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Introduction: Data sharing is essential for advancing research in radiation
oncology, particularly for training artificial intelligence (Al) models in medical
imaging. However, privacy concerns necessitate de-identification of medical
images, including defacing operations to remove facial features. This study
evaluates the impact of defacing on Al-driven organ segmentation in head-
and-neck (HN) computed tomography (CT) images.

Methods: Two defacing algorithms, Deldentifier and mri_reface_0.3.3, were
applied to 50 patient CT scans. Segmentation accuracy was assessed using
two commercially available Al segmentation tools, INTContour and
AccuContour®, and evaluated using Dice similarity coefficient (DSC), Hausdorff
Distance at the 95th percentile (HD95), and Surface Dice Similarity Coefficients
(SDSC) with 2 mm tolerance. Dose differences (D0.01lcc) were calculated for
each structure to evaluate potential clinical implications. Statistical comparisons
were made using paired t-tests (p<0.05).

Results: The results showed that defacing significantly impacted segmentation of
on-face structures (e.g., oral cavity, eyes, lacrimal glands) with reduced DSC (<0.9)
and higher HD95 (>2.5 mm), while off-face structures (e.g., brainstem, spinal cord)
remained largely unaffected (DSC >0.9, HD95 <2 mm). Deldentifier better preserved
Hounsfield Units (HU) and anatomical consistency than mri_reface, which
introduced more variability, including HU shifts in air regions. Minor differences in
segmentation accuracy were observed between defacing algorithms, with
mri_reface showing slightly greater variability. AccuContour showed slightly
greater segmentation variability than INTContour, particularly for small or complex
structures. Dose distribution analysis revealed minimal differences (<20 cGy) in most
structures, with the largest variation observed in the Brainstem (34 cGy), followed by
Lips_NRG (28 cGy) and Brain (25 cGy).

Conclusion: These findings suggest that while defacing alters segmentation
accuracy in on-face regions, its overall impact on off-face structures and
radiation therapy planning is minimal. Future work should explore domain
adaptation techniques to improve model robustness across defaced and non-
defaced datasets, ensuring privacy while maintaining segmentation integrity.

segmentation, defacing, computed tomography (CT), mri_reface, Deldentifier, CARINA
Al, radiation therapy, head and neck
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1 Introduction

Data sharing is critical for advancing research and enabling
multi-institutional collaborations, particularly in fields like
radiation oncology where diverse datasets are essential for robust
and generalizable findings. With the rise of artificial intelligence
(AI) in medical applications, the demand for large, diverse, and
high-quality datasets has grown exponentially. Al has demonstrated
remarkable success in analyzing imaging data, such as tumor
detection and organ segmentation, driving a need for shared
medical image datasets to improve model performance and
reproducibility (1). Initiatives like The Cancer Imaging Archive
(TCIA) provide access to a wide range of anonymized datasets,
supporting research in cancer diagnostics, treatment planning, and
medical imaging analysis (2).

However, medical imaging data contain sensitive patient
information, which raises privacy concerns. The Health Insurance
Portability and Accountability Act (HIPAA) mandates the removal of
protected health information (PHI) before sharing, except in specific
circumstances or with the patient’s written authorization. Identifiers
such as names and phone numbers are explicitly listed in HIPAA as
PHI that must be removed (3). To comply with these regulations, tools
have been developed to de-identify medical images by stripping Digital
Imaging and Communications in Medicine (DICOM) files of PHI-
containing tags or keeping only raw image pixels in formats such as
Neuroimaging Informatics Technology Initiative (NIfIT) and nearly
raw raster data (NRRD) (4, 5).

Despite these efforts, scans of the head pose unique challenges,
as 3D renderings of the face can potentially re-identify subjects even
after explicit PHI attributes are removed (6). This raises ethical
concerns about balancing open data sharing with patient privacy.
As a result, specialized tools have been developed to remove facial
features from medical images to enhance privacy and facilitate safe
data sharing (7-16). Addressing these challenges is crucial for
ensuring the integrity and utility of shared datasets in advancing
Al applications in radiation therapy.

