deadliest—form of primary liver cancer, representing the third 
leading cause of cancer-related mortality (1). Its etiological risk 
factors exhibit marked geographic heterogeneity, with strong 
associations to hepatitis B virus (HBV) and hepatitis C virus 
(HCV) infections, alcoholic liver disease, and metabolic syndrome 
(2). Despite advances in therapeutic modalities—including surgical 
resection, liver transplantation, and local ablation (3)—long-term 
outcomes for HCC patients remain dismal, with a 5-year survival 
rate below 20% (4). The often insidious onset of HCC frequently 
delays diagnosis until advanced stages, increasing the likelihood of 
lymph node metastasis (LNM) (5), a pivotal event in HCC 
progression that significantly worsens prognosis (6). Patients with 
LNM have a median survival of only 5.8 months, compared to 16.3 
months for those without nodal involvement (7), and nodal 
metastases preclude curative resection while indicating systemic 
disease dissemination (8). 

Early, accurate prediction of LNM is therefore essential for 
individualized treatment planning and prognostic stratification. 
Current clinical assessment relies primarily on imaging modalities— 
such as computed tomography (CT) and magnetic resonance imaging 
(MRI)—and histopathological evaluation. Proposed imaging predictors, 
including hilar invasion or a short-axis lymph node diameter ≥9 mm,  
have demonstrated variable sensitivity and specificity, reflecting the low 
incidence of HCC nodal metastasis (1.23%–7.5%) and cohort 
heterogeneity (9–11). Traditional prediction tools, such as TNM 
staging–based nomograms, typically incorporate only single clinical 
variables and neglect tumor biology and  multidimensional  patient
data; retrospective study designs further introduce selection bias, and 
the lack of external validation limits generalizability (9). For example, an 
HBV-focused LNM prediction model experienced a drop in area under 
the receiver operating characteristic curve (AUC) to 0.68 upon external 
validation, underscoring its restricted applicability (12). 

Machine learning (ML) offers a promising alternative by 
integrating heterogeneous, multimodal data (e.g., radiomics, 
genomics, clinical variables) through nonlinear algorithms to 
reveal latent predictive patterns (13). In other malignancies, ML­

based models have outperformed conventional approaches—for 
instance, an artificial neural network predicting LNM in early­
stage colorectal cancer achieved an AUC of 0.859 (14), and ML 
integration of clinical data improved thyroid cancer diagnostic 
accuracy (15). However, ML-based prediction of LNM in HCC 
remains scarce, with existing studies limited to small, single-center 
cohorts lacking population-level validation. 

The Surveillance, Epidemiology, and End Results (SEER) program 
of the U.S. National Cancer Institute provides a large, multicenter, 
patient-centered database encompassing demographic, tumor, 
pathological, and follow-up information. Leveraging multidimensional 
SEER data alongside a substantial HCC cohort from our hospital, this 
study aims to develop and externally validate a population-adapted ML 
model for predicting LNM in HCC, thereby facilitating early 
Frontiers in Oncology 02 
identification of high-risk patients who may benefit from intensified 
surveillance and tailored therapeutic strategies. 
Materials and methods 

Patient information 

Data were obtained from the SEER database, a globally 
recognized cancer registry. LN status was determined according 
to the 7th edition of the American Joint Committee on Cancer 
(AJCC) Tumor-Node-Metastasis (TNM) staging system, using both 
imaging and pathological evidence. 

Inclusion criteria comprised histologically confirmed HCC 
patients diagnosed between 2010 and 2015, age ≥ 20 years, 
complete clinical and treatment records, and documented LNM 
status. Exclusion criteria were non-HCC liver malignancies, 
incomplete data, or unknown LN status. After screening, 23511 
patients were enrolled and randomly split into a training cohort 
(n=16459) and an internal test cohort (n=7052) at a 7:3 ratio. 

