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Evaluating the impact of
different deface algorithms on
deep learning segmentation
software performance
Ali Ammar, Libing Zhu, Shep Bryan IV, Nathan Y. Yu,
Carlos Vargas, Yi Rong and Quan Chen*

Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
Introduction: Data sharing is essential for advancing research in radiation

oncology, particularly for training artificial intelligence (AI) models in medical

imaging. However, privacy concerns necessitate de-identification of medical

images, including defacing operations to remove facial features. This study

evaluates the impact of defacing on AI-driven organ segmentation in head-

and-neck (HN) computed tomography (CT) images.

Methods: Two defacing algorithms, DeIdentifier and mri_reface_0.3.3, were

applied to 50 patient CT scans. Segmentation accuracy was assessed using

two commercially available AI segmentation tools, INTContour and

AccuContour
®
, and evaluated using Dice similarity coefficient (DSC), Hausdorff

Distance at the 95th percentile (HD95), and Surface Dice Similarity Coefficients

(SDSC) with 2 mm tolerance. Dose differences (D0.01cc) were calculated for

each structure to evaluate potential clinical implications. Statistical comparisons

were made using paired t-tests (p<0.05).

Results: The results showed that defacing significantly impacted segmentation of

on-face structures (e.g., oral cavity, eyes, lacrimal glands) with reduced DSC (<0.9)

and higher HD95 (>2.5 mm), while off-face structures (e.g., brainstem, spinal cord)

remained largely unaffected (DSC >0.9, HD95 <2mm). DeIdentifier better preserved

Hounsfield Units (HU) and anatomical consistency than mri_reface, which

introduced more variability, including HU shifts in air regions. Minor differences in

segmentation accuracy were observed between defacing algorithms, with

mri_reface showing slightly greater variability. AccuContour showed slightly

greater segmentation variability than INTContour, particularly for small or complex

structures. Dose distribution analysis revealed minimal differences (<20 cGy) in most

structures, with the largest variation observed in the Brainstem (34 cGy), followed by

Lips_NRG (28 cGy) and Brain (25 cGy).

Conclusion: These findings suggest that while defacing alters segmentation

accuracy in on-face regions, its overall impact on off-face structures and

radiation therapy planning is minimal. Future work should explore domain

adaptation techniques to improve model robustness across defaced and non-

defaced datasets, ensuring privacy while maintaining segmentation integrity.
KEYWORDS

segmentation, defacing, computed tomography (CT), mri_reface, DeIdentifier, CARINA
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1 Introduction

Data sharing is critical for advancing research and enabling

multi-institutional collaborations, particularly in fields like

radiation oncology where diverse datasets are essential for robust

and generalizable findings. With the rise of artificial intelligence

(AI) in medical applications, the demand for large, diverse, and

high-quality datasets has grown exponentially. AI has demonstrated

remarkable success in analyzing imaging data, such as tumor

detection and organ segmentation, driving a need for shared

medical image datasets to improve model performance and

reproducibility (1). Initiatives like The Cancer Imaging Archive

(TCIA) provide access to a wide range of anonymized datasets,

supporting research in cancer diagnostics, treatment planning, and

medical imaging analysis (2).

However, medical imaging data contain sensitive patient

information, which raises privacy concerns. The Health Insurance

Portability and Accountability Act (HIPAA) mandates the removal of

protected health information (PHI) before sharing, except in specific

circumstances or with the patient’s written authorization. Identifiers

such as names and phone numbers are explicitly listed in HIPAA as

PHI that must be removed (3). To comply with these regulations, tools

have been developed to de-identify medical images by stripping Digital

Imaging and Communications in Medicine (DICOM) files of PHI-

containing tags or keeping only raw image pixels in formats such as

Neuroimaging Informatics Technology Initiative (NIfTI) and nearly

raw raster data (NRRD) (4, 5).

Despite these efforts, scans of the head pose unique challenges,

as 3D renderings of the face can potentially re-identify subjects even

after explicit PHI attributes are removed (6). This raises ethical

concerns about balancing open data sharing with patient privacy.

As a result, specialized tools have been developed to remove facial

features from medical images to enhance privacy and facilitate safe

data sharing (7–16). Addressing these challenges is crucial for

ensuring the integrity and utility of shared datasets in advancing

AI applications in radiation therapy.

