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MRI-based 2.5D deep learning
radiomics nomogram for the
differentiation of benign versus
malignant vertebral compression
fractures
Wenhua Liang, Hong Yu, Lisha Duan, Xiaona Li, Ming Wang,
Bing Wang and Jianling Cui*

Department of Radiology, Third Hospital of Hebei Medical University, Shijiazhuang, China
Objective: Vertebral compression fractures (VCFs) represent a prevalent clinical

problem, yet distinguishing acute benign variants from malignant pathological

fractures constitutes a persistent diagnostic dilemma. To develop and validate a

MRI-based nomogram combining clinical and deep learning radiomics (DLR)

signatures for the differentiation of benign versus malignant vertebral

compression fractures (VCFs).

Methods: A retrospective cohort study was conducted involving 234 VCF

patients, randomly allocated to training and testing sets at a 7:3 ratio.

Radiomics (Rad) features were extracted using traditional Rad techniques,

while 2.5-dimensional (2.5D) deep learning (DL) features were obtained using

the ResNet50 model. These features were combined through feature fusion to

construct deep learning radiomics (DLR) models. Through a feature fusion

strategy, this study integrated eight machine learning architectures to

construct a predictive framework, ultimately establishing a visualized risk

assessment scale based on multimodal data (including clinical indicators and

Rad features).The performance of the various models was evaluated using the

receiver operating characteristic (ROC) curve.

Results: The standalone Rad model using ExtraTrees achieved AUC=0.801 (95%

CI:0.693-0.909) in testing, while the DL model an AUC value of 0.805 (95% CI:

0.690-0.921) in the testing cohort. Compared with the Radmodel and DLmodel,

the performance superiority of the DLR model was demonstrated. Among all

these models, the DLRmodel that employed ExtraTrees algorithm performed the

best, with area under the curve (AUC) values of 0.971 (95% CI: 0.948-0.995) in

the training dataset and 0.828 (95% CI: 0.727-0.929) in the testing dataset. The

performance of this model was further improved when combined with clinical

and MRI features to form the DLR nomogram (DLRN), achieving AUC values of

0.981 (95% CI: 0.964-0.998) in the training dataset and 0.871 (95% CI: 0.786-

0.957) in the testing dataset.
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Conclusion: Our study integrates handcrafted radiomics, 2.5D deep learning

features, and clinical data into a nomogram (DLRN). This approach not only

enhances diagnostic accuracy but also provides superior clinical utility. The novel

2.5D DL framework and comprehensive feature fusion strategy represent

significant advancements in the field, offering a robust tool for radiologists to

differentiate benign from malignant VCFs.
KEYWORDS

radiomics, 2.5D deep learning, feature fusion, vertebral compression fractures,
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1 Introduction

Vertebral compression fractures (VCFs) are a prevalent clinical

condition characterized by acute or chronic back pain, functional

disability, diminished quality of life, and elevated mortality rates (1, 2).

While osteoporosis, mechanical trauma, and neoplastic infiltration

constitute primary etiological factors (3), non-traumatic VCFs in

elderly populations frequently manifest as osteoporotic fractures or

tumor-related lesions (4, 5). Notably, distinguishing between benign

and malignant VCFs remains diagnostically challenging due to

overlapping imaging characteristics, particularly for clinicians with

limited expertise (6). However, accurate diagnosis plays an important

role in appropriate patient management.

Magnetic resonance imaging(MRI) is essential for evaluating

spinal diseases. The superior soft tissue resolution of MRI has led

to good performance at detecting bone marrow abnormalities, and its

notable diagnostic efficacy for malignant vertebral compression

fractures (VCFs) has been established in previous research (7).

Various MRI features, such as signal intensity and mass, assist in

differentiating acute benign VCFs from malignant ones. The T2-

weighted Dixon image, which include image similar to fat-suppressed

T2-weighted image, is a crucial element of MRI, especially for

visualizing and characterizing lesions (8). However, these features

are not definitive characteristics due to the similar variations and

their complexity in marrow. As a result, differentiating benign from

malignant VCFs can be challenging, especially in patients who do not

exhibit typical MRI morphological features (9).

Radiomics (Rad) enables high-throughput extraction of

quantitative imaging features for enhanced disease characterization.

In orthopedic-related diseases, Rad has emerged as a powerful tool for

decoding pathological patterns invisible to human eyes (10–13). Rad

has shown promise in capturing tissue heterogeneity and providing

objective biomarkers for diagnosis. Combined with machine learning

algorithms, Rad features can be transformed into predictive models

that enhance diagnostic accuracy beyond visual assessment alone.

These successes highlight radiomics’ potential to augment traditional

image interpretation in complex orthopedic diagnostics. Critical to

model development, optimal sequence selection minimizes redundant

feature extraction, mitigates overfitting risks, and ensures adequate
02
sample sizes. These considerations motivated our selection of T2-

weighted Dixon sequences for analysis (14).