An external validation cohort of 57 HCC patients from our 
hospital was included to assess model generalizability. The patient 
selection workflow is shown in Figure 1. Data extraction  and
verification were performed independently by three investigators. 
The study received ethics committee approval, and all patients 
provided informed consent; analyses were conducted anonymously 
to ensure confidentiality. 
Data preprocessing and feature selection 

Key variables—including age, sex, race, AJCC TN stage, tumor 
size, sequence number, and alpha-fetoprotein (AFP)—were 
extracted using SEER*Stat (v8.4.4) and reviewed by clinicians. 
Age was dichotomized (<60 vs ≥60 years). In the training cohort, 
univariate logistic regression (LR) identified predictors of LN 
metastasis (p<0.05). Stepwise regression (forward selection, 
backward elimination, and bidirectional selection) estimated odds 
ratios (ORs) with 95% confidence intervals (CIs). All analyses were 
performed in R (v4.4.2). 
Model development and performance 
evaluation 

Four ML algorithms—decision tree (DT), logistic regression (LR), 
multilayer perceptron (MLP), and extreme gradient boosting (XGBoost) 
—were used to build prediction models. To address class imbalance, a 
1:1 ratio undersampling technique was incorporated into the 
preprocessing pipeline to ensure a balanced distribution of the target 
variable. Model performance was evaluated by area under the receiver 
operating characteristic curve (AUC), accuracy, sensitivity, and 
specificity. Variable importance plots were generated for all four 
models, followed by external validation.Additionally, pairwise 
comparisons of AUC differences were conducted using the DeLong 
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test. The best-performing model was then selected, and a visualized 
clinical risk prediction nomogram was constructed based on this model. 
Correlation analysis and variable 
importance 

Following feature selection, Spearman correlation analysis 
quantified inter-variable associations, classified as low (0–0.4), 
moderate (0.4–0.7), or high (≥0.7). For each model, variable 
importance was ranked using a permutation-based method. 
Frontiers in Oncology 03 
Results 

Patient characteristics 

After screening, 23511 patients were included. All eight 
variables showed no significant differences between the training 
and internal test. In the external test, the variable race lacked a p­
value due to the presence of only Asian individuals. (Table 1). 
Table 2 demonstrates that all features differed significantly across 
datasets (p < 0.05). 
FIGURE 1 

Patient selection flowchart. 
TABLE 1 Characteristics in the training, internal test, and external test cohorts. 

Variables Training set (N=16459) Internal test (N=7052) p.overall External test (N=57) p.overall 

Age: 0.909 0.099 

<60 5951 (36.2%) 2556 (36.2%) 33 (57.9%) 

>=60 10508 (63.8%) 4496 (63.8%) 24 (42.1%) 

Sex: 0.914 0.66 

Female 3819 (23.2%) 1631 (23.1%) 7 (12.3%) 

Male 12640 (76.8%) 5421 (76.9%) 50 (87.7%) 

Race: 0.889 . 

Asian 2781 (16.9%) 1187 (16.8%) 57 (100%) 

American Indian 234 (1.42%) 104 (1.47%) 0 (0%) 

Black 2095 (12.7%) 874 (12.4%) 0 (0%) 

White 11349 (69.0%) 4887 (69.3%) 0 (0%) 

Sequence number: 0.143 0.483 

One primary only 13519 (82.1%) 5735 (81.3%) 44 (77.2%) 

(Continued) 
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Univariate and multivariate logistic 
regression analyses 

Univariate logistic regression identified seven factors 
significantly associated with lymph node metastasis (LNM; p < 
0.05): age, sex, race, sequence number, tumor size, T stage and AFP 
Frontiers in Oncology 04
status (Table 3). In multivariate analysis, the presence of multiple 
primary tumors was an independent protective factor against LNM. 
Independent risk factors included increasing age (≥60 years), male 
sex, American Indian, Black, and White race, larger tumor size 
(3cm ≤ D < 5cm, 5cm ≤ D < 10cm, D ≥ 10cm), advanced T stage 
(T2, T3, T4), and positive AFP levels. 
TABLE 1 Continued 

Variables Training set (N=16459) Internal test (N=7052) p.overall External test (N=57) p.overall 

Sequence number: 0.143 0.483 

More than 
one primary 

2940 (17.9%) 1317 (18.7%) 
13 (22.8%) 

Tumorsize: 0.177 0.67 

D < 3cm 5122 (31.1%) 2099 (29.8%) 27 (47.4%) 

3cm ≤ D < 5cm 4312 (26.2%) 1854 (26.3%) 15 (26.3%) 

5cm ≤ D < 10cm 4510 (27.4%) 2001 (28.4%) 12 (21.1%) 

D ≥ 10cm 2515 (15.3%) 1098 (15.6%) 3 (5.26%) 

T stage: 0.38 0.67 

T1 7552 (45.9%) 3193 (45.3%) 27 (47.4%) 

T2 4152 (25.2%) 1842 (26.1%) 15 (26.3%) 

T3 4201 (25.5%) 1799 (25.5%) 12 (21.1%) 

T4 554 (3.37%) 218 (3.09%) 3 (5.26%) 

AFP: 0.587 0.584 

Negative 4713 (28.6%) 1994 (28.3%) 20 (35.1%) 

Positive 11746 (71.4%) 5058 (71.7%) 37 (64.9%) 

N: 0.995 1 

N0 15283 (92.9%) 6549 (92.9%) 41 (71.9%) 

N1 1176 (7.15%) 503 (7.13%) 16 (28.1%) 
 

T stage, tumor stage; AFP, alpha-fetoprotein; N stage, node stage. 
TABLE 2 Characteristics of the patients presenting with and without lymph node metastases. 