The alteration of medical image data, such as through defacing
operations, poses significant challenges to its usability, particularly
when the data is applied beyond its original purpose. Defacing, while
necessary for patient privacy protection, can inadvertently impact the
integrity of the data in ways that compromise downstream
applications. Studies have demonstrated that radiomics metrics,
which are often used to quantify features within medical images, are
particularly sensitive to changes in the facial region, with significant
deviations observed following defacing operations (17, 18). Recent
work has also examined how defacing affects the reliability of deep
learning-based segmentation models in head-and-neck imaging. A
study using magnetic resonance imaging (MRI) data demonstrated
that applying common defacing algorithms significantly reduced
segmentation accuracy for organs at risk, especially when models
were trained on original images but evaluated on defaced ones (19).
These findings highlight that privacy-preserving preprocessing
methods may compromise the quality of Al outputs in radiotherapy
applications if not carefully validated (19). However, a key question is
whether defacing unintentionally impacts regions beyond the face.
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While current studies suggest that unaffected regions, like the brain,
generally retain sufficient quality for traditional clinical and research
purposes (6, 20), further validation is needed to assess whether the
performance of convolutional neural network (CNN) based AI models
on unaffected regions would be affected.

AI models have shown a pronounced vulnerability to image
manipulation. It has been reported that even modification of a
single pixel can drastically alter the output of a state-of-the-art
models, leading to significant errors in interpretation and decision-
making (21). Such vulnerabilities emphasize the importance of
evaluating how defacing operations impact Al performance, not
just in the defaced regions but also in untouched areas. This is
particularly relevant in the context of organ segmentation models
used in radiation therapy, where accuracy is paramount. Small
inaccuracies in target or organ-at-risks can lead to either inadequate
tumor coverage or un-necessary normal tissue toxicity (22-24).

It is hypothesized that defacing operations, by modifying part of
the input data, could unexpectedly affect an AI model’s ability to
accurately interpret even unaffected regions. Furthermore, such
alterations may degrade the generalizability and robustness of these
models when applied across datasets with varying degrees of defacing
(22). This study specifically focuses on understanding the implications
of defacing operations on organ segmentation AI models used in
radiation therapy, with an emphasis on determining whether
segmentation accuracy is preserved in regions outside the facial area,
such as the brain or other critical organs.

2 Methods

This study used head-and-neck (HN) computed tomography
(CT) data from 50 randomly selected patients (mean age 63.5 + 19.9
years; 24 females, 26 males) treated at a single institution. Ethical
approval was obtained from the Mayo Clinic Institutional Review
Board (IRB). All patients were treated with photon-based
volumetric modulated arc therapy (VMAT) plans, created using
the Varian Eclipse treatment planning system (Varian Medical
Systems, Palo Alto, CA). The dataset includes patients both with
and without dental artifacts, as these were not excluded during
cohort selection. Of the 50 patients, 44 had iMAR enabled. Among
the remaining 6 patients, 4 exhibited visible streaks due to dental
artifacts, while 2 had no dental artifacts. Organs-at-risk (OARs)
were delineated by commercial segmentation tools. In cases where
multiple guideline-based variants were available for the same
structure, the vendor explicitly included suffixes (e.g., “_NRG”) to
indicate that the contour followed NRG Oncology consensus
recommendations (25). These labels were directly generated by
the software and were not manually modified.

2.1 Defacing algorithms
In this study, two defacing algorithms, Deldentifier and

mri_reface, were used to remove or obscure facial features.
Deldentifier (Carina AI, Lexington, Kentucky, USA) is a
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commercial software that includes the functions of removing
Protected Health Information (PHI) from DICOM metadata,
randomly shifting dates while retaining temporal relationships,
and using natural language processing (NLP) to redact burned-in
PHI from image overlays and reports. It also has a defacing
operation. For defacing, it uses an artificial intelligence method to
detect the face and applies a generated mask to obscure facial
features while preserving critical head and neck regions for
research. It supports both DICOM and NIFTI formats and
provides a Graphical user interface (GUI) as well as command
line tool for seamless workflow integration.

The mri_reface_0.3.3 algorithm (13) replaces identifiable facial
features in MRI and CT scans with an average face template. It
aligns scans to a standardized template using image registration
techniques and substitutes facial regions with template features.
This approach removes facial features of an individual subject while
preserving anatomical context and minimizing artifacts that could
interfere with brain measurement software. mri_reface is provided
as a compiled Matlab application that requires Linux with the
Matlab runtime installed. The tool is provided without GUI.