Recently, deep learning (DL), particularly convolutional neural

networks (CNNs), has revolutionized image recognition tasks by

automatically learning hierarchical features from raw data. The

application of DL to spinal imaging has demonstrated its potential

in detecting and classifying VCFs (15–17). However, current

technical limitations warrant attention. Predominant 2D DL

methods neglect inter-slice contextual information, while 3D

approaches demand prohibitive computational resources and

large-scale datasets (18).

In this study, we developed a 2.5-dimensional (2.5D) DL by

utilizing the maximum and adjacent sagittal slices of the VCFs,

which represents a novel approach to analyze the VCFs. To our

knowledge, no existing research has focused on utilizing fusion

models of traditional Rad and 2.5D DL features for differentiating

the type of VCFs based on MRI. We hypothesized that the fusion of

2.5D spatial information with handcrafted radiomics would

outperform conventional radiomics or deep learning approaches

alone. Our study aimed to develop a multimodal MRI-based

nomogram integrating 2.5D deep learning radiomics (DLR) and

clinical features to distinguish benign from malignant VCFs.
2 Materials and methods

2.1 Patients

This retrospective study received institutional Ethics Review

Board approval, with waived informed consent requirements. MRI

examinations performed between July 2022 and July 2024 were

systematically reviewed. Inclusion criteria required:(a) acute benign

or malignant VCFs (symptom onset within 6 weeks); (b) preoperative

or pretreatment MRI examination. Cases were excluded based on: (a)

absence of T2-weighted Dixon water images; (b) poor quality images;

(c) history of surgical intervention or radiation before imaging; (d)

concurrent spinal pathologies (infection, ankylosing spondylitis, etc);

(e) absence of clinical follow-up or pathological validation. The

definitive diagnoses of vertebral compression fractures (VCFs) in all
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enrolled subjects were determined through comprehensive clinical

evaluation. For benign fracture characterization, inclusion criteria

required absence of prior oncologic history combined with follow

and confirmation with stable disease. Conversely, malignant VCFs

were confirmed through either biopsy or the known progression of

related primary tumor diseases. The specific recruitment procedures

are outlined in Figure 1.

The dataset was stratified into training (70%) and testing (30%)

subsets using random sampling. The technical workflow

encompassing data preprocessing, model development, and

validation phases are delineated in Figure 2.
2.2 Image acquisition and analysis

2.2.1 MRI protocols
All examinations were conducted using two 3.0-T MRI

platforms: Ingenia CX (Philips Healthcare, Amsterdam) or Signa

Architect (GE Healthcare, Milwaukee). Four image series, including

water, fat, in-phase, out-of-phase images were produced by the
Frontiers in Oncology 03
sagittal T2-weighted Dixon sequence, of them water Dixon (w-

Dixon) images were selected for analysis due to their superior lesion

contrast resembling fat-suppressed T2-weighted imaging.

Acquisition parameters were as follows: TR, 2129–3862 ms; TE,

75–107 ms; field of view, 23–36 cm; matrix size, 180-192×256-320;

slice thickness, 3–4 mm.

2.2.2 Clinical data and MRI evaluation
In this study, all clinical information and MRI images of patients

were retrieved from the Picture Archiving and Communication

System (PACS). Clinical data included gender, age and location.

The presence or absence of some MRI features were recorded,

including anterior wedge deformity, band pattern edema,

paravertebral mass, diffuse signal change, pedicle and posterior

element involvement. Two board-certified musculoskeletal

radiologists (D.L.S., 9 years’ experience; L.W.H., 11 years’

experience) independently interpreted all MRI examinations

following standardized blinding protocols. This rigorous

methodology ensured complete separation from clinical histories

and histopathological results throughout the image analysis process.
FIGURE 1

The inclusion and exclusion criteria for patients with VCF for the training and testing cohorts.
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Following inter-reader reliability assessment between the two

aforementioned radiologists, and features with agreement scores

>0.75 were included in the subsequent analysis.

Gender, age and location of lesion were recorded in each case. If

there were anterior wedge deformity, band pattern edema,

paravertebral mass, diffuse signal change, pedicle and posterior

element involvement of involved vertebral body were interpretated

separately by two musculoskeletal radiologists with substantial

clinical experience (D.L.S.: 9 years; L.W.H.: 11 years), with strict

adherence to blinding protocols that excluded access to clinical

histories and histopathological findings.
2.3 Image preprocessing and segmentation

N4-bias field correction was applied to all MRI data, followed by

resampling to a uniform voxel size of 1×1×1 mm³ using nearest-

neighbor interpolation. Subsequently, image signal intensities were

normalized. Three-dimensional segmentation was performed using

ITK-SNAP version 3.6.0 (www.itksnap.org/) on w-Dixon images to

delineate the region of interest (ROI).The entire compressed

vertebral bodies are the ROIs in our study. Radiologist D.L.S.