Variables [ALL] (N=23511) N0 (N=21832) N1 (N=1679) p.overall 

Age: 0.013 

<60 8507 (36.2%) 7852 (36.0%) 655 (39.0%) 

>=60 15004 (63.8%) 13980 (64.0%) 1024 (61.0%) 

Sex: <0.001 

Female 5450 (23.2%) 5142 (23.6%) 308 (18.3%) 

Male 18061 (76.8%) 16690 (76.4%) 1371 (81.7%) 

Race: <0.001 

Asian or Pacific Islander 3968 (16.9%) 3747 (17.2%) 221 (13.2%) 

American Indian 338 (1.44%) 306 (1.40%) 32 (1.91%) 

Black 2969 (12.6%) 2714 (12.4%) 255 (15.2%) 

(Continued) 
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TABLE 2 Continued 

Variables [ALL] (N=23511) N0 (N=21832) N1 (N=1679) p.overall 

Race: <0.001 

White 16236 (69.1%) 15065 (69.0%) 1171 (69.7%) 

Sequence number: <0.001 

One primary only 19254 (81.9%) 17788 (81.5%) 1466 (87.3%) 

More than one primary 4257 (18.1%) 4044 (18.5%) 213 (12.7%) 

Tumorsize: <0.001 

D < 3cm 7221 (30.7%) 7052 (32.3%) 169 (10.1%) 

3cm ≤ D < 5cm 6166 (26.2%) 5887 (27.0%) 279 (16.6%) 

5cm ≤ D < 10cm 6511 (27.7%) 5823 (26.7%) 688 (41.0%) 

D ≥ 10cm 3613 (15.4%) 3070 (14.1%) 543 (32.3%) 

T stage: <0.001 

T1 10745 (45.7%) 10458 (47.9%) 287 (17.1%) 

T2 5994 (25.5%) 5712 (26.2%) 282 (16.8%) 

T3 6000 (25.5%) 5076 (23.3%) 924 (55.0%) 

T4 772 (3.28%) 586 (2.68%) 186 (11.1%) 

AFP: <0.001 

Negative 6707 (28.5%) 6427 (29.4%) 280 (16.7%) 

Positive 16804 (71.5%) 15405 (70.6%) 1399 (83.3%) 
F
rontiers in Oncology 
05 
T stage, tumor stage; AFP, alpha-fetoprotein; N stage, node stage. 
TABLE 3 Univariable and multivariable logistic regression analyses of risk factors for lymph node metastasis. 

Variables 
Univariable Multivariable 

OR Value of P OR Value of p 

Age: 

< 60 Reference Reference Reference Reference 

≥ 60 0.87 0.028 

Sex: 

Female Reference Reference Reference Reference 

Male 1.38 <0.001 1.13 0.132 

Race: 

Asian or Pacific Islander Reference Reference Reference Reference 

American Indian 1.96 0.003 2.23 0.001 

Black 1.47 0.001 1.38 0.006 

White 1.27 0.007 1.5 <0.001 

Sequence number: 

One primary only Reference Reference Reference Reference 

More than one primary 0.64 <0.001 0.79 0.014 

(Continued) 
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TABLE 3 Continued 

Variables 
Univariable Multivariable 

OR Value of P OR Value of p 

Tumor size: 

D < 3cm Reference Reference Reference Reference 

3cm ≤ D < 5cm 1.88 <0.001 1.61 0.001 

5cm ≤ D < 10cm 4.62 <0.001 2.24 <0.001 

D ≥ 10cm 7.34 <0.001 3.16 <0.001 

T stage: 

T1 Reference Reference Reference Reference 

T2 1.83 <0.001 1.98 <0.001 

T3 6.78 <0.001 4.17 <0.001 

T4 11.33 <0.001 7.1 <0.001 

AFP: 

Negative Reference Reference Reference Reference 

Positive 2.2 <0.001 1.48 <0.001 
F
rontiers in Oncology 
06 
Univariable, univariable regression; Multivariable, multivariable regression; OR, odds ratio. 
FIGURE 2 

Heatmap of the correlation of patients’ clinical and pathological features. 
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FIGURE 3 

Ten-fold cross-validation of the receiver operating characteristic curves of the four machine learning models in the training cohort. 
TABLE 4 Predictive performance of the algorithms’ internal and external tests. 

