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Immune checkpoint blockers (ICBs) have revolutionized cancer treatment by

enabling durable responses. However, most patients showed resistance and

limited efficacy. Elucidating mechanisms of resistance is imperative to extend

the clinical utility of ICBs. Emerging evidence highlights cancer-associated

fibroblasts (CAFs), particularly TGFb-activated myofibroblastic CAFs, as key

orchestrators of immunosuppressive TMEs and ICBs resistance. These CAFs

drive T-cell exclusion preventing intratumoral T cells from engaging cancer cells.

This review explores the role of TGFb signaling in CAFs in driving immune evasion

and therapy resistance. While targeting TGFb or CAFs directly has shown limited

inconsistent results, downstream molecules in TGFb-activated CAFs, including

induced TGFb (big-h3), endocytic receptor 180 (Endo180), leucine-rich repeat

containing 15 (LRRC15), and NADPH oxidase 4 (NOX4), emerge as promising

therapeutic targets to counteract T-cell exclusion and restore immunotherapy

sensitivity. Advancing research onCAF heterogeneity and pro-tumorigenic subsets

may uncover innovative strategies to expand immunotherapy benefits.
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1 Introduction

Immune checkpoint blockers (ICBs), especially PD1/PDL1 inhibitors, have

revolutionized cancer treatment due to their potential for durable responses and long-

term disease control. However, only a subset of patients benefit from ICBs, with most being

resistant (1). The efficacy of ICBs depends on pre-existing T-cell infiltration into tumors.

However, high T-cell density alone does not guarantee a response. The spatial distribution

of T cells is also critical, with physical interaction between T cells and cancer cells required

for ICB efficacy (1).

Solid tumors are currently stratified into the following three distinct immune

phenotypes based on T-cell spatial distribution (2): 1) inflamed/hot tumors,
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characterized by abundant intratumoral T-cell infiltration, yet

frequently resistant to ICIs due to upregulation of alternative

checkpoints (TIM3, LAG3, TIGIT) and non-PD-1/CTLA4-

mediated inhibitory pathways (3, 4); 2) desert/cold tumors,

defined by minimal T-cell presence, primarily attributed to

defective antigen presentation or failed T-cell priming

necessitating combinatorial strategies with immunogenic priming

agents (e.g., neoantigen vaccines, oncolytic viruses) (5); and 3)

immune-excluded tumors, distinguished by CD8+ T-cell

sequestration within tumor stroma, forming a “peripheral

immune shield”—host-derived antitumor T cells are physically

barred from infiltrating cancer nests resulting in poor prognosis

and primary resistance to ICIs (6).

Multiple factors likely contribute to T-cell exclusion, but

cancer-associated fibroblasts (CAFs), specifically TGFb-activated
myofibroblastic CAFs, are increasingly recognized as major

orchestrators. Via secretion of extracellular matrix proteins and

other immunomodulators, these CAFs create fibrotic,

immunosuppressive TMEs that restrict T-cell migration into

tumor nests (7). The respective mechanisms underlying ICI

resistance for the three immune subtypes and the corresponding

methods for reversing are illustrated in Figure 1.

This review synthesizes recent advances in our understanding

on TGFb-activated CAF-mediated T-cell exclusion, evaluates

challenges in targeting TGFb/CAFs, and highlights downstream
Frontiers in Oncology 02
effectors (e.g., LRRC15, NOX4) as precision therapeutic targets to

restore ICB sensitivity.
2 T-cell exclusion: prognostic and
predictive implications

As the main activators of antitumor immunity, tumor infiltrating T

cells have been intensely investigated as prognostic and predictive

biomarkers. However, until now, they have experienced limited clinical

application because of modest efficacy and lack of applicable evaluation

methods. The effect of spatial distribution of tumor infiltrating T cells on

patients’ prognosis has been recognized formore than two decades (8, 9).

The concept of T-cell exclusion, however, has emergedwith the advent of

the immunotherapy era, despite two decades of research on T-cell spatial

distribution. A triple-negative breast cancer study revealed 10-year

survival rates of 80% for inflamed tumors, 60% for excluded tumors,

and 40% for desert tumors. Spatial phenotypes were prognostic

independent of factors like nodal status, tumor size, and age (10).

Artificial intelligence (AI) was recently leveraged to analyze non-small

cell lung cancer tumors revealing 44% inflamed tumors, 37% excluded

tumors, and 19% desert tumors. This could provide a supplementary

biomarker to immunohistochemistry (11).