conducted the initial segmentation. A randomly selected subset of

100 patient records was analyzed to assess intra-observer and inter-

observer agreement reliability. Two weeks later, both Radiologist
Frontiers in Oncology 04
D.L.S. and Radiologist L.W.H. independently performed ROI

delineation on this subset of data.
2.4 Rad feature extraction

The extraction of radiomic features was performed utilizing a in-

house feature analysis tool, which was built upon the Pyradiomics

platform (accessible at http://pyradiomics.readthedocs.io). The

manually engineered radiomic features comprised three

fundamental categories: (1) statistical features, (2) morphological

characteristics, and (3) textural patterns. Various features a

reclassified into texture group, such as greyscale co-occurrence

matrix (GLCM), grey-level size zone matrix (GLSZM), grey-level

run length matrix (GLRLM), and neighboring grey-tone difference

matrix (NGTDM) and grey level dependence matrix (GLDM). In

total, 1835 handcrafted features were extracted.
2.5 2.5DDL feature extraction

The 2.5D approach was chosen to balance computational

efficiency and 3D spatial context. Unlike 2D models that discard

inter-slice relationships, our method combined the maximum sagittal

slices along with their adjacent slices (± 5 slices) into three separate
FIGURE 2

The overall flow chart of this study.
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input channels while avoiding the prohibitive GPU memory

requirements of full 3D CNNs. Our 2.5D method utilized a total of

702 (234 × 3) images. Prior to model training, all input images

underwent preprocessing steps involving two key operations: (1)

spatial cropping to retain the minimal bounding box containing the

target region, and (2) intensity normalization through Z-score

transformation to standardize pixel values. This process simplified

the images, reducing the complexity and background noise for the

algorithm to analyze. During the model optimization phase, the

synthetically generated 2.5D datasets were systematically integrated

into a transfer learning paradigm, allowing for comprehensive

evaluation of their augmentative effects on cross-domain adaptation

capabilities. Transfer learning allows a model to enhance learning

efficiency and minimizes the likelihood of overfitting. We explored the

performance of ResNet50 architectures that had been pre-trained on

the ImageNet Large Scale Visual Recognition Challenge 2012

(ILSVRC-2012) dataset. After examining the 702 images, we

configured the DL parameters as follows: 50 training echoes and a

batch size of 32. Grayscale intensities were normalized to the [-1,1]

range via min-max scaling during preprocessing. All cropped regions

were then resampled to 224×224 resolution with nearest-neighbor

interpolation prior to model input.
2.6 Feature fusion and model construction

Rad feature analysis was performed through a multi-stage pipeline

to ensure methodological rigor. In the preliminary phase, the reliability

of features was evaluated through intraclass correlation coefficient

(ICC) analysis. Features exhibiting ICC scores below the predefined

threshold of 0.85 were systematically excluded to ensure robust

measurement consistency across repeated evaluations. Subsequently,

Z-score normalized features underwent statistical screening through

inter-group t-tests, where features exhibiting statistically significant

differences (p<0.05) were selected. To address feature redundancy,

pairwise Pearson correlations were computed, and highly correlated

feature pairs (r>0.9) were reduced to single representative features. A

stepwise recursive elimination algorithm was then applied to iteratively

remove collinear features. Finally, least absolute shrinkage and selection

operator (LASSO) regression with 10-fold cross-validation was

implemented to optimize regularization parameters (l), ultimately

retaining features with non-zero coefficients as the final robust

predictors demonstrating superior discriminative performance. We

extracted the DL features from the ResNet50 module. We then

extracted a total of 2048-dimensional deep conventional neural

network (DCNN) features for each of the three channels from the

last average pooling layers. For the feature fusion, we composed Rad

features and DL features including 2048-dimensional deep features for

each of the three channels.

To construct radiomics and deep learning radiomics (DLR)

models for distinguishing between benign and malignant VCFs, a

feature selection process was implemented to identify relevant Rad

features and their fused counterparts. These attributes were later

combined with eight distinct machine learning classifiers,

encompassing logistic regression (LR), support vector machines
Frontiers in Oncology 05
(SVM), k-nearest neighbors (KNN), Random Forest, ExtraTrees,

XGBoost, light gradient boosting machine(LightGBM), and

multilayer perceptron (MLP) architectures. To enhance the model’s

hyperparameter tuning, a 5-fold cross-validation approach was

systematically applied to the training dataset, enabling the

identification and selection of classifiers demonstrating superior

performance metrics for final model training.

After an exhaustive evaluation of pertinent clinical variables and

MRI characteristics, an initial univariate screening process was

performed to isolate potential predictive factors. Following this

phase, multivariate logistic regression analysis was implemented to

enhance feature selection precision. The optimized feature subset

was systematically fused with the top-performing prediction model,

ultimately producing an interpretable clinical nomogram to guide

diagnostic evaluations.