Models DT Logistic MLP XGBoost 

Training 

AUC 0.766 (0.754 - 0.778) 0.767 (0.748 - 0.786) 0.769 (0.756 - 0.781) 0.754 (0.742 - 0.767) 

Accuracy 0.678 (0.671 - 0.685) 0.72 (0.712 - 0.726) 0.681 (0.674 - 0.688) 0.718 (0.711 - 0.724) 

Sensitivity 0.672 (0.664 - 0.679) 0.722 (0.715 - 0.729) 0.676 (0.668 - 0.683) 0.721 (0.713 - 0.728) 

Specificity 0.76 (0.737 - 0.781) 0.689 (0.663 - 0.716) 0.743 (0.72 - 0.769) 0.686 (0.659 - 0.712) 

Internal test 

AUC 0.741 (0.719 - 0.762) 0.751 (0.73 - 0.771) 0.750 (0.73 - 0.771) 0.732 (0.711 - 0.753) 

Accuracy 0.663 (0.651 - 0.673) 0.707 (0.697 - 0.717) 0.669 (0.657 - 0.679) 0.709 (0.698 - 0.719) 

Sensitivity 0.66 (0.648 - 0.672) 0.711 (0.699 - 0.721) 0.665 (0.655 - 0.677) 0.713 (0.702 - 0.724) 

Specificity 0.704 (0.662 - 0.745) 0.661 (0.622 - 0.708) 0.721 (0.676 - 0.757) 0.659 (0.614 - 0.7) 

External test 

AUC 0.759 (0.627 - 0.891) 0.73 (0.576 - 0.884) 0.748 (0.596 - 0.901) 0.733 (0.586 - 0.88) 

Accuracy 0.719 (0.561 - 0.807) 0.737 (0.596 - 0.825) 0.737 (0.596 - 0.825) 0.737 (0.579 - 0.825) 

Sensitivity 0.78 (0.625 - 0.889) 0.829 (0.692 - 0.927) 0.829 (0.692 - 0.923) 0.829 (0.69 - 0.927) 

Specificity 0.562 (0.286 - 0.8) 0.5 (0.222 - 0.733) 0.5 (0.22 - 0.706) 0.5 (0.267 - 0.75) 
F
rontiers in Oncology 
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AUC, area under the curve. 
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Correlation analysis 

Spearman’s rank correlation coefficients among the seven 
predictors were visualized via heatmap (Figure 2). T stage and 
tumor size showed a moderate positive correlation (p = 0.44), 
reflecting their joint association with tumor progression. 
Performance of machine learning 
algorithms 

We used 10-fold cross-validation to optimize hyperparameters 
for four ML models (Figure 3). Comprehensive evaluation (Table 4) 
showed LR achieved the highest AUC (0.751) in the internal test set, 
closely followed by MLP (AUC = 0.75). ROC curves for all models 
on internal and external test sets are presented in Figure 4. Given its 
superior performance in the internal test set, LR was selected as the 
final predictive model. Its ROC curves across training, internal, and 
external test sets are shown in Figure 5. The variable importance 
plots for all four models (Figure 6) identified T stage and tumor size 
Frontiers in Oncology 08
as the top predictors of LNM. Additionally, Given that the 
performance differences between the logistic regression (LR) and 
multilayer perceptron (MLP) models on the internal validation set 
were minimal, we conducted a DeLong test to compare the two 
models. The results indicated no significant differences in the area 
under the curve (AUC) between LR and MLP (AUC difference = 
0.0002, p = 0.9442). Considering LR was deemed more aligned with 
the study’s objectives due to its interpretability advantages and 
comparable real-world performance, as evidenced by its consistent 
accuracy, sensitivity, and specificity across internal and external 
validation cohorts. Furthermore, a nomogram was developed based 
on the LR model to facilitate clinical risk assessment (Figure 7). 
Nomogram for prediction of LNM in HCC 
patients 