Besides its role in prognosis, T-cell exclusion is evolving as a

potential biomarker for immunotherapy resistance. In two cohorts
FIGURE 1

A summary of current knowledge on ICB resistance mechanisms underlying three immune phenotypes, respectively, and their corresponding
methods for reversing resistance. Image created with Biorender.com.
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of patients with advanced NSCLC treated with monotherapy ICBs,

the overall response rate to ICBs in patients with immune-excluded

phenotype was 11.5%, compared with 26.8% and 11.2% in patients

with inflamed and immune-desert phenotypes, respectively.

Median progression-free survival and overall survival among

patients with the immune-excluded phenotype were also

significantly shorter than those with the inflamed phenotype (2.2

and 14.0 months vs. 4.1 and 24.8 months) (11). T-cell exclusion

signatures could also predict resistance to ICBs (12), while a T cell-

inflamed signature (13, 14) or a T-cell infiltration signature (15)

corresponds highly with a clinical response to ICBs in multiple

tumor types. T-cell exclusion might be responsible for both primary

(16) as well as acquired ICB resistance (17).
3 MyoCAFs: architects of T-cell
exclusion

CAFs are one of the most abundant and critical components of

the TME, which not only provide physical support but also play a

key role in metabolic and immune reprogramming of the TME (18).

Evidence shows that CAFs dominate the complex cell–cell

interactions in the TME (19). The role of CAFs in promoting the

establishment of an immunosuppressive TME in various cancers is

increasingly appreciated. Highly stromagenic cancers, such as

pancreatic cancer, respond particularly poorly to ICB treatments.

Lung fibrosis impairs T cell-mediated tumor control and limits the

benefit of ICB treatment in NSCLC (20).

As the main drivers of stromagenesis and fibrosis, CAFs directly

orchestrate CD8+ T-cell exclusion (21), thereby shaping an

immunologically cold TME. This causal relationship is evidenced

by dose-dependent correlations between CAF density and the

excluded tumor phenotype (22). However, CAFs within tumors

are not uniform, but have extensive heterogeneity, with at least two

major CAFs subtypes, myoCAFs and inflammatory CAFs (iCAFs)

(23–25). MyoCAFs have a matrix-producing myofibroblastic

phenotype with high expression of a-smooth muscle actin

(aSMA). By contrast, iCAFs have a secretory phenotype with the

ability to generate immunomodulatory molecules such as

interleukin 6 and C-X-C motif chemokine ligand 12 (26).

Determining the heterogeneity within the CAFs is indispensable

to better understand and treat cancers.

By using multicolor flow cytometry, a seminal breast cancer

study identified four CAF subsets with distinct immunomodulatory

capacities, with the aSMA-high CAF-S1 subset most deeply

involved in establishing an immunosuppressive TME (27). Their

subsequent work based on single-cell RNA sequencing (scRNA-

seq) uncovered delineated further heterogeneity within the CAF-S1

subset revealing the role of myofibroblastic CAF subsets (ecm/

TGFb/wound-myoCAF) in orchestrating T-cell exclusion and ICB

resistance (28). This role of the myoCAFs has been corroborated by

another group (29).

MyoCAFs are increasingly recognized as key mediators in

driving immune exclusion and resistance to ICB therapies

through dual mechanisms as follows: (1) promoting fibrotic
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TMEs and ( 2 ) f o rm ing f un c t i on a l a l l i a n c e s w i t h

immunosuppressive immune cells, particularly tumor-associated

macrophages (TAMs). Spatial analysis from a landmark Chinese

study revealed that myoCAFs exhibit intensive cross-talk with

TAMs to create physical (ECM and collagen organization) and

biochemical (chemotaxis regulation) barriers that restrict cytotoxic

T-lymphocyte penetration (30). The tumor-promoting role of

myoCAFs has been validated through pan-cancer analysis

encompassing 18 malignancies using a cell-type deconvolutional

approach. The results showed that cancers with high numbers of

myoCAFs have poorer prognosis and lower drug response

sensitivity (31), while targeting myoCAFs increases infiltration of

cytotoxic CD8+ T cells into the tumor parenchyma and improves

ICB efficacy (32). These collective findings position myoCAFs as

central architects of the immune-excluded phenotype and critical

facilitators of tumor progression.
4 TGFb-activated CAFs: fueling ICB
resistance and T-cell exclusion

TGFb is a well-established inducer of myoCAFs, in contrast to

interleukin 1 and fibroblast growth factor, which drive the

formation of iCAFs (33–35). Studies have highlighted the crucial

role of TGFb-activated CAFs in predicting resistance to ICBs across

various cancers.