The diagnostic accuracy of predictive models was evaluated

through receiver operating characteristic (ROC) analysis, where the

Delong statistical method was applied to determine significant

differences in area under the curve (AUC) values across

comparative models. Predictive calibration was quantitatively

assessed using probability calibration diagrams supported by

Hosmer-Lemeshow goodness-of-fit testing, which statistically

evaluates the consistency between model-generated probabilities

and actual outcome distributions. Simultaneously, decision curve

analysis (DCA) was implemented to appraise clinical applicability

and net benefit thresholds of the predictive models.
2.7 Statistical analysis

This study implemented Python (version 3.7.12) and the stats

models library (version 0.13.2) for statistical computations, while

machine learning models were developed using the scikit-learn API

(version 1.0.2).Training of deep learning models was executed on an

NVIDIA 4080 GPU, leveraging the MONAI framework (v. 0.8.1)

and PyTorch (v. 1.8.1).

Statistical analyses were conducted to evaluate the normality

distribution and variance homogeneity of quantitative datasets. For

measurements adhering to normal distribution patterns, descriptive

statistics were presented as means with standard deviations (SD),

while between-group differences were assessed through independent

samples t-tests for dual-group comparisons. Conversely, if the data

deviated from normality, they were represented by the median and

interquartile range(IQR), and comparisons were conducted using the

non-parametric Mann-Whitney U test. For categorical data,

comparisons were made using the chi-square test. Statistical

significance was determined at a P-value threshold of <0.05.
3 Results

3.1 Clinical and MRI features

Clinical data and MRI characteristics were compared among

patients in both the training and testing cohorts. The inter-reader
frontiersin.org
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agreement for all MRI features was greater than 0.75. The clinical

information and MRI features of the patients involved in training

and testing the models are summarized in Table 1. There are no

statistically significant differences between most of the clinical and

MRI features of the two groups. In this investigation, a thorough

univariate examination was performed on all clinical attributes,

with particular emphasis on determining the odds ratios (OR) and

their associated p-values for every variable. As shown in Table 2, the

baseline characteristics of the training and testing cohorts were

well-balanced, with no statistically significant differences (P>0.05)

in clinical and MRI parameters between the groups, confirming

equitable data distribution. To ascertain the OR and p-values for

features that differentiate benign from malignant vertebral

compression fractures (VCFs), both univariate and multivariate

analytical approaches were systematically applied. The univariate

analysis highlighted significant differences (P < 0.05) in gender, age,

location, band pattern edema, anterior wedge deformity, and

paraverteral mass between the two groups. Multivariate analysis

identified band pattern edema (OR=0.125), anterior wedge

deformity (OR=0.189), and paraverteral mass (OR=13.538) as
Frontiers in Oncology 06
independent risk factors for differentiating between benign and

malignant VCFs (Supplementary Table 1).

The identified variables served as discriminators for differentiating

between benign and malignant VCFs and were integral in the

development of the clinical prediction model. The newly

constructed framework exhibited strong predictive capability,

yielding area under the curve (AUC) scores of 0.822 (95% CI:

0.763-0.880) and 0.795 (95% CI: 0.697-0.893) in respective training

and testing datasets. Detailed findings from both cohorts are

systematically cataloged in Table 2 and Supplementary Figure 1,

demonstrating consistent classification accuracy across different

sample populations.
3.2 Feature extraction and model
development

3.2.1 Rad models
In the domain of Rad, an extensive set of 1835 manually derived

features was initially extracted, which included 360 fundamental
TABLE 1 Baseline clinical and MRI features of patients in training and testing sets.

Clinical and MRI features All (n=234) Training cohort (n=164) Testing cohort (n=70) P

Age (year) 63.32 ± 13.44 60.97 ± 11.37 64.33 ± 14.14 0.008

Gender 0.979

Male 105(44.87) 32(45.71) 73(44.51)

Female 129(55.13) 38(54.29) 91(55.49)

Location 0.105

Cervical 8(3.42) 5(7.14) 3(1.83)

Thoracic 83(35.47) 22(31.43) 61(37.20)

Lumbar 143(61.11) 43(61.43) 100(60.98)

Anterior wedge deformity 0.526

Absent 106(45.30) 29(41.43) 77(46.95)

Present 128(54.70) 41(58.57) 87(53.05)

Band pattern edema 0.438

Absent 167(71.37) 47(67.14) 120(73.17)

Present 67(28.63) 23(32.86) 44(26.83)

Paraverteral mass 0.954

Absent 222(94.87) 67(95.71) 155(94.51)

Present 12(5.13) 3(4.29) 9(5.49)

Diffuse signal change 0.591

Absent 76(32.48) 25(35.71) 51(31.10)