All original HN CT scans were in DICOM format and were
used as inputs for both Deldentifier and mri_reface. Deldentifier
outputted a de-identified and defaced HN CT in DICOM format.
For mri_reface, a separate open-source NIFTI-to-DICOM
converter (nifti2dicom) (26) was used to convert the defaced
NIFTT file back to DICOM for comparison and analysis.

2.2 Segmentation models

In this study, two commercially available, FDA-approved auto-
segmentation software solutions were used for HN structure
segmentation: INTContour by CARINA AI (Carina AI,
Lexington, Kentucky, USA) and AccuContour® by Manteia
Technologies (Manteia Medical Technologies Co., Milwaukee,
Wisconsin, USA). Although the supported structures differ, there
are 22 common key HN structures between the two segmentation
software, providing a basis for direct comparison of the
performance change due to defacing.

2.3 Experimental workflow

This study was conducted in a series of steps to evaluate the
impact of defacing algorithms on segmentation performance,
focusing on both the effect of different defacing methods with the
same auto-segmentation software and the effect of defacing across
different auto-segmentation platforms:

2.3.1 Impact of different defacing algorithms
evaluated using the same auto-segmentation
software (INTContour)

Fifty HN CT images were defaced using two defacing platforms:
Deldentifier and mri_reface. Each set of defaced images, along with
the original HN CT images, was segmented using the INTContour
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platform. The segmentation results were saved as DICOM
radiotherapy structure (RT Structure) files. The segmentations
generated from the original and defaced images were compared
to assess the impact of defacing on segmentation accuracy.

2.3.2 Impact of defacing algorithms across
different auto-segmentation software

To compare the impact of defacing across different auto-
segmentation software, the same set of 50 HN CT images defaced
with Deldentifier was segmented using both INTContour and

AccuContour®

. The segmentation outputs were compared with
the segmentations performed on the original HN CT images using
each respective platform to evaluate the impact of defacing. Since
the supported structures vary between the two auto-segmentation
software, the comparison was limited to the 22 structures that are
supported by both software.

To assess the impact of defacing based on anatomical location,
we categorized all structures into on-face and off-face groups
according to their proximity to the defaced facial surface.
Specifically, on-face structures were defined as superficial
structures located within approximately 5 mm of the outer facial
surface and thus most likely to be directly affected by defacing (e.g.,
eyes, lenses, oral cavity). Off-face structures were deeper or
posterior and therefore less likely to be modified (e.g., brain,
brainstem, spinal cord). Although the oral cavity is partially
internal, it frequently overlaps with defaced regions in anterior
CT slices and was classified as on-face based on visual confirmation
of masking effects. Additionally, we identified which structures were
supported by both AI segmentation platforms (INTContour and
AccuContour) and which were unique to AccuContour. Table 1
summarizes this classification and platform availability across all
evaluated structures.

2.4 Evaluation metrics

To evaluate the extent of image manipulation introduced by
defacing, we computed voxel-wise Hounsfield Unit (HU)
differences (AHU) between the original and defaced CT images
for all 50 head-and-neck cases. We first verified that the defacing
process preserved alignment; rigid registration was then applied
only as a safeguard against occasional orientation inconsistencies
from NIfTT to DICOM conversions (e.g., a 180° anterior—posterior
flip in mri_reface). Voxel-wise subtraction was then performed to
generate AHU maps, which were used to visualize the spatial extent
and magnitude of intensity changes introduced by defacing. For
each case, we analyzed AHU distributions across facial and cranial
regions, with particular attention to air voxels, soft tissues, and bony
structures. The impacted depth was defined as the anterior-
posterior distance from the facial surface to the deepest visibly
altered voxel and was summarized across patients to compare the
anatomical reach of defacing between algorithms.