The alteration of medical image data, such as through defacing

operations, poses significant challenges to its usability, particularly

when the data is applied beyond its original purpose. Defacing, while

necessary for patient privacy protection, can inadvertently impact the

integrity of the data in ways that compromise downstream

applications. Studies have demonstrated that radiomics metrics,

which are often used to quantify features within medical images, are

particularly sensitive to changes in the facial region, with significant

deviations observed following defacing operations (17, 18). Recent

work has also examined how defacing affects the reliability of deep

learning-based segmentation models in head-and-neck imaging. A

study using magnetic resonance imaging (MRI) data demonstrated

that applying common defacing algorithms significantly reduced

segmentation accuracy for organs at risk, especially when models

were trained on original images but evaluated on defaced ones (19).

These findings highlight that privacy-preserving preprocessing

methods may compromise the quality of AI outputs in radiotherapy

applications if not carefully validated (19). However, a key question is

whether defacing unintentionally impacts regions beyond the face.
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While current studies suggest that unaffected regions, like the brain,

generally retain sufficient quality for traditional clinical and research

purposes (6, 20), further validation is needed to assess whether the

performance of convolutional neural network (CNN) based AI models

on unaffected regions would be affected.

AI models have shown a pronounced vulnerability to image

manipulation. It has been reported that even modification of a

single pixel can drastically alter the output of a state-of-the-art

models, leading to significant errors in interpretation and decision-

making (21). Such vulnerabilities emphasize the importance of

evaluating how defacing operations impact AI performance, not

just in the defaced regions but also in untouched areas. This is

particularly relevant in the context of organ segmentation models

used in radiation therapy, where accuracy is paramount. Small

inaccuracies in target or organ-at-risks can lead to either inadequate

tumor coverage or un-necessary normal tissue toxicity (22–24).

It is hypothesized that defacing operations, by modifying part of

the input data, could unexpectedly affect an AI model’s ability to

accurately interpret even unaffected regions. Furthermore, such

alterations may degrade the generalizability and robustness of these

models when applied across datasets with varying degrees of defacing

(22). This study specifically focuses on understanding the implications

of defacing operations on organ segmentation AI models used in

radiation therapy, with an emphasis on determining whether

segmentation accuracy is preserved in regions outside the facial area,

such as the brain or other critical organs.
2 Methods

This study used head-and-neck (HN) computed tomography

(CT) data from 50 randomly selected patients (mean age 63.5 ± 19.9

years; 24 females, 26 males) treated at a single institution. Ethical

approval was obtained from the Mayo Clinic Institutional Review

Board (IRB). All patients were treated with photon-based

volumetric modulated arc therapy (VMAT) plans, created using

the Varian Eclipse treatment planning system (Varian Medical

Systems, Palo Alto, CA). The dataset includes patients both with

and without dental artifacts, as these were not excluded during

cohort selection. Of the 50 patients, 44 had iMAR enabled. Among

the remaining 6 patients, 4 exhibited visible streaks due to dental

artifacts, while 2 had no dental artifacts. Organs-at-risk (OARs)

were delineated by commercial segmentation tools. In cases where

multiple guideline-based variants were available for the same

structure, the vendor explicitly included suffixes (e.g., “_NRG”) to

indicate that the contour followed NRG Oncology consensus

recommendations (25). These labels were directly generated by

the software and were not manually modified.
2.1 Defacing algorithms

In this study, two defacing algorithms, DeIdentifier and

mri_reface, were used to remove or obscure facial features.

DeIdentifier (Carina AI, Lexington, Kentucky, USA) is a
frontiersin.org
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commercial software that includes the functions of removing

Protected Health Information (PHI) from DICOM metadata,

randomly shifting dates while retaining temporal relationships,

and using natural language processing (NLP) to redact burned-in

PHI from image overlays and reports. It also has a defacing

operation. For defacing, it uses an artificial intelligence method to

detect the face and applies a generated mask to obscure facial

features while preserving critical head and neck regions for

research. It supports both DICOM and NIFTI formats and

provides a Graphical user interface (GUI) as well as command

line tool for seamless workflow integration.

The mri_reface_0.3.3 algorithm (13) replaces identifiable facial

features in MRI and CT scans with an average face template. It

aligns scans to a standardized template using image registration

techniques and substitutes facial regions with template features.