Present 158(67.52) 45(64.29) 113(68.90)

Pedicle/posterior element
involvement

0.754

Absent 119(50.85) 34(48.57) 85(51.83)

Present 115(49.15) 36(51.43) 79(48.17)
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characteristics, 14 morphological descriptors, and a diverse array of

textural attributes. Through a rigorous feature selection process,

this collection was winnowed down to 15 highly interrelated

features that were deemed most pertinent for subsequent analysis

and the crafting of conventional Rad predictive models. The

prognostic efficacy of different classifier amalgamations are

delineated in Table 3. Among these, the ExtraTrees algorithm

emerged as the most accurate predictor in the testing dataset,

yielding an AUC of 0.801(95% CI: 0.693- 0.909). The ROC curve

for this particular model is depicted in Supplementary Figure 2.

3.2.2 2.5D DL models
The Resnet50 architecture demonstrated a higher level of

performance relative to the ExtraTrees algorithm when employing

clinical and traditional Rad features, The proposed model exhibited

excellent discriminative capability, as evidenced by an AUC value of

0.805 (95% CI: 0.690-0.921) in the independent testing cohort. To

enhance our understanding of the ResNet50 model’s decision

mechanism, we employed Gradient-weighted Class Activation

Mapping (Grad-CAM), an advanced visualization technique that

provides intuitive insights into the neural network’s feature

attention patterns during classification. Grad-CAM provides a

qualitative localization map, highlighting the critical regions that

contribute to the classification outcome. During the analytical

process, the output generated by the final convolutional layer within

the last residual block was visualized with semi-transparency, as

depicted in Figure 3.
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3.2.3 Feature fusion models
In the context of the training dataset, a selection of 23 Rad and

DL features, characterized by nonzero coefficients, were identified

to construct the DLR score through the application of a LASSO

logistic regression model. The coefficients, along with the mean

standard error derived from 5-fold cross-validation and the

ultimate values of the selected nonzero coefficients, are presented

in Figures 4 and 5. The resultant DLR score is presented below:

DLR_score = 0.3719512195121951 -0.034529 * DL_537.2 +

0.072502 * DL_1682.2 -0.044722 * DL_161.1 -0.018719 *

DL_ 1 0 5 1 . 2 - 0 . 0 1 0 3 0 4 * DL_ 6 9 0 . 1 + 0 . 0 7 6 9 1 1 *

wavelet_LLL_glcm_Correlation -0.075029 * DL_1482.1 -0.029188

* DL_196.1 -0.058964 * DL_1730.2 -0.032595 * DL_96.2 + 0.000263

* DL_1805 -0.022073 * DL_1907.2 -0.012883 * DL_459.2 -0.034471

* DL_712.2 -0.013942 * DL_550.2 -0.044407 * DL_363 -0.002176 *

DL_1265.2 + 0.026500 * DL_423.2 -0.038139 * DL_1058.2

-0.032927 * DL_263.2 -0.027950 * DL_845.2 -0.017713 *

DL_1479.1 -0.063406 * DL_2011.1.

Following the integration of diverse classifiers to create DLR

feature fusion models, their respective performances were assessed

and summarized in Table 4. In the testing dataset, the ExtraTrees

classifier exhibited superior performance, achieving an AUC of 0.828

(95% CI: 0.727–0.929), outperforming the ResNet50 model. The DLR

model’s superior AUC (0.828 vs. 0.805 for ResNet50 alone) suggests

that handcrafted radiomic features complement DL-derived features,

which may not be fully captured by end-to-end DL. The

corresponding ROC curve is illustrated in Supplementary Figure 3.
TABLE 2 Performance comparison of different clinical models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.820 0.761 ~ 0.880 0.671 0.131 0.990 0.889 0.658

SVM-training 0.775 0.702 ~ 0.848 0.762 0.770 0.757 0.653 0.848

KNN-training 0.818 0.760 ~ 0.877 0.659 0.082 1.000 1.000 0.648

RandomForest-
training

0.808 0.746 ~ 0.870 0.762 0.770 0.757 0.653 0.848

ExtraTrees-
training

0.822 0.763 ~ 0.880 0.671 0.131 0.990 0.889 0.658

XGBoost-training 0.808 0.746 ~ 0.870 0.762 0.770 0.757 0.653 0.948

LightGBM-
training

0.797 0.735 ~ 0.860 0.628 0.000 1.000 0.000 0.628

MLP-training 0.789 0.725 ~ 0.834 0.762 0.770 0.757 0.653 0.848

LR-testing 0.794 0.696 ~ 0.892 0.700 0.125 1.000 1.000 0.687

SVM-testing 0.681 0.539 ~ 0.822 0.714 0.667 0.739 0.571 0.810

KNN-training 0.789 0.690 ~ 0.888 0.686 0.083 1.000 1.000 0.676

RandomForest-
testing

0.778 0.676 ~ 0.880 0.714 0.667 0.739 0.571 0.810

ExtraTrees-testing 0.795 0.697 ~ 0.892 0.700 0.125 1.000 1.000 0.687

XGBoost-testing 0.778 0.676 ~ 0.880 0.714 0.667 0.739 0.571 0.810

LightGBM-testing 0.767 0.664 ~ 0.891 0.714 0.667 0.739 0.571 0.810

MLP-testing 0.749 0.638 ~ 0.860 0.714 0.667 0.739 0.571 0.810
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TABLE 3 Performance comparison of different Rad models.