To evaluate the impact of defacing algorithms on AI
segmentation, various metrics were calculated between the
segmentations on defaced and original images, including the Dice
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TABLE 1 Categorization of on-face and off-face structures and platform

availability.
On-face Off-face Accucontour-only
structures structures structures

EYE_L BONE_MANDIBLE  TRACHEA

EYE_R BRACHIALPLEX_L SUB_MANDIB_L

LENS_L BRACHIALPLEX_R SUB_MANDIB_R

LENS_R CEREBELLUM_L HIPPOCAMPUS_L

LIPS_NRG CEREBELLUM_R HIPPOCAMPUS_R

GLND_LACRIMAL_L = CERVICALSPINE EXT_AUD_CANAL_L

GLND_LACRIMAL_R = COCHLEA_L EXT_AUD_CANAL_R

CAVITY_ORAL COCHLEA_R NASAL_CAVITY

CAVITY_ORAL_NRG = BRAIN SEMI_CIR_CANAL_L
BRAINSTEM SEMI_CIR_CANAL_R
ESOPHAGUS MASTOID_L
GLND_SUBMAND_L = MASTOID_R

GLND_SUBMAND_R

GLOTTIS_NRG
INNEREAR_L
INNEREAR_R

JOINT_TM_L

JOINT_TM_R

LN_NECK_III_L

LN_NECK_II_R
LN_NECK_II_L
LN_NECK_II_R

LN_NECK_IVa_L

LN_NECK_IVa_R

LN_NECK_Ib_L

LN_NECK_Ib_R
LARYNX_NRG
LARYNX

LARYNX_SG_NRG

LOBE_TEMPORAL_L

LOBE_TEMPORAL_R
MIDEAR_L
MIDEAR_R
MUSC_CRICOPHAR

OPTICCHIASM

OPTICNRV_L

OPTICNRV_R
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TABLE 1 Continued

Off-face
structures

On-face

Accucontour-only

structures structures

PCM_I
PCM_M
PCM_S

PAROTID_L

PAROTID_R

PHARYNX

PITUITARY

SPINALCORD

THORACICSPINE

THYROID

Structures were grouped based on anatomical proximity to the defaced region. On-face
structures include those located at or near the anterior facial surface, which are most directly
impacted by defacing algorithms. Off-face structures are anatomically distant and generally
unaffected by defacing. The 22 structures evaluated by both INTContour and AccuContour
are shown in bold. An additional set of structures available only through AccuContour are
shown in the third column.

coefficient, Hausdorft Distance at the 95th percentile (HD95), and
Surface Dice Similarity Coefficients (SDSC) with 2 mm tolerance.
The Dice coefficient measures the spatial overlap between the
segmented and ground-truth regions, providing an overall
agreement score. HD95 assesses boundary alignment by
calculating the maximum distance at which 95% of points on the
segmented surface lie within the ground-truth region and vice versa.
SDSC (2mm) quantifies agreement of two structure surfaces within
2mm tolerance thresholds.

In the context of radiation therapy, anatomical structures guide
both target optimization and avoidance during treatment planning.
Any changes in segmentation may lead to variations in dose
distribution, affecting treatment optimization and evaluation. To
assess this, we computed the D0.01cc metric for each structure,
defined as the minimum dose received by the hottest 0.01 cc of
tissue (approximately 10 mm?). This metric is clinically relevant as
it captures localized dose hotspots, which are especially important
in small or radiosensitive organs and is sensitive to small
segmentation changes.

2.5 Statistical analysis

Paired t-tests were used to compare segmentation metrics (Dice,
HD95, SDSC 2mm) between two defacing algorithms; Deldentifier
and mri_reface. A significance level of p < 0.05 was applied.

3 Results

The extent of image manipulation for both Deldentifier and
mri_reface using HN CT images was assessed. As can be seen in the
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3D rendering of the surface of an example HN CT after defacing for
both Deldentifier (Figure 1A) and mri_reface (Figure 1B).
Deldentifier applied a mask over the facial region, introducing an

added surface layer while preserving deeper anatomical structures.