This approach removes facial features of an individual subject while

preserving anatomical context and minimizing artifacts that could

interfere with brain measurement software. mri_reface is provided

as a compiled Matlab application that requires Linux with the

Matlab runtime installed. The tool is provided without GUI.

All original HN CT scans were in DICOM format and were

used as inputs for both DeIdentifier and mri_reface. DeIdentifier

outputted a de-identified and defaced HN CT in DICOM format.

For mri_reface, a separate open-source NIFTI-to-DICOM

converter (nifti2dicom) (26) was used to convert the defaced

NIFTI file back to DICOM for comparison and analysis.
2.2 Segmentation models

In this study, two commercially available, FDA-approved auto-

segmentation software solutions were used for HN structure

segmentation: INTContour by CARINA AI (Carina AI,

Lexington, Kentucky, USA) and AccuContour® by Manteia

Technologies (Manteia Medical Technologies Co., Milwaukee,

Wisconsin, USA). Although the supported structures differ, there

are 22 common key HN structures between the two segmentation

software, providing a basis for direct comparison of the

performance change due to defacing.
2.3 Experimental workflow

This study was conducted in a series of steps to evaluate the

impact of defacing algorithms on segmentation performance,

focusing on both the effect of different defacing methods with the

same auto-segmentation software and the effect of defacing across

different auto-segmentation platforms:

2.3.1 Impact of different defacing algorithms
evaluated using the same auto-segmentation
software (INTContour)

Fifty HN CT images were defaced using two defacing platforms:

DeIdentifier and mri_reface. Each set of defaced images, along with

the original HN CT images, was segmented using the INTContour
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platform. The segmentation results were saved as DICOM

radiotherapy structure (RT Structure) files. The segmentations

generated from the original and defaced images were compared

to assess the impact of defacing on segmentation accuracy.

2.3.2 Impact of defacing algorithms across
different auto-segmentation software

To compare the impact of defacing across different auto-

segmentation software, the same set of 50 HN CT images defaced

with DeIdentifier was segmented using both INTContour and

AccuContour®. The segmentation outputs were compared with

the segmentations performed on the original HN CT images using

each respective platform to evaluate the impact of defacing. Since

the supported structures vary between the two auto-segmentation

software, the comparison was limited to the 22 structures that are

supported by both software.

To assess the impact of defacing based on anatomical location,

we categorized all structures into on-face and off-face groups

according to their proximity to the defaced facial surface.

Specifically, on-face structures were defined as superficial

structures located within approximately 5 mm of the outer facial

surface and thus most likely to be directly affected by defacing (e.g.,

eyes, lenses, oral cavity). Off-face structures were deeper or

posterior and therefore less likely to be modified (e.g., brain,

brainstem, spinal cord). Although the oral cavity is partially

internal, it frequently overlaps with defaced regions in anterior

CT slices and was classified as on-face based on visual confirmation

of masking effects. Additionally, we identified which structures were

supported by both AI segmentation platforms (INTContour and

AccuContour) and which were unique to AccuContour. Table 1

summarizes this classification and platform availability across all

evaluated structures.
2.4 Evaluation metrics

To evaluate the extent of image manipulation introduced by

defacing, we computed voxel-wise Hounsfield Unit (HU)

differences (DHU) between the original and defaced CT images

for all 50 head-and-neck cases. We first verified that the defacing

process preserved alignment; rigid registration was then applied

only as a safeguard against occasional orientation inconsistencies

from NIfTI to DICOM conversions (e.g., a 180° anterior–posterior

flip in mri_reface). Voxel-wise subtraction was then performed to

generate DHU maps, which were used to visualize the spatial extent

and magnitude of intensity changes introduced by defacing. For

each case, we analyzed DHU distributions across facial and cranial

regions, with particular attention to air voxels, soft tissues, and bony

structures. The impacted depth was defined as the anterior–

posterior distance from the facial surface to the deepest visibly

altered voxel and was summarized across patients to compare the

anatomical reach of defacing between algorithms.

To evaluate the impact of defacing algorithms on AI

segmentation, various metrics were calculated between the

segmentations on defaced and original images, including the Dice
frontiersin.org
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coefficient, Hausdorff Distance at the 95th percentile (HD95), and

Surface Dice Similarity Coefficients (SDSC) with 2 mm tolerance.