Model AUC 95%CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.876 0.820 ~ 0.932 0.835 0.721 0.903 0.815 0.845

SVM-training 0.938 0.887 ~ 0.990 0.921 0.902 0.932 0.887 0.941

KNN-training 0.891 0.845 ~ 0.937 0.805 0.557 0.951 0.872 0.784

RandomForest-
training

0.887 0.836 ~ 0.937 0.805 0.836 0.786 0.699 0.890

ExtraTrees-
training

0.901 0.857 ~ 0.946 0.787 0.902 0.718 0.655 0.925

XGBoost-training 0.890 0.840 ~ 0.940 0.817 0.803 0.825 0.731 0.876

LightGBM-
training

0.981 0.967 ~ 0.996 0.927 0.885 0.951 0.915 0.933

MLP-training 0.879 0.825 ~ 0.933 0.787 0.836 0.757 0.671 0.886

LR-testing 0.745 0.617 ~ 0.872 0.686 0.625 0.717 0.536 0.786

SVM-testing 0.773 0.652 ~ 0.894 0.757 0.500 0.891 0.706 0.774

KNN-training 0.751 0.641 ~ 0.861 0.686 0.557 0.951 0.872 0.784

RandomForest-
testing

0.794 0.681 ~ 0.908 0.714 0.667 0.739 0.571 0.810

ExtraTrees-testing 0.801 0.693 ~ 0.909 0.743 0.792 0.717 0.594 0.868

XGBoost-testing 0.685 0.553 ~ 0.818 0.657 0.375 0.804 0.500 0.712

LightGBM-testing 0.768 0.657 ~ 0.880 0.700 0.708 0.696 0.548 0.821

MLP-testing 0.689 0.547 ~ 0.832 0.714 0.500 0.826 0.600 0.760
F
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FIGURE 3

Grad-CAM visualizations for benign (A) and malignant (B) VCFs.
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3.3 Nomogram development and model
performance comparison

The DLR model exhibited superior efficacy in comparison to

other models, prompting us to integrate pertinent clinical

characteristics with its predictions to develop the ultimate

combined model, which was adeptly depicted through a

nomogram (DLRN). The nomogram revealed that the DLR factor

was pivotal in distinguishing between benign and malignant VCFs

(as shown in Figure 6).

An overview of the performance metrics for a range of models,

encompassing clinical, Rad, DL, DLR and DLRN features is
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provided in Table 5. Notably, as visualized in Figure 7, the DLRN

model exhibited the most significant performance, achieving an

AUC of 0.981 (95% CI: 0.964 - 0.998) in the training dataset and

0.871 (95% CI: 0.786 - 0.957) in the testing dataset.

To assess and compare the efficacy of the clinical, Rad, DL, DLR,

and DLRN signatures, the Delong test was utilized, as illustrated in

Supplementary Figure 4. The calibration curves displayed in

Supplementary Figure 5 indicate strong predictive accuracy of the

DLRN model, with Hosmer-Lemeshow test results of 0.261

(training set) and 0.208 (testing set). Additionally, the DCA

curves in Figure 8 indicate that the DLRN model offers superior

clinical utility compared to the Rad, DL, and DLR models.
FIGURE 4

Fusion feature selection using LASSO (A) and the histogram of the feature importance score (B) based on the selected features. The optimal l value
of 0.0095 was selected.
FIGURE 5

The selected fusion features and corresponding coefficients.
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4 Discussion

The results in current study indicated that 2.5D DL models

surpassed traditional Rad models in distinguishing benign from

malignant VCFs using MRI(AUC=0.805 vs 0.801). Furthermore,

integration of the feature fusion DLR architecture yielded additional

performance gains, achieving a superior AUC metric of 0.828. Both

clinical features and MRI characteristics were found to contribute
Frontiers in Oncology 10
significantly to model development. Significantly, the DLRN model,

which combined all relevant data, showed better performance

(AUC=0.871). The DCA further underscored the potential

advantages of utilizing the DLRN model, suggesting improved

advantages for patients.