FIGURE 1
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This masking primarily affected superficial regions. The added layer

has a randomized blend in with the facial region so that it is

impossible to restore the original face through thresholding or a

morphological operation. Since mri_reface replaces the entire facial
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A 3D rendering of an example HN CT after defacing using (A) Deldentifier and (B) mri_reface. Comparison of Hounsfield Unit (HU) distributions and
differences across transverse, coronal, and sagittal planes between the original and defaced CT scans is shown for Deldentifier with (C) slices near
the front of the face and (D) middle slices in all directions, and for mri_reface with (E) slices near the front of the face and (F) middle slices in all
directions. Warmer colors (red) represent positive differences, while cooler colors (blue) represent negative differences. The images highlight the

spatial variability in HU modifications introduced by the defacing process.
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region with an average template, the defaced image retains a
human-like appearance but lacks distinctive facial features. A
previous study has demonstrated that mri_reface effectively
removes identifiable facial structures, significantly reducing
reidentification risks (16).

Hounsfleld Unit (HU) differences between the original and defaced
images were calculated voxel-wise for all 50 patients to visualize and
quantify localized eftects of defacing. AHU maps revealed that both
algorithms predominantly altered facial regions, including the eyes,
lacrimal glands, lenses, optic nerves, nasal cavity, and lips, while AHU =~
0 was observed in deeper anatomical structures. Across patients, the
median HU change in air voxels remained 0 for Deldentifier but
deviated to —90 HU for mri_reface (mean air HU = —1090 vs. —1000 in
original). These spatial differences are illustrated in the representative
AHU maps (Figures 1C-F). For mri_reface, this HU shift is associated
with a rectangular cuboid region visible anterior to the patient
(Figures 1E, F). This artifact arises from insertion of the average face

10.3389/fonc.2025.1603593

template, which extends slightly beyond the patient contour and alters
the expected air voxel values, whereas Deldentifier preserved air voxels
near —1000 HU. In addition to intensity shifts, we quantified the
impacted depth and found that mri_reface consistently reached deeper
anatomical regions (mean depth: 75 mm) compared to Deldentifier
(mean depth: 45 mm), supporting its broader area of manipulation.

While detailed metrics for every structure are shown in
Figures 2 and 3, we highlight key representative values in the text
to illustrate general trends across defacing algorithms and
segmentation tools.

3.1 Impact from different defacing
algorithms

Both defacing algorithms demonstrate the expected impact on
segmentation accuracy, with variations depending on the anatomical
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FIGURE 3

Performance of AccuContour® segmentation using the De-ldentifier algorithm. The boxplots show (A) Dice, (B) 95" Percentile Hausdorff Distance,
and (C) Surface Dice Similarity Coefficient within 2 mm for each common HN structure between INTContour and AccuContour. The remaining
structures from AccuContour in the HN region were plotted, (D) Dice, (E) 95" Percentile Hausdorff Distance, and (F) Surface Dice Similarity

Coefficient within 2 mm.

location and proximity to the defacing modifications. Structures can be
broadly categorized into on-face and off-face groups (Table 1), which
show distinct segmentation performance patterns.

On-face structures, such as the oral cavity, eyes, lenses, and
lacrimal glands (Figures 2A, D, G), experience greater segmentation
variability due to their direct proximity to defacing modifications.
In general, on-face structures exhibit lower DSC (< 0.9), higher
HD95 values (>2.5 mm), and lower SDSC_2mm values (<0.9),
reflecting reduced segmentation accuracy, boundary precision, and
surface alignment. For example, both methods showed an impact in
the oral cavity, with the median Dice coefficient for mri_reface at
0.79 and for Deldentifier at 0.91, indicating some degree of
alteration in both cases. Similarly, median HD95 values for the
lacrimal glands (right) are 3 mm for mri_reface and 3.5 mm for
Deldentifier, while SDSC_2mm values for the lenses (right) are 0.74
for mri_reface and 0.72 for Deldentifier. Although Deldentifier
generally demonstrates higher consistency and better preservation
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of anatomical integrity in these regions, the overall differences
remain within a relatively small range for most structures.

While on-face structures show significant segmentation variability,
off-face structures remain largely stable, experiencing minimal
segmentation inconsistencies. Off-face structures, such as the brain,
cerebellum, brainstem, spinal cord, and cervical spine (Figures 2B, C, E,
F, H, 1), exhibit high segmentation accuracy, with Dice scores typically
exceeding 0.9, low HD95 values (<2 mm), and high SDSC_2mm values
(>0.97). For example, HD95 values for the brainstem are 1.3 mm for
both Deldentifier and mri_reface, while SDSC_2mm values remain
consistently high (>0.95) for both algorithms.