The Dice coefficient measures the spatial overlap between the

segmented and ground-truth regions, providing an overall

agreement score. HD95 assesses boundary alignment by

calculating the maximum distance at which 95% of points on the

segmented surface lie within the ground-truth region and vice versa.

SDSC (2mm) quantifies agreement of two structure surfaces within

2mm tolerance thresholds.

In the context of radiation therapy, anatomical structures guide

both target optimization and avoidance during treatment planning.

Any changes in segmentation may lead to variations in dose

distribution, affecting treatment optimization and evaluation. To

assess this, we computed the D0.01cc metric for each structure,

defined as the minimum dose received by the hottest 0.01 cc of

tissue (approximately 10 mm³). This metric is clinically relevant as

it captures localized dose hotspots, which are especially important

in small or radiosensitive organs and is sensitive to small

segmentation changes.
2.5 Statistical analysis

Paired t-tests were used to compare segmentation metrics (Dice,

HD95, SDSC 2mm) between two defacing algorithms; DeIdentifier

and mri_reface. A significance level of p < 0.05 was applied.
3 Results

The extent of image manipulation for both DeIdentifier and

mri_reface using HN CT images was assessed. As can be seen in the
TABLE 1 Categorization of on-face and off-face structures and platform
availability.

On-face
structures

Off-face
structures

Accucontour-only
structures

EYE_L BONE_MANDIBLE TRACHEA

EYE_R BRACHIALPLEX_L SUB_MANDIB_L

LENS_L BRACHIALPLEX_R SUB_MANDIB_R

LENS_R CEREBELLUM_L HIPPOCAMPUS_L

LIPS_NRG CEREBELLUM_R HIPPOCAMPUS_R

GLND_LACRIMAL_L CERVICALSPINE EXT_AUD_CANAL_L

GLND_LACRIMAL_R COCHLEA_L EXT_AUD_CANAL_R

CAVITY_ORAL COCHLEA_R NASAL_CAVITY

CAVITY_ORAL_NRG BRAIN SEMI_CIR_CANAL_L

BRAINSTEM SEMI_CIR_CANAL_R

ESOPHAGUS MASTOID_L

GLND_SUBMAND_L MASTOID_R

GLND_SUBMAND_R

GLOTTIS_NRG

INNEREAR_L

INNEREAR_R

JOINT_TM_L

JOINT_TM_R

LN_NECK_III_L

LN_NECK_III_R

LN_NECK_II_L

LN_NECK_II_R

LN_NECK_IVa_L

LN_NECK_IVa_R

LN_NECK_Ib_L

LN_NECK_Ib_R

LARYNX_NRG

LARYNX

LARYNX_SG_NRG

LOBE_TEMPORAL_L

LOBE_TEMPORAL_R

MIDEAR_L

MIDEAR_R

MUSC_CRICOPHAR

OPTICCHIASM

OPTICNRV_L

OPTICNRV_R

(Continued)
TABLE 1 Continued

On-face
structures

Off-face
structures

Accucontour-only
structures

PCM_I

PCM_M

PCM_S

PAROTID_L

PAROTID_R

PHARYNX

PITUITARY

SPINALCORD

THORACICSPINE

THYROID
Structures were grouped based on anatomical proximity to the defaced region. On-face
structures include those located at or near the anterior facial surface, which are most directly
impacted by defacing algorithms. Off-face structures are anatomically distant and generally
unaffected by defacing. The 22 structures evaluated by both INTContour and AccuContour
are shown in bold. An additional set of structures available only through AccuContour are
shown in the third column.
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3D rendering of the surface of an example HN CT after defacing for

both DeIdentifier (Figure 1A) and mri_reface (Figure 1B).

DeIdentifier applied a mask over the facial region, introducing an

added surface layer while preserving deeper anatomical structures.
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This masking primarily affected superficial regions. The added layer

has a randomized blend in with the facial region so that it is

impossible to restore the original face through thresholding or a

morphological operation. Since mri_reface replaces the entire facial
FIGURE 1

A 3D rendering of an example HN CT after defacing using (A) DeIdentifier and (B) mri_reface. Comparison of Hounsfield Unit (HU) distributions and
differences across transverse, coronal, and sagittal planes between the original and defaced CT scans is shown for DeIdentifier with (C) slices near
the front of the face and (D) middle slices in all directions, and for mri_reface with (E) slices near the front of the face and (F) middle slices in all
directions. Warmer colors (red) represent positive differences, while cooler colors (blue) represent negative differences. The images highlight the
spatial variability in HU modifications introduced by the defacing process.
frontiersin.org
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region with an average template, the defaced image retains a

human-like appearance but lacks distinctive facial features. A

previous study has demonstrated that mri_reface effectively

removes identifiable facial structures, significantly reducing

reidentification risks (16).