While prior research has described imaging characteristics of

VCFs (16, 19), our systematic approach through univariate and

multivariate logistic regression identified three clinically practicable
FIGURE 6

The DLRN for predicting VCFs. For clinical features in nomogram, 0 means ‘absent’, and 1 means ‘ present’ successively.
TABLE 4 Performance comparison of different DLR models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

LR-training 0.982 0.967 ~ 0.996 0.915 0.951 0.893 0.841 0.968

SVM-training 0.997 0.992 ~ 1.000 0.963 0.984 0.951 0.923 0.99

KNN-training 0.973 0.954 ~ 0.992 0.890 0.738 0.981 0.957 0.863

RandomForest-
training

0.964 0.938 ~ 0.991 0.909 0.885 0.922 0.871 0.931

ExtraTrees-
training

0.971 0.948 ~ 0.995 0.921 0.902 0.932 0.887 0.941

XGBoost-training 0.963 0.936 ~ 0.990 0.915 0.885 0.932 0.885 0.932

LightGBM-
training

1.000 0.999 ~ 1.000 0.988 0.984 0.99 0.984 0.990

MLP-training 0.974 0.949 ~ 0.992 0.933 0.836 0.99 0.981 0.911

LR-testing 0.729 0.606 ~ 0.853 0.643 0.833 0.543 0.488 0.862

SVM-testing 0.745 0.608 ~ 0.881 0.757 0.708 0.783 0.630 0.837

KNN-training 0.785 0.660 ~ 0.910 0.786 0.500 0.935 0.800 0.782

RandomForest-
testing

0.789 0.669 ~ 0.909 0.786 0.625 0.87 0.714 0.816

ExtraTrees-testing 0.828 0.727 ~ 0.929 0.743 0.708 0.761 0.607 0.833

XGBoost-testing 0.739 0.620 ~ 0.858 0.657 0.708 0.630 0.500 0.806

LightGBM-testing 0.731 0.596 ~ 0.866 0.771 0.542 0.891 0.722 0.788

MLP-testing 0.813 0.705 ~ 0.920 0.743 0.708 0.761 0.607 0.833
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TABLE 5 Performance comparison of different models.

Model AUC 95% CI Accuracy Sensitivity Specificity PPV NPV

Clinical-training 0.822 0.763 ~ 0.880 0.671 0.131 0.99 0.889 0.658

Rad-training 0.901 0.857 ~ 0.946 0.787 0.902 0.718 0.655 0.925

DL -training 0.926 0.887 ~ 0.945 0.823 0.885 0.786 0.711 0.920

DLR-training 0.971 0.945 ~ 0.995 0.921 0.902 0.932 0.887 0.941

DLRN -training 0.981 0.964 ~ 0.998 0.939 0.918 0.951 0.918 0.951

Clinical-testing 0.795 0.697 ~ 0.893 0.700 0.125 1.000 1.000 0.687

Rad-testing 0.801 0.693 ~ 0.909 0.743 0.792 0.717 0.594 0.868

DL -testing 0.805 0.690 ~ 0.921 0.800 0.583 0.913 0.778 0.808

DLR-testing 0.828 0.727 ~ 0.930 0.743 0.708 0.761 0.607 0.833

DLRN -testing 0.871 0.786 ~ 0.957 0.786 0.708 0.826 0.68 0.844
F
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FIGURE 7

The ROC curves for different models in training cohort (A) and testing cohort (B).
FIGURE 8

Different models’ DCA curves in training set (A) and testing set (B).
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predictors: anterior wedge deformity, absence of paravertebral

mass, and bandlike edema. These findings corroborate established

biomarkers while addressing the critical gap in quantitative

statistical validation. Furthermore, the incorporation of various

classifiers with clinical models yielded promising diagnostic

results in our research. The clinical models exhibited robust

predictive accuracy across both training and testing datasets,

achieving AUC scores between 0.763 and 0.880 for the training

dataset, and 0.697 to 0.892 for the testing dataset.

Rad is an evolving and fast-growing area that emphasizes the

comprehensive extraction of quantitative features, revealing detailed

textures invisible to human sight (19, 20). Various research endeavors

have been undertaken to distinguish benign from malignant vertebral

VCFs by extracting and examining imaging characteristics. To

differentiate between benign and malignant VCFs, Zhang et al. (21)

obtained Rad features from MRI scans of 479 patients and utilized

seven different machine learning classifiers to distinguish between

ambiguous VCFs. These models showed favorable efficacy in

differentiating benign from malignant indistinguishable VCFs, and

Gaussian naïve Bayes (GNB) model attained higher AUC (0.860). The

incorporation of various classifiers with traditional Rad models also

yielded promising diagnostic results in our research. Specifically, the

training set exhibited an AUC within a certain range, while the testing

set demonstrated an AUC within another specified range. While the

training dataset achieved consistently high AUC scores between 0.857

and 0.946, the testing set showed a more moderate performance range

from 0.693 to 0.909.