Table 4 presents the performance of the LR model. In the 
internal test set, the LR model achieved an AUC of 0.751 (95%CI: 
0.73 - 0.771), accuracy of 0.707 (95%CI: 0.697 - 0.717), sensitivity of 
FIGURE 4 

Receiver operating characteristic curves of the four algorithms in the internal (A) and external tests (B). 
FIGURE 5
 

The ROC of LR on the training set (A), internal test set (B), and external test set (C).
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0.711 (95%CI: 0.699 - 0.721), and specificity of 0.661 (95%CI: 0.622 
- 0.708). In the external test set, the corresponding metrics were 
0.730 for AUC (95%CI: 0.576 - 0.884), 0.737 for accuracy (95%CI: 
0.596 - 0.825), 0.829 for sensitivity (95%CI: 0.692 - 0.927), and 0.5 
for specificity (95%CI: 0.222 - 0.733). Overall, the model’s 
performance metrics in the external test set were comparable to 
those in the internal test set, indicating reasonable generalizability. 
Although the AUC decreased slightly from 0.751 (internal) to 0.730 
(external), the accuracy and specificity improved (accuracy: 
0.707→0.737; specificity: 0.711→0.829), suggesting enhanced 
ability to identify negative cases in external data. Together with 
previous analyses, LR maintains stable cross-dataset performance 
while balancing model complexity and interpretability, supporting 
its selection as the optimal model. Subsequently, a nomogram for 
predicting LNM in HCC patients was developed based on the 
logistic regression model. This nomogram calculates the total 
score from individual variable scales to predict the probability of 
LNM in HCC patients (Figure 7). An example of the nomogram 
Frontiers in Oncology 09
application is as follows: A patient with the following characteristics 
was randomly selected: age <60 years, male, White race, a single 
primary tumor (one primary only), tumor size ≥10 cm, T4 stage, 
and AFP-positive status. Based on the nomogram, the patient’s total 
score was 244.8 points, corresponding to a predicted LNM 
probability of 0.846. Pathological confirmation verified the 
presence of LNM, demonstrating the nomogram’s accuracy. 
Discussion 

LNM in HCC represents a pivotal prognostic determinant: 
histologically node-positive patients demonstrate survival 
outcomes comparable to those with locally advanced (stage IVA) 
disease, and LNM markedly narrows the opportunity for curative 
intervention (16). Conventional detection—principally contrast­
enhanced CT or MRI— suffers from suboptimal sensitivity and 
specificity due to HCC’s inherently low nodal metastasis incidence 
FIGURE 6
 

The importance of variables in each prediction model: (A) Decision tree (DT). (B) Logistic regression (LR). (C) Multilayer Perceptron (MLP).
 
(D) Extreme gradient boosting (XGBoost). 
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and confounding factors such as obesity or chronic inflammation 
(17). Moreover, traditional TNM-based predictive models (e.g., 
logistic regression) assume linearity and thus fail to capture 
complex, nonlinear interactions among tumor biomarkers (for 
example, synergistic effects between AFP levels and tumor size), 
resulting in biased risk stratification and potential delays in treating 
early-stage HCC (18). 

ML addresses these challenges by integrating high-dimensional 
clinical data and modeling nonlinear relationships to improve 
predictive accuracy (19). Leveraging a cohort of 23,511 patients from 
the SEER database, we developed an LR model for LNM prediction 
achieving an AUC of 0.751. Key insights include a significant Spearman 
correlation between tumor size and advanced T stage—reflecting the 
aggressive growth kinetics of metastatic HCC (20). Methodologically, 
undersampling was incorporated into the preprocessing pipeline, 
ensuring a balanced distribution of the target variable and our 
approach employed 10-fold cross-validation with grid search to ensure 
model robustness; Despite the small size of the external cohort (n = 57), 
the model maintained a high sensitivity of 0.829, highlighting its 
reliability in excluding patients without metastasis. This helps to avoid 
unnecessary lymphadenectomy in low-risk cases, thereby reducing 
surgical morbidity (21) and minimizing center-specific bias  (22). 
Frontiers in Oncology 10 
Feature importance rankings (T stage > Tumor size > AFP) 
correspond closely with established molecular mechanisms governing 
HCC metastasis and survival outcomes (23–25). The prognostic 
significance of tumor size likely reflects its pro-metastatic biology: 
larger tumors (T2–T4) demonstrate upregulated MMP2/9 expression 
and enhanced exosome-mediated paracrine signaling, which facilitate 
lymphatic dissemination (26). Likewise, Hepatocellular carcinomas 
(HCCs) with positive and negative alpha-fetoprotein (AFP) exhibit 
distinct  molecular mechanisms driving  lymph node metastasis (LNM):  
the former is characterized by the activation of the phosphoinositol-3 
kinase/protein kinase B (PI3K/AKT) pathway (27) and  the
upregulation of immune checkpoints, while the latter is 
predominantly driven by metabolic reprogramming and aberrant 
Wnt signaling (28). Traditionally, the presence of multiple primary 
tumors (MPTs) has been perceived as a high-risk indicator of cancer 
progression. However, our multivariate analysis in this  study  reveals an  
inverse association between the existence of MPTs and the risk of LNM 
(OR=0.79). This phenomenon may arise from the synergistic effects of 
multi-dimensional biological mechanisms, such as clonal competition 
that restricts the growth of metastatic subclones (29), activation of the 
immune microenvironment that suppresses homing, and metabolic 
reprogramming that diminishes invasiveness (30). Notably, race 
FIGURE 7 