For smaller, detailed structures—such as the cochlea and
brachial plexus—segmentation metrics require additional
consideration. These structures naturally tend to exhibit lower
Dice coefficients due to their small volume, making them highly
sensitive to segmentation differences. For example, the median Dice
coefficients for the cochlea were 0.9 and 0.91 (left and right,
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respectively) for mri_reface, compared to 0.89 and 0.88 for
Deldentifier. However, the low HD95 values (1-2 mm for both
algorithms) and high SDSC_2mm values (~1, representing minimal
change beyond 2 mm) suggest consistent boundary alignment,
indicating that these regions are minimally impacted by defacing.
This observation underscores the importance of interpreting Dice
coefficients for small structures alongside HD95 values, which often
provide clearer insight into boundary precision and the true impact
of defacing.

While both algorithms perform well in most of the off-face
structures, mri_reface exhibits slightly greater variability and more
outliers compared to Deldentifier, suggesting minor segmentation
inconsistencies even in areas not directly impacted by defacing. This
trend reinforces that face structures are significantly impacted by
defacing, while off-face structures experience less variation, aside
from a few artifacts due to small size.

There are a few structures that are more noticeably affected by
the choice of defacing algorithm. For example, mri_reface has a
greater impact on segmentation accuracy in structures like the optic
nerve (median Dice coefficient 0.72 vs. 0.85 for Deldentifier),
parotid gland, and mandible. Meanwhile, Deldentifier shows
more variable performance in structures like LN_Neck_III.

3.2 Impact on different Al segmentation
algorithms

The effect of defacing operation on AccuContour segmentation
was similar to INTContour in that both on-face and off-face structures
were affected, with the larger impact on on-face structures. However,
each Al segmentation algorithm demonstrates slightly different levels
of robustness depending on the structure.

As summarized in Table 1, 22 common structures were
supported by both segmentation platforms, while an additional 12

10.3389/fonc.2025.1603593

structures were exclusive to AccuContour. Figure 3A-C shows
segmentation accuracy across the 22 shared structures, and
Figures 3D, E presents results for the AccuContour-only
structures. AccuContour exhibits variable performance across
metrics, with segmentation accuracy differing by anatomical
region. In on-face regions, such as the optic nerves, optic chiasm,
and eyes, AccuContour shows lower Dice coefficients, higher HD95
values, and variable SDSC (2mm) scores, indicating challenges in
boundary precision and volumetric overlap. For off-face structures,
including the brainstem, temporal lobes, and mandible,
AccuContour demonstrates higher Dice coefficients and more
stable HD95 and SDSC (2 mm) values. Several structures appear
largely unaffected by defacing, maintaining consistent segmentation
quality. INTContour, by contrast, demonstrates a more consistent
performance across all anatomical regions.

As shown in Figures 3A-C, while many structures demonstrated
strong overall robustness to the defacing operation—achieving >0.90
DSC, >0.95 SDSC_2mm, and <2 mm HD95 in most cases—some
outliers were notably affected. One such case is illustrated in Figure 4,
where the Parotid_R was segmented using INTContour (Figure 4A)
and the Parotid_L using AccuContour (Figure 4B). These two cases
exhibited a large discrepancy in their HD95 values, with INT Contour
and AccuContour achieving HD95 measurements of 9.58 mm and 11
mm, respectively. This discrepancy underscores that while defacing
does not significantly impact most structures, certain cases—
particularly those involving larger or more complex anatomies like
the mandible—may still experience notable segmentation variability.

The D0.01cc dose was determined using the masked region for
each structure in both the original and defaced HN cases. The
absolute difference in centigray (cGy) is shown in Figure 5. Most
structures demonstrated differences below 20 cGy, with the largest
observed in the Brainstem (34 cGy), Lips_NRG (28 cGy), and Brain
(25 cGy). These findings suggest that defacing had a limited effect
on high-dose sub-volumes for the majority of structures.