Hounsfield Unit (HU) differences between the original and defaced

images were calculated voxel-wise for all 50 patients to visualize and

quantify localized effects of defacing. DHU maps revealed that both

algorithms predominantly altered facial regions, including the eyes,

lacrimal glands, lenses, optic nerves, nasal cavity, and lips, while DHU ≈

0 was observed in deeper anatomical structures. Across patients, the

median HU change in air voxels remained 0 for DeIdentifier but

deviated to −90 HU formri_reface (mean air HU = −1090 vs. −1000 in

original). These spatial differences are illustrated in the representative

DHU maps (Figures 1C–F). For mri_reface, this HU shift is associated

with a rectangular cuboid region visible anterior to the patient

(Figures 1E, F). This artifact arises from insertion of the average face
Frontiers in Oncology 06
template, which extends slightly beyond the patient contour and alters

the expected air voxel values, whereas DeIdentifier preserved air voxels

near −1000 HU. In addition to intensity shifts, we quantified the

impacted depth and found thatmri_reface consistently reached deeper

anatomical regions (mean depth: 75 mm) compared to DeIdentifier

(mean depth: 45 mm), supporting its broader area of manipulation.

While detailed metrics for every structure are shown in

Figures 2 and 3, we highlight key representative values in the text

to illustrate general trends across defacing algorithms and

segmentation tools.
3.1 Impact from different defacing
algorithms

Both defacing algorithms demonstrate the expected impact on

segmentation accuracy, with variations depending on the anatomical
FIGURE 2

Impact of defacing on segmentation, comparing De-Identifier and mri_reface. Changes in DSC, HD95, and SDSC (2 mm tolerance) were calculated
for (A, D, G) structures directly impacted on the front face, (B, E, H) structures away from the front face, and (C, F, I) continued structures away from
the front face. Statistically significant structures are indicated using a red asterisks (*) (p<0.05).
frontiersin.org
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location and proximity to the defacing modifications. Structures can be

broadly categorized into on-face and off-face groups (Table 1), which

show distinct segmentation performance patterns.

On-face structures, such as the oral cavity, eyes, lenses, and

lacrimal glands (Figures 2A, D, G), experience greater segmentation

variability due to their direct proximity to defacing modifications.

In general, on-face structures exhibit lower DSC (< 0.9), higher

HD95 values (>2.5 mm), and lower SDSC_2mm values (<0.9),

reflecting reduced segmentation accuracy, boundary precision, and

surface alignment. For example, both methods showed an impact in

the oral cavity, with the median Dice coefficient for mri_reface at

0.79 and for DeIdentifier at 0.91, indicating some degree of

alteration in both cases. Similarly, median HD95 values for the

lacrimal glands (right) are 3 mm for mri_reface and 3.5 mm for

DeIdentifier, while SDSC_2mm values for the lenses (right) are 0.74

for mri_reface and 0.72 for DeIdentifier. Although DeIdentifier

generally demonstrates higher consistency and better preservation
Frontiers in Oncology 0
of anatomical integrity in these regions, the overall differences

remain within a relatively small range for most structures.

While on-face structures show significant segmentation variability,

off-face structures remain largely stable, experiencing minimal

segmentation inconsistencies. Off-face structures, such as the brain,

cerebellum, brainstem, spinal cord, and cervical spine (Figures 2B, C, E,

F, H, I), exhibit high segmentation accuracy, with Dice scores typically

exceeding 0.9, lowHD95 values (<2mm), and high SDSC_2mm values

(>0.97). For example, HD95 values for the brainstem are 1.3 mm for

both DeIdentifier and mri_reface, while SDSC_2mm values remain

consistently high (>0.95) for both algorithms.