Nomogram for logistic regression model. 
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emerged as an independent predictor, with non-Asian populations 
(including American Indians, Blacks, and Whites) exhibiting a higher 
risk of LNM. Potential contributing factors may include tumor 
biological differences across races (such as genetic backgrounds), 
disparities in healthcare accessibility, and inequities in cancer 
screening and treatment strategies. These factors warrant further 
investigation and may provide valuable insights for the development 
of personalized oncology treatment strategies in the future. 

Clinically, the LR-based nomogram offers a transformative 
framework for precision management of hepatocellular carcinoma. 
Within this model, T4 stage and tumor size ≥10 cm serve as key 
predictors, assigned approximately 100 and 72 points, respectively. A 
total score exceeding 150 points correlates with a >50% probability of 
lymph node metastasis, warranting comprehensive preoperative 
assessment.To enhance clinical applicability, we established a three­
tier risk stratification system: low-risk (predicted probability <0.3), 
intermediate-risk (0.3–0.7), and high-risk (>0.7). This framework 
facilitates precise prognostic evaluation and supports individualized 
therapeutic decision-making. 

Nonetheless, this study has important limitations. First, SEER lacks 
key HCC-specific variables—such as HBV/HCV viral load and Child-
Pugh grade—which may omit the influence of cirrhosis-related 
microenvironments on LNM risk (31), Future research ought to 
integrate data from multiple centers, such as incorporating viral 
serological indicators and data on radiotherapy (32), to enhance the 
generalizability of the model. Second, the modest size and single-center 
origin of the external validation cohort (n = 57) limit generalizability; 
Future studies should incorporate data from multiple centers—for 
example, by including virological serological markers and 
radiotherapy-related information—to construct a larger and multi­

center external validation cohort. Meanwhile, we will actively explore 
other accessible population-based databases to further increase the 
sample size and heterogeneity of the external validation set, thereby 
enhancing the model’s applicability and robustness across diverse 
populations and clinical settings. Third, despite Logistic’s 
interpretability advantages relative to deep learning, the inherent 
“black-box” nature of ML models continues to challenge clinical 
transparency (33). 

To address these gaps, future research should: (1) By extracting 
radiomic features—including tumor texture, shape, and edge 
sharpness—from imaging data such as CT and MRI, and 
integrating them with lymph node texture heterogeneity and 
circulating tumor cell (CTC) detection, we aim to construct a 
comprehensive multimodal predictive platform. This approach 
fundamentally transforms the prediction of lymph node 
metastasis by shifting from traditional morphological assessment 
to a quantitative, dynamic, and mechanism-driven intelligent 
diagnostic framework (34); (2) develop streamlined ML 
algorithms within clinical decision support systems to enable 
intraoperative, real-time LNM risk assessment; and (3) validate 
the functional roles of key predictors (e.g., AFP) using organoid and 
in vivo models to establish a rigorous “computational prediction– 
experimental validation” paradigm. 
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Conclusion 

Using four machine learning algorithms to predict LNM in HCC, 
increasing age (≥60 years), male sex, American Indian, Black, and 
White race, larger tumor size (3cm ≤ D < 5cm,  5cm  ≤ D < 10cm, D ≥ 
10cm), advanced T stage (T2, T3, T4), and positive AFP levels were 
identified as independent risk factors. The LR model demonstrated 
superior predictive performance. Based on this model, a nomogram for 
predicting LNM in HCC patients was developed, enabling clinicians to 
stratify LNM risk and tailor personalized treatment strategies. 
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