FIGURE 4

Two patient cases illustrating poor performance by both Al segmentation tools. The original (green) and defaced (red) contours are overlaid on the
defaced CT. (A) The right parotid segmented using INTContour, with a Dice score of 0.79, HD95 of 9.58 mm, and SDSC_2mm of 0.78. (B) The left
parotid segmented using AccuContour, with a Dice score of 0.83, HD95 of 11 mm, and SDSC_2mm of 0.80.
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4 Discussion

This study systematically evaluates the impact of defacing
operations on Al organ segmentation in HN CT images. Our
findings demonstrate that defacing alters AI segmentation outputs
even for structures that are not directly modified by the defacing
process. This effect is not limited to a specific defacing algorithm or
a single auto-segmentation platform, indicating that any
modification to input medical images, even in regions seemingly
unrelated to target structures, can propagate downstream effects in
automated segmentation models.

Despite these observed changes, the overall impact remains
relatively small. While certain structures exhibited notable
decreases in DSC, the HD95 and SDSC at 2 mm tolerance
indicate that boundary misalignment remains minimal in most
cases. However, a few outlier cases, as seen in Figure 3, exhibited
HD95 values exceeding 10 mm, suggesting localized segmentation
disruptions. Interestingly, these larger segmentation discrepancies
did not always translate into significant changes in D0.01cc dose.
This may be because the affected structures in these cases were
located farther from high-dose target regions, reducing the clinical
impact. Supporting this, the D0.01cc difference analysis showed that
most structures experienced differences under 20 cGy, with the
exception of the Brainstem (34 cGy), Lips_ NRG (28 cGy), and
Brain (25 cGy), suggesting that defacing generally preserves high-
dose information within clinically relevant tolerance. These findings
suggest that, while defacing influences segmentation accuracy, its
overall clinical impact on treatment planning is likely limited and
depends on the spatial relationship between affected structures and
high-dose regions.

Although mri_reface is designed to alter only the facial region,
segmentation models analyze the entire image volume holistically.

10.3389/fonc.2025.1603593

Thus, changes introduced in one area, such as the face, can
influence predictions in distant, off-face regions. These indirect
effects are likely model-driven rather than caused by direct HU
changes in those areas, underscoring the sensitivity of Al-based
segmentation to global image context.

Both INTContour and AccuContour are FDA-cleared tools that
perform well in routine clinical use, with high accuracy reported for
non-defaced CT images. Our analysis was not designed to directly
compare their baseline performance, but rather to examine how
each responds to image modifications introduced by defacing. The
greater variability observed for AccuContour in the defaced setting
therefore reflects differences in robustness to defacing, rather than
underlying disparities in their performance on standard CT scans.

A crucial consideration is whether defacing introduces
systematic bias in Al-driven segmentation. Our findings suggest
that defacing is a viable approach for preserving privacy while
maintaining segmentation accuracy for most structures, making it a
reasonable preprocessing step before sharing CT images that
include the head region. However, a potential challenge arises
when AI models trained on defaced images are deployed in
clinical practice, where non-defaced images are typically used.
Since defacing alters only specific regions, AI models may develop
an unintended dependence on these modifications, leading to
systematic under- or over-segmentation of structures adjacent to
the defaced region. Future research should investigate whether fine-
tuning AI models on defaced images enhances their robustness and
ensures consistent performance across both defaced and non-
defaced datasets.

In radiation oncology, defacing must preserve critical
quantitative information to ensure the integrity of segmentation
and dosimetric accuracy. Previous studies have shown that certain

defacing methods, such as quickshear and CT_biometric_mask,
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introduced variability in key structures, including the clinical target
volume (CTV) and gross tumor volume (GTV) (27). In contrast,
Deldentifier demonstrated better preservation of radiomic features
and dosimetric accuracy by masking facial structures without
altering surrounding tissues. Given these findings, our study
focused on evaluating two defacing methods, Deldentifier and
mri_reface, both of which have been shown to be less invasive.
Our results indicate that the differences between these two methods
were minimal, reinforcing that appropriately selecting defacing
techniques can maintain segmentation accuracy while protecting
patient privacy.