A Canadian study found that TGFb-dysregulated CAF ECM

genes predict PD1/PDL1 resistance better than established

biomarkers like the tumor mutation burden, cytolytic activity, T

cell-inflamed signature, TGFb expression alone, and the CAF

signature (36). Another study showed that a stroma/epithelial-to-

mesenchymal transition (EMT)/TGFb signature negatively

associates with pembrolizumab response across cancers (37).

TGFb-responsive CAF signatures define poor prognosis subtypes

and predict ICB resistance in colorectal cancer (38), including

microsatellite instability high/mismatch repair-deficient cancers

normally susceptible to ICBs (39). For urothelial carcinoma,

TGFb signaling in CAFs associated with ICB resistance in both

metastatic (7) and neoadjuvant settings (40). TGFb-activated CAFs

are also responsible for T-cell exclusion in ovarian cancer (41).

Besides the significant link between TGFb-activated CAFs and

ICB resistance, in vivo and in vitro models recapitulating the role

TGFb-activated CAFs in driving T-cell exclusion have been

developed. The EMT6 (epithelial cell line) and MC38 mouse

mammary carcinoma models seem to naturally exhibit a T cell-

excluded phenotype. Therapeutic blockade of PDL1 or TGFb alone

achieved little or no effect in these mice, while blocking both PD-L1

and TGFb exhibited a significant reduction in tumor burden by

promoting significant infiltration of T cells into the tumor nest (7).

A more elegant work was reported by a Spanish team, who

generated mouse strains bearing combined mutations of Apc, Kras,

Tgfbr2, and Trp53 in intestinal stem cells. These mice developed

highly invasive colon cancer with 90% prevalence and reproduced

key features of the T-cell exclusion phenotype induced by a

prominent TGFb-activated stroma. PD1/PDL1 inhibitors
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provoked a limited response in this model. In contrast, inhibition of

TGFb unleashed a potent response to PD1/PDL1 inhibitors (42).

However, that study did not explain why these autochthonous

tumors developed a TGFb-activated stroma. Recently, another

group performed unbiased analysis for regulators of the TME

using spatial functional genomics and found that the Tgfbr2

knockout in cancer cells could increase TGFb bioavailability,

drive TGFb-mediated CAF activation, and convert the TME to a

fibro-mucinous state inducing T-cell exclusion and ICB resistance

(43). This conclusion echoes the findings from the Spanish team

and might provide a reproducible method to build mouse models of

T cell-excluded tumors by knockout of the Tgfbr2 gene.

Another team described a preclinical model named the skin tumor

array by microporation (STAMP), to characterize spatiotemporal

immune response patterns, and showed enriched myofibroblasts

and TGFb activation in excluded tumors. Interestingly, immune

phenotypes seem stochastic, not predetermined by genetics.

Fibroblasts have a complex dual role—they drive exclusion but also

orchestrate inflammation by recruiting T cells. Depleting fibroblasts

increased desert tumors in STAMP revealing the multifaceted

functions of fibroblasts in shaping immune phenotypes (16). These

findings underscore the need to elucidate specific mechanisms and

fibroblast heterogeneity.
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Despite established links between TGFb-activated CAFs and

PD-1/PD-L1 resistance, therapeutic targeting remains fraught with

paradoxes. Non-specific ablation of myoCAFs (e.g., aSMA+

depletion or Sonic hedgehog inhibition) not only fails to restore

immune infiltration but accelerates tumor progression (44–47)

likely due to inadvertent disruption of tumor-restraining CAF

subsets within the population (Figure 2) (48, 49).

Similarly, while preclinical models demonstrate synergy

between TGFb inhibitors and ICBs (7, 42), clinical trials reveal

limited efficacy and unforeseen risks—TGFb blockade may

paradoxically promote metastasis and on-target toxicity (50–52).

These contradictions stem from TGFb’s context-dependent duality:
it constrains early tumors via growth suppression yet drives

advanced disease through stromal activation and immune evasion

(52). TGFb’s dual tumor-suppressive/promoting roles demand

subset-specific targeting strategies.
5 Precision targeting TGFb-activated
CAFs

Studies suggested that nonspecific targeting of CAFs or TGFb
signaling in tumors might not suppress tumor progression;
FIGURE 2