For smaller, detailed structures—such as the cochlea and

brachial plexus—segmentation metrics require additional

consideration. These structures naturally tend to exhibit lower

Dice coefficients due to their small volume, making them highly

sensitive to segmentation differences. For example, the median Dice

coefficients for the cochlea were 0.9 and 0.91 (left and right,
FIGURE 3

Performance of AccuContour® segmentation using the De-Identifier algorithm. The boxplots show (A) Dice, (B) 95th Percentile Hausdorff Distance,
and (C) Surface Dice Similarity Coefficient within 2 mm for each common HN structure between INTContour and AccuContour. The remaining
structures from AccuContour in the HN region were plotted, (D) Dice, (E) 95th Percentile Hausdorff Distance, and (F) Surface Dice Similarity
Coefficient within 2 mm.
frontiersin.org7
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respectively) for mri_reface, compared to 0.89 and 0.88 for

DeIdentifier. However, the low HD95 values (1–2 mm for both

algorithms) and high SDSC_2mm values (~1, representing minimal

change beyond 2 mm) suggest consistent boundary alignment,

indicating that these regions are minimally impacted by defacing.

This observation underscores the importance of interpreting Dice

coefficients for small structures alongside HD95 values, which often

provide clearer insight into boundary precision and the true impact

of defacing.

While both algorithms perform well in most of the off-face

structures, mri_reface exhibits slightly greater variability and more

outliers compared to DeIdentifier, suggesting minor segmentation

inconsistencies even in areas not directly impacted by defacing. This

trend reinforces that face structures are significantly impacted by

defacing, while off-face structures experience less variation, aside

from a few artifacts due to small size.

There are a few structures that are more noticeably affected by

the choice of defacing algorithm. For example, mri_reface has a

greater impact on segmentation accuracy in structures like the optic

nerve (median Dice coefficient 0.72 vs. 0.85 for DeIdentifier),

parotid gland, and mandible. Meanwhile, DeIdentifier shows

more variable performance in structures like LN_Neck_III.
3.2 Impact on different AI segmentation
algorithms

The effect of defacing operation on AccuContour segmentation

was similar to INTContour in that both on-face and off-face structures

were affected, with the larger impact on on-face structures. However,

each AI segmentation algorithm demonstrates slightly different levels

of robustness depending on the structure.

As summarized in Table 1, 22 common structures were

supported by both segmentation platforms, while an additional 12
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structures were exclusive to AccuContour. Figure 3A–C shows

segmentation accuracy across the 22 shared structures, and

Figures 3D, E presents results for the AccuContour-only

structures. AccuContour exhibits variable performance across

metrics, with segmentation accuracy differing by anatomical

region. In on-face regions, such as the optic nerves, optic chiasm,

and eyes, AccuContour shows lower Dice coefficients, higher HD95

values, and variable SDSC (2mm) scores, indicating challenges in

boundary precision and volumetric overlap. For off-face structures,

including the brainstem, temporal lobes, and mandible,

AccuContour demonstrates higher Dice coefficients and more

stable HD95 and SDSC (2 mm) values. Several structures appear

largely unaffected by defacing, maintaining consistent segmentation

quality. INTContour, by contrast, demonstrates a more consistent

performance across all anatomical regions.

As shown in Figures 3A–C, while many structures demonstrated

strong overall robustness to the defacing operation—achieving >0.90

DSC, >0.95 SDSC_2mm, and <2 mm HD95 in most cases—some

outliers were notably affected. One such case is illustrated in Figure 4,

where the Parotid_R was segmented using INTContour (Figure 4A)

and the Parotid_L using AccuContour (Figure 4B). These two cases

exhibited a large discrepancy in their HD95 values, with INTContour

and AccuContour achieving HD95 measurements of 9.58 mm and 11

mm, respectively. This discrepancy underscores that while defacing

does not significantly impact most structures, certain cases—

particularly those involving larger or more complex anatomies like

the mandible—may still experience notable segmentation variability.