When compared to conventional machine learning methods,

DL, with its multiple layers of artificial neurons, excels at extracting

abstract and complex features from raw data, rendering its models

exceptionally proficient in detecting sophisticated patterns and

relationships within image data (22, 23). Spinal surgeons have

shown considerable interest in the potential of DL models as a

viable option for diagnosing malignant VCFs, offering an alternative

to biopsy and postoperative pathology (24). Nonetheless, the

classification capabilities of 2D DL models are constrained due to

their neglect of tumor characteristics across adjacent slices (25). 3D

segmentation leverages comprehensive spatial data of the tumor.

However, it is crucial to acknowledge that such models require

substantial computational power and large sample sizes to ensure

adequate training (26). Our research employed a 2.5D technique

that integrates data from three neighboring slices. This

methodology capitalizes on the strengths of 3D data without

sacrificing the correlational integrity between 2D slices, thereby

addressing the shortcomings of both 2D and 3D frameworks.

Utilizing the ResNet50 architecture, our study attained an AUC

score of 0.805 within the testing set (95% CI: 0.690 - 0.921),

demonstrating a significantly improved performance. The Grad-

CAM visualization revealed that the model primarily concentrated

on the tumor’s perimeters when making decisions. This alignment

with clinical indicators enhanced the model’s interpretability.

Research has shown that models integrating DL characteristics

with Rad features exhibit superior performance compared to

models utilizing only one of these features in diverse clinical

scenarios. Duan et al. (27) investigated various models, including
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DL, Rad, and their fusion (DLR), to distinguish malignant VCFs

from those caused by osteoporosis. Notably, the DLR model

demonstrated superior performance. Consistent with Duan et al’s

findings, our findings indicated that fusion model (DLR

AUC=0.828) surpassed both individual models.

Furthermore, choosing an effective and suitable classification

model is essential for constructing reliable models. In the testing set

of our study, which included clinical, Rad, and DLR models, the

ExtraTrees classifier delivered outstanding results. By integrating

extra randomness from the RandomForest approach, the

ExtraTrees method successfully minimizes model variance and

boosts its ability to generalize, rendering it exceptionally suitable

for managing datasets (28).

The nomogram-based integration of multimodal features has

enabled the development of clinically robust predictive frameworks

(29, 30). The evaluation revealed enhanced diagnostic accuracy, as

evidenced by the testing cohort’s AUC of 0.871 (95% confidence

interval: 0.786–0.957). Notably, while individual models

demonstrated satisfactory performance, our composite model

synergistically combined DL with clinical parameters and Rad

signatures, capitalizing on their complementary strengths to

create a more clinically viable predictive tool. Importantly, this

integrated framework suggests potential optimization of current

clinical workflows by strategically reallocating computational

resources without compromising diagnostic accuracy.

Compared with the most similar previously published article, our

work has some similarities and differences with them. Prior studies

have explored machine learning and imaging features for VCF

differentiation. Thawait et al. (31) established MRI-based logistic

regression models (training AUC: 0.872) using 34 handcrafted

features, while Foreman et al. (32) developed a CT-focused 3D U-

Net model (external AUC: 0.76). However, Flanders’ reliance on

manual feature engineering limits generalizability, and Foreman’s

CT-based approach sacrifices MRI’s superior soft-tissue contrast. To

address these gaps, we propose a novel 2.5D deep learning framework

integrating radiomics and MRI-specific features. By integrating 2.5D

deep learning with radiomics, our study advances beyond Flanders’

feature engineering and Foreman’s CT-based models, offering a MRI-

specific, interpretable nomogram for VCF differentiation. This

approach balances discrimination power (testing AUC: 0.871),

computational efficiency, and clinical utility.

Nonetheless, this study has several limitations. Initially, its

retrospective nature could introduce bias in participant selection.

The study’s participant selection was restricted to a single healthcare

institution, resulting in limited external verification of findings.

Subsequent research initiatives should prioritize multi-center

collaborations to broaden demographic representation and

strengthen the model’s clinical applicability. Moreover, our approach

to extracting features and constructing a model was based only on

traditional w-Dixon images with manually delineated ROIs, without

incorporating other imaging sequences. Future work will concentrate

on developing comprehensive multi-modal imaging models for

detailed data collection and incorporating intelligent segmentation

techniques based on deep learning to ensure higher delineation

accuracy and consistency, consequently elevating diagnostic quality.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1603672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liang et al. 10.3389/fonc.2025.1603672
5 Conclusions

The present research indicated that the DLR model, which

integrates feature fusion from MRI data, outperforms clinical models,

traditional Rad models, and 2.5D DL models in differentiating benign

from malignant VCFs. Furthermore, the incorporation of clinical and

MRI parameters further boosts the efficacy of the DLRN. Ultimately,

this approach has significant potential to support precision medicine

initiatives in clinical practice. Future work will focus on multi-center

validation and incorporation of multi-modal imaging to further

strengthen the model’s clinical applicability.
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