Biphasic functions of TGFb and CAFs during cancer progression and the main mechanisms. TGFb-CAFs emerge as the main contributors to T-cell
exclusion immune phenotype and ICB resistance, with several downstream molecules being leveraged to reverse T-cell exclusion and ICB
resistance. However, it should be noted that the downstream effectors of TGFb-CAFs are functionally multifaceted, with some downstream
molecules having tumor-suppressive roles. IL, interleukin; TNF, tumor necrosis factor; PDGF, platelet-derived growth factor; FGF, fibroblast growth
factor; IFNg, interferon-g; SHH, Sonic Hedgehog; ECM, extracellular matrix; TME, tumor microenvironment. Image created with Biorender.com.
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therefore, specific targeting of TGFb-activated CAFs subtypes

might be needed to improve the clinical outcome. Determining

the molecular drivers of TGFb-activated CAFs in T-cell exclusion

might provide the understanding needed to design more effective

immunotherapeutic approaches and address the unmet clinical

need in ICB-resistant T cell-excluded cancers.

The well-established downstream effectors of TGFb-activated
CAFs are the ECM proteins, the dysregulation of which predicts a

failure of PD-1 blockade across cancers (36, 53). One study

identified ECM protein collagen type XIII alpha 1 chain as a

biomarker for the TGFb-responsive CAF subpopulation that

produces chemokines to limit recruitment of dendritic cells and T

cells into the tumor nest, thus leading to poor responsiveness to

anti-PD1/PDL1 therapy in lung cancer (20). However, they did not

provide ways to specifically target these distinct CAFs. big-h3 (also

known as induced TGFb) is another ECM protein that is regulated

by TGFb in CAFs. big-h3-secreting CAFs within the stroma can

sequester T cells in the stroma leading to a T cell-excluded

phenotype. Depletion of big-h3 could drive the accumulation of

CD8+ T cells and enhance the antitumoral response (54). Anti-big-
h3 antibody has exhibited promising anti-tumor efficacy by

reshaping TMEs (55). Therefore, big-h3 represents a novel and

promising immunological target among ECM proteins in cancer.

A seminal work from Genentech reported an unbiased

assessment of fibroblast heterogeneity in pancreatic ductal

adenocarcinoma tissues by bulk and scRNA-seq of stromal cells.

They identified LRRC15 as a marker of TGFb-driven myoCAFs,

which were the dominant fibroblasts in advanced tumors across

multiple human cancer types (56). LRRC15 is a transmembrane

protein that is physiologically involved in cell–cell and cell–ECM

interactions (57). The LRRC15+ CAF signature has been found to

not only predicts worse survival but also poor treatment response in

patients receiving anti-PDL1 therapy (56, 58, 59). Recently,

LRRC15 serves as a definitive marker for a terminally

differentiated myoCAF subset that orchestrates immune-excluded

TMEs (60). Further work revealed that LRRC15+ CAF depletion

leads to persistent reduction in the tumor burden and significantly

boosts anti-PD1/PDL1 treatment responses (61). However,

targeting LRRC15 clinically seems difficult due to its poorly

characterized functions and signaling pathways. Interestingly,

recent advances in antibody–drug conjugates (ADCs) have

produced a wide range of “magic bullets” to address previously

unmet medical needs (62). LRRC15 shows highly restricted

expression in some pro-tumorigenic and immunosuppressive

CAFs; therefore, it has become a good cancer-specific antigen for

therapeutic targeting. LRRC15-targeted ADCs, such as the ABBV-

085 ADC conjugated with monomethyl auristatin E (MMAE)

payloads, are under development, and promising results are

emerging (57, 63).

Endocytic receptor 180 (also known as urokinase-type

plasminogen activator receptor-associated protein, encoded by the

MRC2 gene, is an endocytic receptor participating in collagenolysis

and ECM turnover. The expression of Endo180 is physiologically

restricted to normal tissue fibroblasts. Recent advances revealed that

Endo180 is upregulated on a subset of myoCAFs and plays a critical
Frontiers in Oncology 05
role in mediating TGFb-induced collagen accumulation and

contractility. Genetic deletion of ENDO180 profoundly limited

tumor growth and metastasis (64). The same groups’ subsequent

work revealed the role of Endo180+ CAFs in driving the T-cell

exclusion phenotype. High levels of Endo180 in tumors predict a

poor response to PD1/PDL1 inhibitor therapy, and knockout of

ENDO180 in CAFs promotes T-cell infiltration and enhanced

sensitivity to PD1/PDL1 inhibitor therapy (22). The fact that

Endo180 is specifically upregulated on a subset of tumor-

promoting myoCAFs and is a constitutively recycled

transmembrane receptor makes Endo180 an ideal target antigen

to design an ADC. Currently, an Endo180-ADC with a payload of

MMAE has been tested in a preclinical sarcoma tumor xenograft

model resulting not only in tumor regression but also in a

significant reduction of metastasis. Endo180-ADC could be

rapidly internalized into target cells and cause specific cell death

in Endo180-expressing CAFs (65).