The D0.01cc dose was determined using the masked region for

each structure in both the original and defaced HN cases. The

absolute difference in centigray (cGy) is shown in Figure 5. Most

structures demonstrated differences below 20 cGy, with the largest

observed in the Brainstem (34 cGy), Lips_NRG (28 cGy), and Brain

(25 cGy). These findings suggest that defacing had a limited effect

on high-dose sub-volumes for the majority of structures.
FIGURE 4

Two patient cases illustrating poor performance by both AI segmentation tools. The original (green) and defaced (red) contours are overlaid on the
defaced CT. (A) The right parotid segmented using INTContour, with a Dice score of 0.79, HD95 of 9.58 mm, and SDSC_2mm of 0.78. (B) The left
parotid segmented using AccuContour, with a Dice score of 0.83, HD95 of 11 mm, and SDSC_2mm of 0.80.
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4 Discussion

This study systematically evaluates the impact of defacing

operations on AI organ segmentation in HN CT images. Our

findings demonstrate that defacing alters AI segmentation outputs

even for structures that are not directly modified by the defacing

process. This effect is not limited to a specific defacing algorithm or

a single auto-segmentation platform, indicating that any

modification to input medical images, even in regions seemingly

unrelated to target structures, can propagate downstream effects in

automated segmentation models.

Despite these observed changes, the overall impact remains

relatively small. While certain structures exhibited notable

decreases in DSC, the HD95 and SDSC at 2 mm tolerance

indicate that boundary misalignment remains minimal in most

cases. However, a few outlier cases, as seen in Figure 3, exhibited

HD95 values exceeding 10 mm, suggesting localized segmentation

disruptions. Interestingly, these larger segmentation discrepancies

did not always translate into significant changes in D0.01cc dose.

This may be because the affected structures in these cases were

located farther from high-dose target regions, reducing the clinical

impact. Supporting this, the D0.01cc difference analysis showed that

most structures experienced differences under 20 cGy, with the

exception of the Brainstem (34 cGy), Lips_NRG (28 cGy), and

Brain (25 cGy), suggesting that defacing generally preserves high-

dose information within clinically relevant tolerance. These findings

suggest that, while defacing influences segmentation accuracy, its

overall clinical impact on treatment planning is likely limited and

depends on the spatial relationship between affected structures and

high-dose regions.

Although mri_reface is designed to alter only the facial region,

segmentation models analyze the entire image volume holistically.
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Thus, changes introduced in one area, such as the face, can

influence predictions in distant, off-face regions. These indirect

effects are likely model-driven rather than caused by direct HU

changes in those areas, underscoring the sensitivity of AI-based

segmentation to global image context.

Both INTContour and AccuContour are FDA-cleared tools that

perform well in routine clinical use, with high accuracy reported for

non-defaced CT images. Our analysis was not designed to directly

compare their baseline performance, but rather to examine how

each responds to image modifications introduced by defacing. The

greater variability observed for AccuContour in the defaced setting

therefore reflects differences in robustness to defacing, rather than

underlying disparities in their performance on standard CT scans.

A crucial consideration is whether defacing introduces

systematic bias in AI-driven segmentation. Our findings suggest

that defacing is a viable approach for preserving privacy while

maintaining segmentation accuracy for most structures, making it a

reasonable preprocessing step before sharing CT images that

include the head region. However, a potential challenge arises

when AI models trained on defaced images are deployed in

clinical practice, where non-defaced images are typically used.

Since defacing alters only specific regions, AI models may develop

an unintended dependence on these modifications, leading to

systematic under- or over-segmentation of structures adjacent to

the defaced region. Future research should investigate whether fine-

tuning AI models on defaced images enhances their robustness and

ensures consistent performance across both defaced and non-

defaced datasets.

In radiation oncology, defacing must preserve critical

quantitative information to ensure the integrity of segmentation

and dosimetric accuracy. Previous studies have shown that certain

defacing methods, such as quickshear and CT_biometric_mask,
FIGURE 5

Absolute D0.01cc difference for each structure between the original and defaced images.
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introduced variability in key structures, including the clinical target

volume (CTV) and gross tumor volume (GTV) (27). In contrast,

DeIdentifier demonstrated better preservation of radiomic features

and dosimetric accuracy by masking facial structures without

altering surrounding tissues. Given these findings, our study

focused on evaluating two defacing methods, DeIdentifier and

mri_reface, both of which have been shown to be less invasive.

Our results indicate that the differences between these two methods

were minimal, reinforcing that appropriately selecting defacing

techniques can maintain segmentation accuracy while protecting

patient privacy.