These findings contrast with those of Sahlsten et al. (19), who
demonstrated substantial degradation in segmentation accuracy
when applying common defacing tools to MRI head-and-neck
datasets, particularly when models trained on original data were
tested on defaced images. Their results were based on experimental
3D U-Net models and non-clinical defacing methods and showed
that several algorithms either failed to deface CTs or removed
critical anatomical voxels (19). In contrast, our study, which focused
on CT data and used two FDA-cleared commercial segmentation
tools, suggests that these platforms may be more robust to defacing,
especially when defacing algorithms are carefully selected.

Data sharing is essential for advancing research, as it allows
investigators to analyze medical imaging data in novel ways beyond
the original intent. A notable example is Thor et al. (28), who
demonstrated that re-segmenting and re-analyzing dosimetry led to
stronger predictors of survival based on three heart dose metrics. In
addition to improving contouring consistency through re-
segmentation, AI models could further enhance research by
segmenting structures that were previously overlooked, such as
swallowing muscles and cardiac substructures, enabling new
associations between dose metrics and clinical outcomes.
Defacing plays a critical role in facilitating the sharing of medical
images by addressing privacy concerns. Our study suggests that
defacing is unlikely to compromise the re-segmentation process or
the subsequent re-analysis of dose-volume histograms, reinforcing
its viability for research and clinical applications.

The dataset included 50 patients, of whom 44 had iMAR enabled.
Of the remaining six patients, four exhibited visible streaks due to
dental artifacts, and two had none. Although this study did not present
results stratified by artifact status, we reviewed the segmentation
performance across patients with and without dental artifacts and
found minimal differences for non-facial structures. On-face structures
such as the lips and oral cavity, known to be directly impacted by
defacing, showed greater variability. These structures would not
typically be used in clinical or research analyses involving defaced
images and would therefore be excluded from downstream evaluations.
The overall trends reported in this study remained consistent regardless
of artifact presence.

Moreover, emerging areas of research in HN radiation therapy
highlight the need to segment additional structures that were not
included in the original dataset. Recent studies have emphasized the
delineation of swallowing and chewing-related organs to refine dose
tolerance limits and optimize treatment planning. Al segmentation
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models have been developed to automatically contour these
structures (29, 30). The ability to retrospectively apply these
models to existing clinical trial data has significant implications
for evaluating dose metrics and tolerance thresholds. Additionally,
studies have investigated the potential of using auto-segmentation
to reduce contouring variability and dose inconsistency in clinical
trials (28). However, when using defaced images in such studies, it is
crucial to assess how segmentation accuracy and subsequent dose
evaluations are influenced by the defacing process. This includes
evaluating performance in the presence of artifacts, such as dental
fillings, which may amplify segmentation variability but appeared to
have limited overall impact in our study.

While our results indicate that defacing does not substantially
impact segmentation for most structures, the presence of a few
outlier cases suggests that certain structures may be more
susceptible to segmentation variability. This raises concerns about
whether AI segmentation models trained on non-defaced datasets
can consistently generalize to defaced images. To address this,
future research should evaluate whether incorporating defaced
images into model training pipelines can enhance robustness.
Additionally, domain adaptation techniques could help mitigate
segmentation variability introduced by defacing, improving model
consistency across different preprocessing conditions.

Although our findings suggest that the overall effect on
segmentation accuracy and dosimetric evaluation is minimal,
researchers must remain cognizant of potential inconsistencies,
particularly when analyzing newly segmented structures or
applying Al models retrospectively. Future work should focus on
refining defacing algorithms to minimize alterations in medically
relevant regions while ensuring regulatory compliance and
patient privacy.

This study has several limitations. It was conducted at a single
institution using a curated dataset of 50 head-and-neck (HN)
patients and evaluated two defacing algorithms, Deldentifier
(FDA-cleared) and mri_reface, and two commercial auto-
segmentation tools. While these tools reflect clinically used
systems, we acknowledge that segmentation performance and
defacing effects may vary across institutions, imaging protocols,
and software platforms. Therefore, the generalizability of our
findings may be limited. However, the goal of this work is not to
rank or endorse specific tools, but rather to highlight how
commonly used defacing and segmentation algorithms can
influence clinical imaging data. By providing a systematic analysis
of segmentation and dosimetric variability introduced by defacing,
this study aims to inform clinical and research users of potential
pitfalls and best practices. Future multi-center studies incorporating
a broader range of tools will be valuable to build on this
foundational work and further validate these observations.
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