NOX4 has been identified as another major downstream target

of TGFb-activated CAFs to promote T-cell exclusion and anti-PD1/

PDL1 resistance (66). NOX4 catalyzes the reduction of O2 to

produce reactive oxygen species (ROS), which are required for

TGFb-dependent myofibroblast transdifferentiation in various

organ fibroses and malignancies (67–69). Pharmacological

inhibition of NOX4 using GKT137831, an oral drug developed as

an anti-fibrotic agent, abrogated TGFb-dependent ROS production,
myofibroblast transdifferentiation, and slow tumor growth (70). By

using CAF-rich murine tumor models with a T-cell exclusion

phenotype, the role of NOX4 inhibition in normalizing myoCAFs

to a quiescent phenotype and overcoming T-cell exclusion by

increasing intratumoral T-cell infiltration has been revealed. By

contrast, TGFb inhibition alone could prevent, but not reverse, CAF
differentiation. This preclinical study showed that NOX4 inhibition

could restore the response to immunotherapy by overcoming CAF-

mediated T-cell exclusion (66).

Recent findings reveal tumor-restraining functions of some

TGFb-activated CAF effectors emphasizing the need for a

nuanced understanding. Collagen 1A1, a TGFb-induced effector,

suppresses tumors when deleted in myoCAFs by recruiting

immunosuppressive myeloid-derived suppressor cells (71, 72).

Preserving collagen while targeting other CAF mediators is

suggested. Similarly, the TGFb mediator, Rho effector kinase

protein kinase N2 (PKN2), restrains invasion, as its deletion

switches myoCAFs to inflammatory CAFs (73). These results

highlight the heterogeneity of CAFs, as well as myoCAFs,

cautioning against blanket CAF targeting and warranting

elucidating the multifaceted TGFb–CAF roles.
6 Discussion

TGFb-activated CAFs have emerged as critical drivers of

immunotherapy resistance and the T cell-excluded phenotype

across various cancers. However, blanket targeting of CAFs or

TGFb has yielded mixed results clinically. Therefore, further

research should focus on identifying and selectively targeting the
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specific downstream mediators induced by TGFb in the

subpopulations of tumor-promoting CAFs. Promising targets in

early investigation include ECM proteins like big-h3, membrane

receptors like Endo180 and LRRC15, and cytosolic enzymes like

NOX4. These effectors promote the immunosuppressive and T cell-

excluding effects of TGFb-activated CAFs and are absent or

minimal in normal tissues. Drugs targeting them may provide

more precise immunotherapies. Particularly promising are ADC

drugs targeting specific membrane proteins induced by TGFb in

pro-tumorigenic CAFs exemplified by LRRC15 and Endo180-

targeted ADCs.

Additionally, single-cell profiling has revealed further

heterogeneity within CAF populations, so future work should

examine how different CAF subtypes interact to shape distinct

immune phenotypes. A nuanced understanding of CAF subsets

may enable selective elimination of pro-tumorigenic CAFs while

preserving anti-tumorigenic subtypes. Defining the spatiotemporal

dynamics of CAF activation and crosstalk with other stromal and

immune components is also warranted. Overall, research on the

multi-faceted roles of CAFs and their subpopulations will uncover

new strategies to overcome resistance and expand the benefits of

cancer immunotherapy to more patients.
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Glossary

ADCs antibody–drug conjugates
Frontiers in Oncology
AI artificial intelligence
BTLA molecule B and T-lymphocyte attenuator
CAFs cancer-associated fibroblasts
ECM extracellular matrix
EMT epithelial-to-mesenchymal transition
Endo180 endocytic receptor 180
iCAFs inflammatory CAFs
ICBs immune checkpoint blockers
LRRC15 leucine-rich repeat containing 15
MMAE monomethyl auristatin E
myoCAFs myofibroblastic CAFs
NOX4 NADPH oxidase 4
NSCLC non-small-cell lung cancer
09
OX40 TNF superfamily member 4
OX40L ligand of OX40
PD1 programmed cell death 1
PDL1 programmed death ligand 1
PKN2 Rho effector kinase protein kinase N2
ROS reactive oxygen species
scRNA-seq single-cell RNA sequencing
STAMP skin tumor array by microporation
TAMs tumor-associated macrophages
TGFb transforming growth factor beta
TME tumor microenvironment
aSMA a-smooth muscle actin
big-h3 induced TGFb.
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