These findings contrast with those of Sahlsten et al. (19), who

demonstrated substantial degradation in segmentation accuracy

when applying common defacing tools to MRI head-and-neck

datasets, particularly when models trained on original data were

tested on defaced images. Their results were based on experimental

3D U-Net models and non-clinical defacing methods and showed

that several algorithms either failed to deface CTs or removed

critical anatomical voxels (19). In contrast, our study, which focused

on CT data and used two FDA-cleared commercial segmentation

tools, suggests that these platforms may be more robust to defacing,

especially when defacing algorithms are carefully selected.

Data sharing is essential for advancing research, as it allows

investigators to analyze medical imaging data in novel ways beyond

the original intent. A notable example is Thor et al. (28), who

demonstrated that re-segmenting and re-analyzing dosimetry led to

stronger predictors of survival based on three heart dose metrics. In

addition to improving contouring consistency through re-

segmentation, AI models could further enhance research by

segmenting structures that were previously overlooked, such as

swallowing muscles and cardiac substructures, enabling new

associations between dose metrics and clinical outcomes.

Defacing plays a critical role in facilitating the sharing of medical

images by addressing privacy concerns. Our study suggests that

defacing is unlikely to compromise the re-segmentation process or

the subsequent re-analysis of dose-volume histograms, reinforcing

its viability for research and clinical applications.

The dataset included 50 patients, of whom 44 had iMAR enabled.

Of the remaining six patients, four exhibited visible streaks due to

dental artifacts, and two had none. Although this study did not present

results stratified by artifact status, we reviewed the segmentation

performance across patients with and without dental artifacts and

found minimal differences for non-facial structures. On-face structures

such as the lips and oral cavity, known to be directly impacted by

defacing, showed greater variability. These structures would not

typically be used in clinical or research analyses involving defaced

images and would therefore be excluded from downstream evaluations.

The overall trends reported in this study remained consistent regardless

of artifact presence.

Moreover, emerging areas of research in HN radiation therapy

highlight the need to segment additional structures that were not

included in the original dataset. Recent studies have emphasized the

delineation of swallowing and chewing-related organs to refine dose

tolerance limits and optimize treatment planning. AI segmentation
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models have been developed to automatically contour these

structures (29, 30). The ability to retrospectively apply these

models to existing clinical trial data has significant implications

for evaluating dose metrics and tolerance thresholds. Additionally,

studies have investigated the potential of using auto-segmentation

to reduce contouring variability and dose inconsistency in clinical

trials (28). However, when using defaced images in such studies, it is

crucial to assess how segmentation accuracy and subsequent dose

evaluations are influenced by the defacing process. This includes

evaluating performance in the presence of artifacts, such as dental

fillings, which may amplify segmentation variability but appeared to

have limited overall impact in our study.

While our results indicate that defacing does not substantially

impact segmentation for most structures, the presence of a few

outlier cases suggests that certain structures may be more

susceptible to segmentation variability. This raises concerns about

whether AI segmentation models trained on non-defaced datasets

can consistently generalize to defaced images. To address this,

future research should evaluate whether incorporating defaced

images into model training pipelines can enhance robustness.

Additionally, domain adaptation techniques could help mitigate

segmentation variability introduced by defacing, improving model

consistency across different preprocessing conditions.

Although our findings suggest that the overall effect on

segmentation accuracy and dosimetric evaluation is minimal,

researchers must remain cognizant of potential inconsistencies,

particularly when analyzing newly segmented structures or

applying AI models retrospectively. Future work should focus on

refining defacing algorithms to minimize alterations in medically

relevant regions while ensuring regulatory compliance and

patient privacy.

This study has several limitations. It was conducted at a single

institution using a curated dataset of 50 head-and-neck (HN)

patients and evaluated two defacing algorithms, DeIdentifier

(FDA-cleared) and mri_reface, and two commercial auto-

segmentation tools. While these tools reflect clinically used

systems, we acknowledge that segmentation performance and

defacing effects may vary across institutions, imaging protocols,

and software platforms. Therefore, the generalizability of our

findings may be limited. However, the goal of this work is not to

rank or endorse specific tools, but rather to highlight how

commonly used defacing and segmentation algorithms can

influence clinical imaging data. By providing a systematic analysis

of segmentation and dosimetric variability introduced by defacing,

this study aims to inform clinical and research users of potential

pitfalls and best practices. Future multi-center studies incorporating

a broader range of tools will be valuable to build on this

foundational work and further validate these observations.
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